
EQUIVARIANT FORMALITY OF HOMOGENEOUS SPACES
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Abstract. Let G be a compact connected Lie group and K a connected Lie subgroup.
In this paper, we study the equivariant formality of the isotropy action of K on G/K. We
introduce an analogue of equivariant formality in K-theory called rational K-theoretic
equivariant formality (RKEF) and show that it is equivalent to equivariant formality in
the usual sense. Using RKEF, we give a more uniform proof of the main results in [Go]
and [GoNo] that the isotropy actions on (generalized) symmetric spaces are equivariantly
formal, without appealing to the classification theorem of those spaces. We also give
a representation theoretic condition which is equivalent to G/K being formal and the
isotropy action being equivariantly formal.
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1. Introduction

Equivariant formality, first defined in [GKM], is a special property of topological spaces
with group actions which allows for easy computation of their equivariant cohomology.
Roughly speaking, equivariant formality amounts to the existence of equivariant extension
in the equivariant cohomology theory of any element in the ordinary cohomology theory.
Equivalently, a G-space X is equivariantly formal if and only if the Leray-Serre spectral
sequence of the fiber bundle X ↪→ X ×G EG → BG collapses on the E2-page. The latter
is also equivalent to H∗G(X) ∼= H∗G(pt) ⊗ H∗(X) as H∗G(pt)-modules. There are various
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examples of interest which are known to be equivariantly formal, e.g. Hamiltonian mani-
folds, smooth complex projective varieties with linear algebraic torus actions (cf. [GKM,
Section 1.2 and Theorem 14.1]).

It would be desirable to have a classification of equivariantly formal spaces, but the
task is still formidable even if we restrict our attention to those with compact Lie group
actions. An easier question would be to determine if, for a compact Lie group G and
a closed subgroup K, the K-action on the homogeneous space G/K by isotropy action
(i.e. the action g · hK = ghK) is equivariantly formal. A pair (G,K) is said to be an
isotropy formal pair if the isotropy action on G/K is equivariantly formal. It is of interest
to determine if a pair (G,K) is isotropy formal, and sufficient conditions for (G,K) to
be isotropy formal pairs and certain classes of such pairs have been studied by various
authors. The homogeneous spaces they considered are all formal in the sense of Sullivan
(cf. Definition 3.3). For instance, Shiga and Takahashi obtained the following

Theorem 1.1 ([Sh] and [ShTa]). If G/K is formal, then i∗H∗G(pt) = H∗K(pt)N , where
N = NG(K)/K, if and only if (G,K) is an isotropy formal pair.

Recently, Goertsches and Noshari showed that

Theorem 1.2 ([Go] and [GoNo]). The classes of formal homogeneous spaces in Example
3.4 all admit equivariantly formal isotropy action.

The first author of this paper recently showed the following

Theorem 1.3 ([Ca], Theorem 1.1). (G,K) is an isotropy formal pair if and only if (G,S)
is, where S is a maximal torus of K.

Theorem 1.4 ([Ca], Theorem 1.2). Let G be a compact connected Lie group and S a torus

subgroup. Let G̃ be a finite central covering of G and S̃ the identity component of the

preimage of S. Then (G,S) is isotropy formal if and only if (G̃, S̃) is.

Thus the problem of determining if an isotropy action is equivariantly formal boils down
to the one involving torus isotropy action and G which is a product of a torus and a
compact simply-connected Lie group. He also gave an explicit algorithm of determining if
(G,S) is isotropy formal when S is a circle subgroup (cf. [Ca, Algorithm 1.4]).

One feature in common in the main arguments used by [Ca], [Go], [GoNo] and [ShTa]
to establish equivariant formality of isotropy action is the application of the condition of
dim H∗(M) = dim H∗(MT ) which is equivalent to T acting on M equivariantly formally.
For instance, to show that compact (generalized) symmetric spaces admit isotropy formal
action, the authors of [Go] and [GoNo] invoked the classification theorem for such spaces
and verify the equality of cohomological dimensions case by case. In our opinion, while
checking the equality of cohomological dimensions to prove equivariant formality is not
as straightforward as checking the surjectivity of the forgetful map from the equivariant
cohomology of the homogeneous space to its ordinary cohomology, the latter approach
does not come in handy either. Besides to us appealing to the classification theorem in
the proof of isotropy formality of (generalized) symmetric pairs in [Go] and [GoNo] is not
satisfactory.

This paper is a continuation of the paper [Ca] which made the first attempt of charac-
terizing the subgroup K such that (G,K) is an isotropy formal pair. Instead of working in
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equivariant cohomology, we apply K-theory to study the equivariant formality of isotropy
actions. Inspired by the notion of weakly equivariant formality, introduced in [HL], we
define the similar notion of rational K-theoretic equivariant formality (RKEF for short, see
Definition 2.2). The use of K-theory is feasible because of the following result which is
crucial in our work.

Theorem 1.5 ([F2]). Let X be a finite CW-complex with an action by a torus group T .
X is a RKEF T -space if and only if it is an equivariantly formal T -space.

The proof is reproduced in Section 2. Using the above Theorem we translate the whole
problem to the context of K-theory. One advantage of working in K-theory is that it is
more straightforward to check if the forgetful map is onto, since this amounts to deter-
mining if a vector bundle can be equipped with a T -action so as to become an equivariant
T -vector bundle. After obtaining the K-theory ring of compact homogeneous spaces (cf.
Proposition 3.7) and topological realizations of each element in the K-theory ring when
the homogeneous spaces are formal manifolds, we get a simple criterion for a formal homo-
geneous space to be isotropy formal (cf. Proposition 4.2), which we apply to give a more
uniform, simpler proof of the aforementioned result that the homogeneous spaces (3)-(4)
in Example 3.4 are isotropy formal (cf. Proposition 4.4). Furthermore we also get the
following sufficient condition for isotropy formality.

Theorem 1.6 (Theorem 4.9). Let G be a compact connected Lie group and S a torus
subgroup. G/S is both isotropy formal and formal in the sense of Sullivan if and only if
the image of the restriction map i∗ : R(G)→ R(S) is regular at the augmentation ideal.

Theorem 1.6 provides a uniform proof of the fact that homogeneous spaces (1)-(4) of
Example 3.4 are both formal and isotropy formal in one fell swoop (that these spaces are
formal were first proved in [GHV] and [T]). The regularity criterion in the Theorem can
be conveniently verified using computer algebra packages such as Macaulay2 and SAGE.
Two examples are worked out in Section 4.4 to demonstrate the usefulness of Theorem 1.6;
one of the examples is both formal and isotropy formal, but does not belong to the classes
of homogeneous spaces in Example 3.4.

2. Equivariant formality in K-theory

The notion of equivariant formality in K-theory was first defined and explored by Harada
and Landweber in [HL], where they instead used the term ‘weak equivariant formality’.

Definition 2.1 (Definition 4.1 in [HL]). A G-space M is weakly equivariantly formal if
the map

K∗G(M)⊗R(G) Z→ K∗(M)

induced by the forgetful map
f : K∗G(M)→ K∗(M)

is a ring isomorphism. Here in the above tensor product, Z is regarded as a R(G)-module
through augmentation homomorphism.

Recall that in cohomology, one of the equivalent conditions for a G-space M to be
equivariantly formal is that the Leray-Serre spectral sequence for the (rational) cohomology
of the Borel fibration M ↪→M ×G EG→ BG collapses on the E2-page. This leads to the
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equivalent condition that H∗G(M) be isomorphic to H∗(BG)⊗H∗(M) as H∗(BG)-modules.
Nevertheless, Harada and Landweber settled for Definition 2.1 as the K-theoretic analogue
of equivariant formality, instead of the seemingly obvious candidate K∗G(M) ∼= K∗G(pt) ⊗
K∗(M), citing the lack of the Leray-Serre spectral sequence for Atiyah-Segal’s equivariant
K-theory. The term ‘weak’ is in reference to the condition in Definition 2.1 being weaker
than K∗G(M) ∼= K∗G(pt)⊗K∗(M) because of the possible presence of torsion. We would like
to define another version of K-theoretic equivariant formality in exact analogy with another
cohomological equivariant formality condition that the forgetful map H∗G(M) → H∗(M)
be onto, and discuss its relation to Definition 2.1 under some conditions. The main result
Theorem 1.5 in this Section comes from work in preparation ([F2]). For convenience of the
reader we reproduce its proof here.

From now on, unless otherwise specified, X is a finite CW-complex equipped with an
action by a torus T or more generally a compact Lie group G. We use K-theory with
complex coefficient, and denote such with K∗(X) and K∗G(X) by abuse of notation. Along
the same vein, R(G) is used to denote the representation ring with complex coefficient, thus
C is regarded as a R(G)-module through the augmentation homomorphism. We use the
decoration Z if integral coefficient is used. For instance integral K-theory of M is denoted
by K∗(M,Z). The term ‘rational weakly equivariantly formal’ is used to refer to, in view
of Definition 2.1, the condition that

K∗G(M)⊗R(G) C→ K∗(M)

is a ring isomorphism.

Definition 2.2. We say M is a rational K-theoretic equivariantly formal (RKEF for short)
G-space if the forgetful map

f : K∗G(M)→ K∗(M)

is onto.

Under the condition of weak equivariant formality, [HL, Proposition 4.2] asserts that the
kernel of f is I(G) · K∗G(M), where I(G) is the augmentation ideal of K∗G(M). We find
that under the conditions that G be a torus group T , M be compact, and using complex
coefficient, the weak equivariant formality condition can be removed.

Lemma 2.3. Let ETm be the join of m copies of T . Viewing K∗(X×ETm/T ) as a module
over K∗(ETm/T ) = C[t1, · · · , tn]/((t1−1)m, · · · , (tn−1)m), we have that the kernel of the
forgetful map

fm : K∗(X × ETm/T )→ K∗(X)

is I(T ) ·K∗(X × ETm/T ), where I(T ) = (t1 − 1, · · · , tn − 1).

Proof. Viewing X ×T ETm and X as fiber bundle over BTm and a point respectively, the
inclusion map X → X ×T ETm induces a H∗(BTm)-module homomorphism between the
E2-pages of the Leray-Serre spectral sequences

Ep,q2 (X ×T ETm) = Hp(BTm, Hq(X))→ Ep,q2 (X) = Hp(pt, Hq(X))

The kernel of this homomorphism is J ·Ep,q2 (X ×T ETm), where J = (u1, · · · , um). Hence
the kernel of the homomorphism in the abutment gm : H∗(X ×T ETm) → H∗(X) is
J ·H∗(X ×T ETm).
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Consider the commutative diagram

K∗(X × ETm/T )
fm //

ch
��

K∗(X)

ch
��

H∗(X × ETm/T )
gm // H∗(X)

(1)

We have that

ker(fm) = ch−1(ker(gm))

= ch−1(J ·H∗(X × ETm/T ))

= ch−1(J) ·K∗(X × ETm/T )

It suffices to show that ch : K∗(ETm/T )→ H∗(ETm/T ) maps I onto J . Note that

ch(ti − 1) = eui − 1 = ui +
u2i
2

+ · · ·+
um−1i

(m− 1)!

which is the product of ui and a unit. That finishes the proof. �

Proposition 2.4. Let X be a finite CW-complex with T -action. Then

ker(f) = I(T ) ·K∗T (X)

Proof. Using Lemma 2.3 and the left exactness of inverse limit, the kernel of the map

f∞ : K∗T (X × ET )→ K∗(X)

is lim
←
m

I(T )·K∗T (X×ETm) = I(T )·K∗T (X×ET ). As the forgetful map f : K∗T (X)→ K∗(X)

factors through K∗T (X×ET ), and the map K∗T (X)→ K∗T (X×ET ) is an injection by [AS,
Corollary 2.3] and the fact that

⋂∞
m=1 I(T )m = (0) in K∗T (pt), we have that ker(f) =

I(T ) ·K∗T (X). �

Proposition 2.5. With the same condition as in Proposition 2.4, X is a RKEF T -space
if and only if X is a rational weakly equivariantly formal T -space.

Proof. Using Proposition 2.4, the forgetful map f is onto if and only if K∗T (X)/I(T ) →
K∗(X) is an isomorphism. Note that the map

K∗T (X)⊗R(T ) C→ K∗T (X)/I(T ) ·K∗T (X)

α⊗ z 7→ αz

is well-defined and an isomorphism. This completes the proof. �

Corollary 2.6. Let G be a compact Lie group with π1(G) torsion-free and act on a finite
CW-complex X, and T a maximal torus of G. Then

(1) X is a RKEF G-space if and only if it is a rational weakly equivariantly formal
G-space.

(2) X is a RKEF G-space if and only if it is a RKEF T -space.
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Proof. That X being a rational weakly equivariantly formal G-space implies it is a RKEF
G-space is immediate. On the other hand, if X is a RKEF G-space, then it is a RKEF
T -space since the forgetful map K∗G(X)→ K∗(X) factors through K∗T (X). By Proposition
2.5, X is a rational weakly equivariantly formal T -space. Invoking [HL, Lemma 4.4] (it is
where the torsion-freeness of π1(G) is used), X is a rational weakly equivariantly formal
G-space, as desired. This completes the proof of (1). (2) follows from (1), [HL, Lemma
4.4] and Proposition 2.5. �

Proposition 2.5 says that under the compactness assumption on X, using torus action
and complex coefficient (in fact any field coefficient of characteristic 0), rational weak
equivariant formality is equivalent to our definition of K-theoretic equivariant formality,
an exact analogue of another condition for X to be cohomological equivariantly formal,
namely, that the forgetful map H∗T (M)→ H∗(M) is onto. It turns out that more is true.

Theorem 2.7 (Theorem 1.5). Let X be a finite CW-complex with an action by a torus
group T . X is a RKEF T -space if and only if it is an equivariantly formal T -space.

First we need a result on comparison of dimensions of K-theory of X and its fixed point
set.

Lemma 2.8. For any finite CW-complex X with a T -action, we have the following string
of (in)equalities:

dim K∗(XT ) = rankR(T )K
∗
T (X) ≤ dim K∗T (X)/I(T ) ·K∗T (X) ≤ dim K∗(X)

Proof. The first equality follows from Segal’s localization theorem (cf. [S2, Proposition
4.1]) which, when applied to torus group action, says that the restriction map K∗T (X) →
K∗T (XT ) becomes an isomorphism after localizing at the zero prime ideal, i.e. to the field of
fraction of R(T ). Next, we let n = dim K∗T (X)I(T )/I(T )·K∗T (X)I(T ) and K∗T (X)I(T )/I(T )·
K∗T (X)I(T ) be spanned by x1, · · · , xn as a vector space over R(T )I(T )/I(T ) ·R(T )I(T ) ∼= C.
Seeing that K∗T (X) is a finitely generated module over the Noetherian ring R(T ), we
invoke Nakayama lemma, and have that there exist lifts x̂1, · · · , x̂n ∈ K∗T (X)I(T ) that
generate K∗T (X)I(T ) as a R(T )I(T )-module. It follows, after further localization to the field
of fraction of R(T ), that x̂1, · · · , x̂n span K∗T (X)(0) as a R(T )(0)-vector space. Noting the
isomorphism K∗T (X)/I(T ) ·K∗T (X) ∼= K∗T (X)I(T )/I(T ) ·K∗T (X)I(T ), we arrive at the first
inequality. Finally, the last inequality follows from Proposition 2.4. �

Proof of Theorem 1.5. IfX is cohomological equivariantly formal, then dimH∗(X) = dimH∗(XT ).
The Chern character isomorphism implies that dimK∗(XT ) = dimK∗(X) which, together
with Lemma 2.8, yields dimK∗T (X)/I(T ) ·K∗T (X) = dimK∗(X) or, equivalently, that X is
RKEF.

Assume on the other hand that X is RKEF. Consider the following commutative diagram

K∗T (X)
f //

chT
��

K∗(X)

ch
��

H∗∗T (X)
g // H∗(X)

(2)
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whereH∗∗T (X) is the completion ofH∗T (X) at the augmentation ideal ideal J . Since f is onto
and ch is an isomorphism, g is onto. Since H∗T (X) is a finitely generated module over the
Noetherian ring H∗T (pt), a simple result on completions (cf. [Ma, Theorem 55]) implies that
H∗∗T (X) ∼= H∗T (X)⊗H∗T (pt) H

∗∗
T (pt). Applying the forgetful map g gives H∗(X) = Im(g) =

Im(g|H∗T (X))⊗C C = Im(g|H∗T (X)). Hence X is cohomological equivariantly formal. �

Corollary 2.9 ([F2]). (1) X is RKEF iff dimK∗(X) = dimK∗(XT ).
(2) Let G be a compact connected Lie group with torsion-free fundamental group acting

on X. Then X is a cohomological equivariantly formal G-space iff X is a RKEF
G-space.

Proof. (1) follows from Theorem 1.5 and Chern character isomorphism for compact spaces.
Let T be a maximal torus of G. (2) follows from the following equivalences:

(a) X is a cohomological equivariantly formal G-space if and only if it is as a T -space.
(b) (Theorem 1.5) X is a cohomological equivariantly formal T -space if and only if it

is a RKEF T -space.
(c) (Corollary 2.6 (2)) X is a RKEF T -space if and only if it is as a G-space.

�

3. K-theory of compact homogeneous spaces

In this section, we assume that G and K are compact connected Lie groups unless oth-
erwise specified. Viewing a compact homogeneous space G/K as the base of the principal
K-bundle G, the cohomology of G/K can be computed using the subcomplex of basic
forms of the complex

∧∗ g∗, which can be seen as a variant of the Lie algebra cohomology.
This complex is shown to be isomorphic to a Koszul complex called Cartan algebra:

(S(k∗)AdK ⊗ (
∧∗

g∗)AdG ,∇)

Here ∇ is a derivation satisfying

∇(s⊗ x0 ∧ · · · ∧ xp) =

p∑
j=0

(−1)js · i∗xj ⊗ x0 ∧ · · · ∧ x̂j ∧ · · · ∧ xp

For details we refer the reader to [GHV], where general results on cohomology of compact
homogeneous spaces are given. We summarize their results below.

Definition 3.1. (1) The Samelson subspace P̂ for the compact homogeneous space
G/K is defined to be the primitive vector space of the image of the map

p∗ : H∗(G/K)→ H∗(G)

(2) We denote the ring H∗K(pt)/i∗H+
G (pt) by H∗K(pt)//H∗G(pt).

Theorem 3.2 ([GHV]). For any compact homogeneous space G/K,

H∗(G/K) ∼= (H∗K(pt)//H∗G(pt)⊕ I)⊗
∧∗

P̂
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where the elements in H∗K(pt)//H∗G(pt) are cohomology classes represented by elements in
the Cartan algebra of zero degree in the exterior algebra part, whereas I is an ideal of
H∗K(pt)//H∗G(pt) whose nonzero elements are represented by elements of positive degree in
the exterior algebra part. We also have that

Maximal degree in the exterior algebra part of elements in Cartan algebra

representing nonzero cohomology class in I
=rank G− rank K − dim P̂

In particular, dim P̂ = rank G− rank K if and only if I = 0.

We call H∗K(pt)//H∗G(pt) and
∧∗ P̂ the polynomial part and the exterior algebra part of

H∗(G/K), respectively.

Definition 3.3. A manifold X is defined to be formal in the sense of Sullivan (or simply
formal) if the de Rham complex of differential forms on X is quasi-isomorphic to the
complex (H∗(X,R), d = 0).

In some literature, e.g. [GHV], the pair (G,K) is called a Cartan pair if G/K is a
formal manifold. The notion of formality stems from Sullivan’s rational homotopy theory
and minimal model.

Example 3.4. The compact homogeneous space G/K is formal if ([GHV])

(1) (Equal rank pair) rank G = rank K,
(2) (Cohomological surjective pair) the restriction map H∗(G)→ H∗(K) is onto, or
(3) G/K is a symmetric space.
(4) (cf. [T], [KT] and [St]) G/K is a generalized symmetric space, i.e. Gσ0 ⊂ K ⊂ Gσ

for some automorphism σ of G of finite order, then it is formal.

More generally, we have the following

Theorem 3.5. The following are equivalent.

(1) A compact homogeneous space G/K is formal.

(2) I = 0, or equivalently, dim P̂ = rank G− rank K.
(3) The ring H∗K(pt)//H∗G(pt) is a complete intersection ring, i.e. the ideal (i∗H+

G (pt)) ⊂
H∗K(pt) is regular.

Proof. For the equivalence of (1) and (2), see [GHV]. For the equivalence of (1) and (3),
see [On, Theorem 12.2, p.211]. �

The above results on the cohomology of compact homogeneous spaces carry over to the
context of K-theory by means of Chern character isomorphism. Let α : R(K)→ K0(G/K)
be the map which sends a K-representation ρ to the K-theory class of the associated vector
bundle G×KVρ. Then the kernel of α is i∗I(G) for the following reason. In the commutative
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diagram

R(K)
α //

��

K∗(G/K)

ch
��

H∗K(pt) // H∗(G/K)

(3)

The bottom map is the transgression map for the fibration K ↪→ G → G/K and so
its kernel is i∗H+

G (pt). The left vertical map, which is an inclusion of R(K) into its
completion at the augmentation ideal IK (it is an inclusion because the IK-adic topology
of the completion is Hausdorff if K is connected (cf. the Note immediately preceding [AH,
Section 4.5])) followed by the Chern character map to H∗K(pt) = H∗(BK), is injective. So
is the right vertical map. The kernel of α is then the pre-image of i∗H+

G (pt) under the left
vertical map, which is exactly i∗I(G). The quotient ring R(K)/i∗I(G), which we denote
similarly by R(K)//R(G), can then be identified with a subring of K∗(G/K). The Chern
character isomorphism K∗(G/K) → H∗(G/K) restricts to a map from R(K)//R(G) into
H∗K(pt)//H∗G(pt).

Lemma 3.6. For any compact homogeneous space G/K with G and K being connected
Lie groups, the Chern character map

ch : R(K)//R(G)→ H∗K(pt)//H∗G(pt)

is a ring isomorphism.

Proof. ch is injective because it is a restriction of the Chern character isomorphismK∗(G/K)→
H∗(G/K). As to surjectivity of ch, we first deal with the special case where K is a torus
subgroup S of G. In this case ch is given by

ch : R(S)//R(G)→ H∗S(pt)//H∗G(pt)

n∏
j=1

t
aj
j 7→ exp

 n∑
j=1

ajuj


Note that H∗S(pt)//H∗G(pt) is a finite dimensional vector space and hence any element of
positive degree is nilpotent. Let mj be the order of nilpotency of uj . Consider the system
of equations

ch(tj) = 1 + uj + · · ·+
u
mj−1
j

(mj − 1)!

ch(t2j ) = 1 + 2uj + · · ·+
2mj−1u

mj−1
j

(mj − 1)!

...

ch(t
mj−1
j ) = 1 + (mj − 1)uj + · · ·+

(mj − 1)mj−1u
mj−1
j

(mj − 1)!
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They can be viewed as a system of linear equations in the unknowns uj , u
2
j , · · · , u

mj−1
j and

the coefficient matrix is invertible. It follows that uj can be expressed as a linear combina-

tion of ch(tj), · · · , ch(t
mj−1
j ), and ch in this special case is surjective, and hence an isomor-

phism. For a general compact homogeneous space G/K, one can take S to be a maximal
torus of K, and observe the isomorphisms between R(K)//R(G) (resp. H∗K(pt)//H∗G(pt))
and the Weyl group invariants (R(S)//R(G))WK (resp. (H∗S(pt)//H∗G(pt))WK ). As the
Chern character map is WK-equivariant, it restricts to an isomorphism on the Weyl group
invariants. �

By abuse of notation, we also use P̂ to denote the K-theoretic Samelson subspace of
G/K, i.e. the primitive vector space of the image of the map K∗(G/K)→ K∗(G).

Proposition 3.7. For any compact homogeneous space G/K with K being a connected
Lie subgroup, its K-theory is

K∗(G/K) ∼= (R(K)//R(G)⊕ J )⊗
∧∗

P̂

where J is an ideal of R(K)//R(G)⊕ J . G/K is formal if and only if J = 0 if and only
if R(K)//R(G) is a complete intersection ring.

Proof. This follows immediately from applying the inverse of the Chern character isomor-
phism to the description of H∗(G/K) as in Theorem 3.2, Theorem 3.5 (3) and Lemma
3.6. �

4. Equivariant formality of compact homogeneous spaces

Throughout this section, we assume that both G and K are compact and connected Lie
groups.

4.1. A reduction. Suppose G/K is formal and we would like to determine if it is isotropy
formal. By [Ca, Theorem 1.1] it suffices to consider the isotropy action on G/S where S
is a maximal torus of K. By Proposition 3.7, its K-theory is the tensor product of the

polynomial part R(S)//R(G) and the exterior algebra part
∧∗ P̂ . The K-theory classes in

the polynomial part are represented by vector bundles of the form G×SVρ, where ρ ∈ R(S).
These vector bundles obviously can be made S-equivariant, covering the isotropy action
on G/S. So the polynomial part of K∗(G/S) admits equivariant lifts in the equivariant
K-theory K∗S(G/S). By Theorem 1.5, determining if (G,S) is an isotropy formal pair then

amounts to determining if the K-theoretic Samelson subspace P̂ admits equivariant lift in
K∗S(G/S) as well

Definition 4.1. (cf. [F, Proposition 2.2]) Let ρ1, ρ2 ∈ R(G) be representations of G which
become the same representation on restriction to S, i.e. ρ1− ρ2 ∈ ker(R(G)→ R(S)), and
V be the underlying complex vector space of the restricted representation. Define a map
δ : ker(R(G) → R(S)) → K−1(G/S) (resp. δS : ker(R(G) → R(S)) → K−1S (G/S)) which
sends ρ1 − ρ2 to the (equivariant) K-theory class represented by the complex of vector
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bundles

0 −→ G/S × R× V −→ G/S × R× V −→ 0

(gS, t, v) 7→ (gS, t, tρ1(g)ρ2(g
−1)v) if t ≤ 0

(gS, t, v) 7→ (gS, t, tv) if t ≥ 0

The S-action on the complex of vector bundles is given by s · (gS, t, v) = (sgS, t, ρ1(s)v).

Note that δ(ρ1 − ρ2) admits equivariant lift δS(ρ1 − ρ2).
Proposition 4.2. If G/S is formal and the K-theoretic Samelson subspace is spanned by
elements of the form δ(ρ1 − ρ2) where ρ1 − ρ2 ∈ ker(i∗ : R(G)→ R(S)), then it is isotropy
formal.

4.2. Isotropy formality of pairs arising from Lie group automorphisms. In [GoNo],
the authors showed the following main result.

Theorem 4.3. ([GoNo]) Let K be a Lie subgroup of G and both K and G be compact
and connected. If there exists a Lie group automorphism on G such that the Lie algebra of
the fixed point subgroup coincides with the Lie algebra k of K, then (G,K) is an isotropy
formal pair.

Their proof consists of reductions to the special case where G is simple and k is the Lie
algebra of the fixed point subgroup of a Lie group automorphism σ of finite order (i.e.
G/K is a (generalized) symmetric space), and showing this special case by verifying the
cohomological dimension equality for a list of (generalized) symmetric spaces given by the
classification theorem of such spaces. We would like to give a more uniform alternative
proof of this special case.

Proposition 4.4. If G is compact and connected, K a connected Lie subgroup, and there
exists a Lie group automorphism σ on G of finite order such that the Lie algebra of the
fixed point subgroup coincides with the Lie algebra k of K, then (G,K) is an isotropy formal
pair.

Proof. We first consider the case where G is further assumed to have torsion-free funda-
mental group, so that R(G) is a polynomial ring. Let G be of rank l and K of rank m, and
S be a maximal torus of K. The finite-order automorphism σ of G is induced by a graph
automorphism on its Dynkin diagram and the quotient graph is the Dynkin diagram of K.
Moreover, the fundamental representations ρ1, · · · , ρl of G are represented by the vertices
of the Dynkin diagram of G, and the fundamental representations corresponding to the
vertices in the same orbit of the group action of 〈σ〉 restrict to the same representation of
K, and hence S. Let

m⋃
k=1

{ρi1,k , ρi2,k , · · · , ρijk,k
}

be the partition of {ρ1, · · · , ρl} corresponding to the orbit decomposition of the set of
vertices of the Dynkin diagram of G. Then⋃

1<t≤jk
1≤k≤m

{ρi1,k − ρit,k} ⊂ ker(R(G)→ R(S))
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and consists of l−m elements. The span of the image of {δ(ρi1,k − ρit,k)} 1<t≤jk
1≤k≤m

under the

map K∗(G/S) → K∗(G) is an (l −m)-dimensional subspace of the K-theoretic Samelson
subspace of K∗(G/S), but by Theorem 3.2, the subspace is actually the Samelson subspace
itself and I = 0. So G/S is formal by Theorem 3.5. Moreover, Proposition 4.2 implies that
G/S is isotropy formal. Hence G/K is isotropy formal as well.

For the more general case where G is only assumed to be connected, we may use Theorem
1.4 to reduce to the case where G has torsion-free fundamental group. �

4.3. A sufficient condition for isotropy formality. In this section we assume that G
has torsion-free fundamental group unless otherwise specified. By the main result of [BZ]
and its variant, the equivariant K-theory K∗SAd

(G) (the subscript ‘Ad’ means that S acts

on G by the conjugation action) is isomorphic to∧∗

R(S)
(δS(ρ1), · · · , δS(ρl))

where ρ1, · · · , ρl are fundamental representations and δS : R(G)→ K∗S(G) satisfies

δS(ρ1 ⊗ ρ2) = i∗ρ1δS(ρ2) + i∗ρ2δS(ρ1)

In particular, K∗S(G) is a free R(S)-module. The image Im(p∗) of the map

p : K∗S(G/S)→ K∗SAd
(G)

therefore is a free R(S)-submodule. Since p∗ maps the identity element of K∗S(G/S) to
that of K∗SAd

(G), a module basis of Im(p∗) can be chosen to contain 1. The other basis

elements are R(S)-linear combinations of 1 and products of δS(ρ1), · · · , δS(ρl). By Gaussian
elimination the module basis can be chosen to consist of 1 and R(S)-linear combinations
of products of δS(ρ1), · · · , δS(ρl). We come to the conclusion that Im(p∗) is an exterior
algebra over R(S), and now it makes sense to introduce the

Definition 4.5. The conjugation Samelson subspace P̂conj of G/S is the free R(S)-module
generated by the primitive elements of the image of the map

p∗ : K∗S(G/S)→ K∗SAd
(G)

Unlike the dimension of the ordinary Samelson subspace the rank of the conjugation
Samelson subspace is much more predictable. Consider the commutative diagram

K∗S(G/S)(0) //

∼=
��

K∗SAd
(G)(0)

∼=
��

K∗S(ZG(S)/S)(0) // K∗S(ZG(S))(0)

(4)

The two vertical maps are isomorphisms by virtue of Segal’s localization theorem (cf. [S2]).
Since S acts trivially on ZG(S)/S and ZG(S), the bottom map is equivalent to

IdR(S) ⊗ p∗ : R(S)(0) ⊗K∗(ZG(S)/S)→ R(S)(0) ⊗K∗(ZG(S))

It is known that p∗ : K∗(ZG(S)/S) → K∗(ZG(S)) is injective, and the dimension of the
primitive subspace of K∗(ZG(S)/S) is rank ZG(S)/S = rank G− rank S. We then have
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Proposition 4.6. The rank of the conjugation Samelson subspace of any compact homo-
geneous space G/S is rank G− rank S.

In fact the conjugation Samelson subspace can be described more explicitly as follows.

Proposition 4.7. The conjugation Samelson subspace P̂conj is the free R(S)-module gen-
erated by {δS(ρ) ∈ K∗SAd

(G)|ρ ∈ ker(i∗ : R(G)→ R(S))}.

Proof. That {δS(ρ) ∈ K∗SAd
(G)|ρ ∈ ker(i∗ : R(G) → R(S))} ⊆ P̂conj follows from the

construction in Definition 4.1. Now observe that the composition of maps

K̃∗S(G/S)
p∗−→ K̃∗SAd

(G)
q∗−→ K̃∗SAd

(S)

is 0. So P̂conj is contained in the intersection of ker(q∗) and the R(S)-module generated by
the primitive elements of K∗SAd

(G), the latter being exactly {δS(ρ) ∈ K∗SAd
(G)|ρ ∈ ker(i∗ :

R(G)→ R(S))}. �

Remark 4.8. There is an alternative way of showing Proposition 4.6 using Proposition 4.7.
Let the kernel of the map i∗ : R(G)→ R(S) be the ideal (k1, · · · , kp), where p ≥ l−m and
m is the dimension of S. Then i∗R(G) ∼= C[ρ1, · · · , ρl]/(k1, · · · , kp) and

⊕p
i=1R(S) · δS(ki)

is the conjugation Samelson subspace by Proposition 4.7. Note that

m = dimR(S)

= dimi∗R(G) (R(S) is a finitely generated module over i∗R(G))

= ranki∗R(G)Ωi∗R(G)/C

= rankR(S)Ωi∗R(G)/C ⊗i∗R(G) R(S)

= rankR(S)

⊕l
i=1R(S) · δS(ρi)⊕p
i=1R(S) · δS(ki)

= l − rankR(S)

p⊕
i=1

R(S) · δS(ki)

So rankR(S)

⊕p
i=1R(S) · δS(ki) = l −m.

Theorem 4.9. Let G be a compact and connected Lie group and S a torus subgroup. The
image of the map i∗ : R(G) → R(S) is regular at the augmentation ideal I if and only if
(G,S) is both an isotropy formal pair and a formal pair.

Proof. We first deal with the case where G has torsion-free fundamental group, so that
R(G) is a polynomial ring and the main result of [BZ] can be applied. We shall show that
regularity of the image of i∗ at the augmentation ideal I is equivalent to the condition that

the dimension of the image of P̂conj under the forgetful map be l −m. We have

Ωi∗R(G)/C ∼=
⊕l

i=1 i
∗R(G) · δS(ρi)⊕p

i=1 i
∗R(G) · δS(ki)
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On the one hand, since i∗R(G) is an integral finitely generated algebra over C, we have
dim i∗R(G)I = dim i∗R(G). The latter equals dim Ωi∗R(G)/C ⊗i∗R(G) i

∗R(G)(0). On the
other hand, that i∗R(G) is regular at I is tantamount to

dim i∗R(G)I = dimCΩi∗R(G)/C ⊗i∗R(G) C
It follows that

dimi∗R(G)(0)Ωi∗R(G)/C ⊗i∗R(G) i
∗R(G)(0) = dimCΩi∗R(G)/C ⊗i∗R(G) C

⇐⇒ dimi∗R(G)(0)

⊕l
i=1 i

∗R(G)(0) · δS(ρi)⊕p
i=1 i

∗R(G)(0) · δS(ki)
= dimC

⊕l
i=1C · δ(ρi)⊕p
i=1C · δ(ki)

⇐⇒ dimi∗R(G)(0)span{δS(k1), · · · , δS(kp)} = dimCspan{δ(k1), · · · , δ(kp)}

The last equality is equivalent to saying that the dimension of the image of the conjugation
Samelson subspace under the forgetful map, which is the RHS, is exactly l −m, which is
the LHS by Propositions 4.7 and 4.6. Our first claim hence is established.

Now note that the image of the conjugation Samelson subspace under the forgetful
map is contained in the ordinary Samelson subspace. If the dimension of the image is
exactly l−m, then the image must be the whole of the ordinary Samelson subspace, whose
dimension a priori does not exceed l − m by Theorem 3.2. Since the dimension of the
ordinary Samelson subspace is l − m, the pair (G,S) is formal. By Proposition 4.2, the
pair is isotropy formal as well.

Conversely, suppose (G,S) is both isotropy formal and formal. Isotropy formality and
Theorem 1.5 implies that the ordinary Samelson subspace admits equivariant lifts in the
conjugation Samelson subspace. Formality implies that the dimension of the image of the
conjugation Samelson subspace under the forgetful map is l − m, and hence i∗R(G) is
regular at I. This finishes the proof of the Theorem in the case where G has torsion-free
fundamental group. For the more general case where G is only assumed to be connected,
we reduce to the previous case by using Theorem 1.4, the fact that (G,S) is a formal

pair if and only if (G̃, S̃) is, and that the image of i∗ : R(G) → R(S) is regular at the

augmentation ideal if and only the image of ĩ : R(G̃)→ R(S̃) is. �

Remark 4.10. (1) There is another way of interpreting the condition that i∗R(G)
is regular at I. If we write k1, · · · , kp as polynomials in terms of the ‘reduced
representations’ ρ̃i := ρi−dim ρi, 1 ≤ i ≤ l, then i∗R(G) is regular at I if and only
if each polynomial has a nonzero linear term, i.e. each ki is not in I2, or they are
indecomposables.

(2) Theorem 4.9, together with Theorem 1.3 and the assertion that if S is a maximal
torus of K, (G,S) is formal if and only if (G,K) is formal (cf. [On, Rmk., p. 212]),
allows us to give a shorter and uniform proof that the classes of homogeneous spaces
in Example 3.4 are both isotropy formal and formal in one fell swoop, at least if we
assume that G has a torsion-free fundamental group. For (generalized) symmetric
spaces, i∗R(G) is simply a polynomial ring by the analysis in the proof of Proposi-
tion 4.4 and so regular at I in particular. For equal rank pairs, i∗ : R(G)→ R(K)
is injective, and the image i∗R(G) ⊆ R(K) further injects into R(S). So the image
is isomorphic to R(G), again a polynomial ring. For cohomological surjective pairs,
both of their cohomology and K-theory are exterior algebras (cf. [GHV] and use
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Chern character isomorphism). Proposition 3.7 then implies that R(K)//R(G) ∼= C
and that i∗R(G) = R(K), which further injects through restriction onto R(S)WK ,
which in turn is regular at I.

4.4. Some worked examples. In the following examples, the torus subgroup S is 1-
dimensional. So R(S) is a principal ideal domain and R(S)//R(G) is a complete intersection
ring. By Theorem 3.5 (3) and Lemma 3.6, G/S is formal.

4.4.1. (G,S) = (SU(4), (t, t−1, t2, t−2)). Let G = SU(4), S =

t t−1

t2

t−2

. By [Ca,

Algorithm 1.4], since S is reflected, the pair (G,S) is isotropy formal. Another way to show
isotropy formality is to verify Shiga-Takahashi condition that (G,S) be a formal pair and
H∗S(pt) ∼= H∗G(pt)N , where N = NG(S)/S. Note that the restriction map i∗ : H∗G → H∗S

∼=
C[s] sends the universal Chern classes to the following:

c1 to 0,

c2 to s(−s) + s(2s) + s(−2s) + (−s)(2s) + (−s)(−2s) + 2s(−2s) = −5s2

c3 to (−s)(2s)(−2s) + s(2s)(−2s) + s(−s)(−2s) + s(−s)(2s) = 0

c4 to 4s4

So indeed i∗H∗G
∼= C[−5s2, 4s4] ∼= C[s2] ∼= (H∗S)N . We note moreover that H∗S//H

∗
G
∼=

C[s]/(s2).

Finally, we use Theorem 4.9 to show isotropy formality of (G,S). Let x := σ4 − 4,

y :=
∧2 σ4 − 6 and z :=

∧3 σ4 − 4, which are ‘reduced’ fundamental representations
generating the augmentation ideal I. Then R(G) ∼= C[x, y, z], and the map

i∗ : R(G)→ R(S) ∼= C[t, t−1]

sends the x, y and z to the following:

x to t+ t−1 + t2 + t−2 − 4 = a+ a2 − 6

y to t3 + t−3 + t+ t−1 − 4 = a3 − 2a− 4

z to t+ t−1 + t2 + t−2 − 4 = a+ a2 − 6

where a = t+ t−1. So

i∗R(G) ∼= C[a3 − 2a− 4, a2 + a− 6]
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It should be noted that i∗R(G) � R(S)N , and so Shiga-Takahashi condition for isotropy
formality does not carry over to the K-theory context.

R(S)//R(G) ∼=
C[t, t−1]

(a3 − 2a− 4, a2 + a− 6)

=
C[t, t−1]

((a− 2)(a2 + 2a+ 2), (a− 2)(a+ 3))

=
C[t, t−1]

(a− 2)

=
C[t, t−1]

(t+ t−1 − 2)

∼=
C[u]

((u− 1)2)

which is isomorphic to H∗S//H
∗
G, verifying Lemma 3.6. The kernel of i∗ is

(x− z,−x3 − 14x2 + 3xy − 50x+ y2 + 25y)

Therefore

i∗R(G) ∼=
C[x, y, z]

(x− z,−x3 − 14x2 + 3xy − 50x+ y2 + 25y)

Though i∗R(G) is not a free polynomial ring, it is regular at I because the kernel of i∗ is
generated by indecomposables. So (G,S) is isotropy formal.

In fact

K∗(G/S) ∼=
C[u]

((u− 1)2)
⊗
∧∗

(δ(x− z), δ(−50x+ 25y))

and both δ(x− z) and δ(−50x+ 25y) admit equivariant lift in KS(G/S). For instance, the
equivariant lift of δ(−50x+ 25y) is δS(−x3 − 14x2 + 3xy − 50x+ y2 + 25y).

4.4.2. (G,S) = (SU(3), (t, t, t−2)). Using [Ca, Algorithm 1.4] again, we have (G,S) is
not isotropy formal because S in this case is not reflected. Alternatively, to show that
(G,S) is not isotropy formal, we use Theorem 4.9 and show that i∗R(G) ⊆ R(S) is not

regular at I. Let x = σ3 − 3 and y =
∧2 σ3 − 3. Then R(G) = C[x, y] and ker(i∗) =

(4x3 + 4y3 − x2y2 − 6x2y − 6xy2 + 27x2 + 27y2 − 54xy), which intersects I2 nontrivially.
Hence i∗R(G) is not regular at I.
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