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Abstract. We present a new partition identity and give a combinatorial proof of
our result. This generalizes a result of Andrews in which he considers the generating
function for partitions with respect to size, number of odd parts, and number of odd
parts of the conjugate.

Keywords: partitions, bijective proof, partition identity

AMS Mathematics Subject Classification: primary: 05A17, secondary: 11P81

1. Introduction

In [1], Andrews considers partitions with respect to size, number of
odd parts, and number of odd parts of the conjugate. He derives the
following generating function

∑

λ∈Par

rθ(λ)sθ(λ′)q|λ| =
∞∏

j=1

(1 + rsq2j−1)

(1 − q4j)(1 − r2q4j−2)(1 − s2q4j−2)
(1)

where Par denotes the set of all partitions, |λ| denotes the size (sum of
the parts) of λ, θ(λ) denotes the number of odd parts in the partition
λ, and θ(λ′) denotes the number of odd parts in the conjugate of λ. In
this paper, we generalize this result and provide a bijective proof of our
generalization. This provides a simple combinatorial proof of Andrews’
result. Other combinatorial proofs of (1) have been found by Sills in [2]
and Yee in [4].

2. Main Result

Let λ = (λ1, λ2, λ3, . . .) with λ1 ≥ λ2 ≥ λ3 ≥ . . . and λi ∈ Z+ for
i = 1, 2, 3, . . . be a partition. Consider the following weight functions
on the set of all partitions:

α(λ) =
∑

dλ2i−1/2e

β(λ) =
∑

bλ2i−1/2c
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γ(λ) =
∑

dλ2i/2e

δ(λ) =
∑

bλ2i/2c.

Also, let a, b, c, d be (commuting) indeterminants, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then α(λ) is the number of a’s in the
following diagram for λ, β(λ) is the number of b’s in the diagram, γ(λ)
is the number of c’s in the diagram, and δ(λ) is the number of d’s in the
diagram. Moreover, w(λ) is the product of the entries of the diagram.

a b a b a
c d c d
a b a b
c d c
a b

These weights were first suggested by Stanley in [3].
Let Φ(a, b, c, d) =

∑
w(λ), where the sum is over all partitions λ, and

let Ψ(a, b, c, d) =
∑

w(λ), where the sum is over all partitions λ with
distinct parts. We obtain the following product formulas for Φ(a, b, c, d)
and Ψ(a, b, c, d):

Theorem 1.

Φ(a, b, c, d) =
∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1 − ajbjcjdj)(1 − ajbjcj−1dj−1)(1 − ajbj−1cjdj−1)

Corollary 2.

Ψ(a, b, c, d) =
∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1 − ajbjcj−1dj−1)

Andrews’ result follows easily from Theorem 1. Note that we can
express number of odd parts of λ, number of odd parts of λ′ and size
of λ in terms of the number of a’s, b’s, c’s, and d’s in the diagram for
λ as follows:

θ(λ) = α(λ) − β(λ) + γ(λ) − δ(λ)

θ(λ′) = α(λ) + β(λ) − γ(λ) − δ(λ)

|λ| = α(λ) + β(λ) + γ(λ) + δ(λ).

Thus we transform Φ(a, b, c, d) by sending a 7→ rsq, b 7→ r−1sq, c 7→
rs−1q, and d 7→ r−1s−1q. A straightforward computation gives (1).
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Our main result is a generalization of Theorem 1 and Corollary 2.
It is the corresponding product formula in the case where we restrict
the parts to some congruence class (mod k) and we restrict the number
of times those parts can occur. Let R be a subset of positive integers
congruent to i(mod k) and let ρ be a map from R to the even positive
integers. Let Par(i, k;R, ρ) be the set of all partitions with parts con-
gruent to i(mod k) such that if r ∈ R, then r appears as a part less
than ρ(r) times. Let Φi,k;R,ρ(a, b, c, d) =

∑
λ w(λ) where the sum is over

all partitions in Par(i, k;R, ρ).
For example, Par(0, 1; ∅, ρ)) is Par, the set of all partitions. Also, if

we let R be the set of all positive integers and ρ map every positive
integer to 2, then Par(1, 1; Z+, ρ) is the set of all partitions with distinct
parts. These are the two cases found in Theorem 1 and Corollary 2.

Theorem 3.

Φi,k;R,ρ(a, b, c, d) = ST

where

S =
∞∏

j=1

(1 + ad
(j+1)k+i

2
ebb

(j+1)k+i

2
ccd

jk+i

2
edb

jk+i

2
c)

(1 − ad
jk+i

2
ebb

jk+i

2
ccd

jk+i

2
edb

jk+i

2
c)(1 − ajkb(j−1)kcjkd(j−1)k)

and

T =
∏

r∈R

(1 − ad
r
2
e

ρ(r)
2 bb

r
2
c

ρ(r)
2 cd

r
2
e

ρ(r)
2 db

r
2
c

ρ(r)
2 )

3. Combinatorial Proof of these Results

The proof of Theorem 3 is a slight modification of the proofs of The-
orem 1 and Corollary 2. For clarity, we will first give the argument in
the special case where we consider all partitions and partitions with
distinct parts and then we will mention how the proof can be modified
to work in general.

Proof of Theorem 1.

Consider the following class of partitions:

R = {λ ∈ Par : λ2i−1 − λ2i ≤ 1}.

We are restricting the difference between a part of λ which is at an odd
level and the following part of λ to be at most 1.
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(6,5)

(9,9)

(2,1)

(1,0)

(5,5)

(5,5)

Figure 1. λ = (9, 9, 6, 5, 5, 5, 5, 5, 2, 1, 1) decomposes into blocks
{(9, 9), (6, 5), (5, 5), (5, 5), (2, 1), (1, 0)}

To find the generating function for partitions in R under weight
w(λ), we decompose λ ∈ R into blocks of height 2, {(λ1, λ2), (λ3, λ4), . . .}.
(In order to do this if we have an odd number of parts, add one part
equal to 0.) Since the difference of parts is restricted to either 0 or 1 at
odd levels, we can only get two types of blocks. For any k ≥ 1, we can
have a block with two parts of length k, i.e. (k, k). Call this Type I. In
addition, for any k ≥ 1, we can have a block with one part of length k
and then other of length k − 1, i.e. (k, k − 1). Call this Type II.

In fact, partitions in R correspond uniquely to a multiset of blocks
of Type I and II with at most one block of Type II for each length k.
Figure 1 shows an example of such a decomposition.

To calculate the generation function for R, it remains to calculate
the weights of our blocks. The blocks of Type I get filled as follows:

a b a b . . . a b or a b a b . . . a b a
c d c d . . . c d c d c d . . . c d c

depending on the length of the blocks. Therefore they have weights
ajbjcjdj or ajbj−1cjdj−1.

The blocks of Type II get filled as follows:

a b a b . . . a b a or a b a b . . . a b
c d c d . . . c d c d c d . . . c

depending on the length of the blocks. Therefore they have weights
ajbj−1cj−1dj−1 or ajbjcjdj−1.

So we have the following generating function:

∑

λ∈R

w(λ) =
∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1 − ajbjcjdj)(1 − ajbj−1cjdj−1)
.

abcdRAMA2.tex; 24/06/2004; 16:48; p.4



5

µ =λ = ν  = ’ 

Figure 2. λ = (14, 11, 11, 6, 3, 3, 3, 1) and f(λ) = (µ, ν ′) where
ν = (7, 7, 3, 3, 3, 3, 1, 1) and µ = (6, 5, 5, 4, 1, 1, 1, 1)

Notice that
∑

λ∈R w(λ) contains all the factors in Φ(a, b, c, d) except
for

∞∏

j=1

1

1 − ajbjcj−1dj−1
.

Let S be the set of partitions whose conjugates have only odd parts
each of which is repeated an even number of times. We give a bijection
f : Par → R× S, such that S contributes exactly the missing factors.

Given a partition λ, let ν be the partition with λ2i−1 − λ2i parts
equal to 2i − 1 if λ2i−1 − λ2i is even and λ2i−1 − λ2i − 1 parts equal
to 2i − 1 if λ2i−1 − λ2i is odd. Also, let µ be the partition defined by
µi = λi − ν ′

i. Then we let f(λ) = (µ, ν ′). In other words, the map f
removes as many blocks of width 2 and odd height as possible from
λ. (Call these blocks of Type III.) These blocks are joined together to
give ν ′. The boxes which are left behind form µ. By its definition, ν
has only odd parts repeated an even number of times, which implies
that ν ′ ∈ S. Moreover, since we are removing as many pairs of columns
of odd height as possible from λ, µ must have λ2i−1 − λ2i ≤ 1. To see
that f is a bijection, we note that its inverse is simply taking the sum
of µ and ν ′ since λi = µi + ν ′

i. An example is shown in Figure 2.
Now we examine the relationship between w(λ), w(µ), and w(ν ′).

Consider the blocks of Type III in λ. They always have weight ajbj−1cjdj−1

regardless of whether their first column contains a’s and c’s or b’s and
d’s. This is also the weight of the blocks when they are placed in ν ′.
Hence w(ν ′) is the product of the entries in the diagram of λ which are
removed to get µ.

Moreover, since we are removing columns of width 2, the entries
in the squares of the diagram of λ that correspond to squares in the
diagram on µ do not change when ν ′ is removed. This implies that
w(λ) = w(µ)w(ν ′) and the result follows.

Proof of Corollary 2.

Let D denote the set of partitions with distinct parts and let E denote
the set of partitions whose parts appear an even number of times. Then
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µ = ν =λ =

Figure 3. λ = (9, 8, 7, 7, 5, 5, 5, 3, 1, 1, 1) and g(λ) = (µ, ν) where µ = (9, 8, 5, 3, 1)
and ν = (7, 7, 5, 5, 1, 1)

we define the following map g : Par → D × E . Suppose λ has k parts
equal to i. If k is even then ν has k parts equal to i, and if k is odd
then ν has k−1 parts equal to i. The parts of λ which are not removed
to form ν, at most one of each length, give µ. We let g(λ) = (µ, ν). An
example is shown in Figure 3. The map g is a bijection since its inverse
is taking the union of the parts of µ and ν. Similarly to the situation
in the proof of Theorem 1, since we are removing an even number of
rows of each length, we see that w(λ) = w(µ)w(ν).

Now using the decompostion from the proof of Theorem 1, partitions
in E have a decomposition which only uses blocks of Type I. Hence we
get that

Φ(a, b, c, d) = Ψ(a, b, c, d)
∞∏

j=1

1

(1 − ajbjcjdj)(1 − ajbj−1cjdj−1)

and the result follows.

The proof of our main result follows by the same argument with a
modification to the sizes of the blocks.

Proof of Theorem 3.

First we find the generation function S = Φi,k;∅,ρ(a, b, c, d) without any
restriction on the number of times each part may occur. This is done
by using Type I blocks with two parts each of length jk + i, for j ≥ 1,
Type II blocks with two parts, one of length jk + i and one of length
(j − 1)k + i, for j ≥ 1, and Type III blocks which are rectangular with
width 2k and odd height.

Next, we notice a bijection, analogous to the one in the proof of
Corollary 2, between Par(i, k; ∅, ρ) and Par(i, k;R, ρ) × T where T is
the set of all partitions with parts, r ∈ R and occuring a multiple of
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ρ(r) times. Since the generating function for T is

T−1 =
∏

r∈R

1

1 − ad
r
2
e

ρ(r)
2 bb

r
2
c

ρ(r)
2 cd

r
2
e

ρ(r)
2 db

r
2
c

ρ(r)
2

we get that S = Φi,k;R,ρ(a, b, c, d)T−1 and the result follows.
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