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My research interests lie in the intersection of algebraic topology, Lie groups and symplectic
geometry. Roughly speaking, in my research I apply machinery from algebraic topology to under-
stand spaces with symmetries and physical implications. To be more precise, my work consists of
two major themes, namely,

(1) the K-theory of compact Lie groups and homogeneous spaces, and
(2) topological classification of general integrable systems.

1. K-theory of compact Lie groups and homogeneous spaces

1.1. KR-theory. KR-theory, which was first introduced by Atiyah in the beautiful paper [At1],
is a version of topological K-theory for the Real spaces, i.e. topological spaces equipped with a
continuous involution. To be more precise, KR-theory of a Real space X is the Grothendieck group
of the category of Real vector bundles on it, i.e. complex vector bundles that are themselves Real
spaces, whose involution descends to the involution on X and maps fiber to fiber anti-linearly.
KR-theory was motivated by the study of the index theory of real elliptic operators and used by
Atiyah to derive 8-periodicity of KO-theory from the 2-periodicity of complex K-theory (See [At1]
and [At2]). What makes KR-theory interesting is that it can be viewed naturally as a unifying
thread of KO-theory, complex K-theory and KSC-theory (see [At1], Sect. 3), which are K-groups
of categories of real, complex and quaternionic vector bundles, respectively. For instance, if the
involution is trivial, then KR-theory is equivalent to KO-theory. One may go one step further and
consider equivariant KR-theory, which is simply the Grothendieck group of the category of Real
equivariant G-vector bundles on a Real G-space, where we assume a compatibility condition of the
G-action, the involutions on the vector bundles and the base space, and the involutive automorphism
on G (for precise definitions and basic properties, see [AS]). In recent years there is a rekindled
interest in KR-theory; in particular it has found applications in string theory, as it classifies the
D-brane charges in orientifold string theory (cf. [DMR]).

In [Se], Seymour provided a structure theorem of KR-theory for a certain type of spaces, which
enables us to compute the KR-theory using the knowledge of complex K-theory and how the action
of the pullback induced by the base space involution followed by complex conjugation on complex
vector bundles act on it. I observe that the conditions of Seymour’s result are an appropriate
candidate for defining an analogue of ‘weakly equivariant formality’ à la Harada and Landweber
(see Definition 4.1 of [HL]), which roughly means the condition that every vector bundle has a
stable equivariant lift. Inspired by Seymour’s result and the notion of weakly equivariant formality,
I introduced the notion of Real equivariant formality for equivariantKR-theory (see [Fo1], Definition
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4.2). I proved the following structure theorem of equivariant KR-theory of Real equivariantly formal
spaces.

Theorem 1.1 ([Fo1], Theorem 4.5). Let X be a Real equivariantly formal G-space. For any element
a ∈ K∗(X) (resp. a ∈ KR∗(X)), let aG ∈ K∗G(X) (resp. aG ∈ KR∗G(X)) be a fixed choice of (Real)
equivariant lift of a. Then the map

f : (RR(G,R)⊕RH(G,R))⊗KR∗(X)⊕ r(R(G,C)⊗K∗(X))→ KR∗G(X)

ρ1 ⊗ a1 ⊕ r(ρ2 ⊗ a2) 7→ ρ1 · (a1)G ⊕ r(ρ2 · (a2)G)

is a group isomorphism. Here RR(G,R) ∼= KR0
G(pt), RH(G,R) ∼= KR−4G (pt) are the ring of Real

representations of real type and the group of Real representations of quaternionic type respectively,
and r : K∗G(X) → KR∗G(X) is the realification map. In particular, if R(G,C) = 0, then f is an
RR(G,R)⊕RH(G,R)-module isomorphism.

1.2. Equivariant KR-theory of compact Lie groups with involutive automorphisms. In
the 60s, Hodgkin showed that the complex K-theory ring of any compact connected Lie group with
torsion-free fundamental group is a Z2-graded exterior algebra over Z on the module of primitive
elements, which are of degree −1 and associated with the representations of the Lie group (see
[Ho]). Since Hodgkin’s work, there have appeared two generalizations of K-theory of compact Lie
groups. The first such is Seymour’s work onKR-theory of compact, connected and simply connected
Lie groups equipped with involutive automorphisms (see [Se]). He obtained the KR∗(pt)-module
structure of KR∗(G) using his structure theorem. However, he was unable to give a complete
description of the ring structure, and could only make some conjectures about it. The second
generalization is the equivariant K-theory of compact Lie groups. In [BZ], Brylinski and Zhang
showed that, for a compact Lie group G with torsion-free fundamental group and the G-action being
the conjugation action on itself, its equivariant K-theory is isomorphic to the ring of Grothendieck
differentials of the complex representation ring over Z.

In [Fo1], based on the previous results of Seymour’s and Brylinski-Zhang’s, Theorem 1.1 and a
description of the coefficient ring KR∗G(pt), I gave a preliminary description of KR∗(G,σG)(G, σG)

(where σG is an involutive automorphism) by listing the algebra generators associated to the Real
representations of G of real, complex and quaternionic types (with respect to the involutive auto-
morphism). Then I gave a full description of the ring structure of KR∗G(G) by listing all the relations
among the generators. To achieve this I investigated the map of equivariant KR-theory induced by
the Weyl covering map. Of particular interest are the squares of the real and quaternionic type gen-
erators, δGR (ϕ) ∈ KR−1G (G) and δGH (θ) ∈ KR−5G (G), where ϕ and θ are Real representations of real

and quaterionic types, respectively, and δGR : RR(G) → KR−1G (G) and δGH : RH(G) → KR−5G (G)
are natural maps defined in Definition 4.8 of [Fo1].

Theorem 1.2 ([Fo1], Theorem 4.30). δGR (ϕ)2 = η(ϕ · δGR (ϕ)− δGR (∧2ϕ)) and δGH (θ)2 = η(θ · δGH (θ)−
δGR (∧2θ)), where η ∈ KR−1(pt) represents the reduced Hopf bundle over RP1.

By applying the forgetful map KR∗G(G) → KR∗(G) to the generators and relations, I solved
the problem of describing the ring structure of KR∗(G), which was left open in [Se]. Theorem 1.2
shows that, unlike the (equivariant) complex K-theory, the (equivariant) KR-theory of compact Lie
groups are in general not an exterior algebra. The equations in Theorem 1.2 and their analogues
in the ordinary KR-theory case actually give extra information about the KR-theory, and can be
used to distinguish two different G-actions on itself. In [Fo1], I examined the two cases where G
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acts on itself trivially and by conjugation, respectively. While the equivariant complex K-theory
rings of both cases are isomorphic, the equivariant KR-theory rings are not, thanks to the extra
information given by the squares of real and quaternionic type generators.

1.3. Equivariant KR-theory of compact Lie groups with anti-involutions. Another kind
of topological involution on a Lie group is anti-involution, which is the composition of an involutive
automorphism and group inversion. This begs the question of what is the equivariant KR-theory
of a compact Lie group G equipped with instead an anti-involution. It turns out that the result is a
little bit different from the involutive automorphism case as discussed in [Fo1] and previous section.

Theorem 1.3 ([Fo4]). Let G be a compact, connected, and simply-connected Lie group and σG is
an involutive automorphism on it. There exist maps

δinvR :RR(G)→ KR1
(G,σG)(G, σG ◦ inv)

δinvH :RH(G)→ KR−3(G,σG)(G, σG ◦ inv)

which are similar to δGR and δGR as defined in Definition 4.8 in [Fo1]. The square of any image of
δinvR and δinvH is 0. In particular, if R(G,C) = 0, then

KR∗(G,σG)(G, σG ◦ inv) ∼= ΩKR∗
(G,σG)

(pt)/KR∗(pt),

where the right hand side is the ring of Grothendieck differentials of the coefficient ring of the
equivariant KR-theory over the coefficient ring of ordinary KR-theory, whose primitive module is
generated by the image of the fundamental representations of G under δinvR and δinvH .

In some sense, equipping G with an anti-involution instead of an involutive automorphism (which
we do in [Fo1]) is a better direction of generalizing Brylinski-Zhang’s result. In fact, there is another
piece of evidence which indicates that anti-involution is the right topological involution to consider
when studying a certain KR-theory of compact Lie groups, as we will see in the next section. A
consequence of Theorem 1.3 is

Corollary 1.4 ([Fo4]). Let G be a Real compact and connected Lie group and X a compact Real
G-space. Then if x ∈ KRiG(X) for i = 1 or −3, x2 = 0.

Note that graded commutativity only implies that x2 is 2-torsion. On the other hand, it is not
true in general that x2 = 0 if x ∈ KRiG(X) for i = −1 or −5, as Theorem 1.2 shows.

1.4. The Real Freed-Hopkins-Teleman Theorem. Freed-Hopkins-Teleman Theorem (FHT)
asserts that the equivariant twisted K-homology of a compact connected Lie group G with torsion-
free fundamental group (with ring structure being Pontryagin product) is isomorphic to Verlinde
algebra of G, which is the ring of positive energy representations of the loop group LG, with ring
structure being the fusion product (see [Fr], [FHT1], [FHT2], [FHT3]). Verlinde algebra is an object
of great interest in mathematical physics and algebraic geometry. One of the remarkable aspects of
Freed-Hopkins-Teleman Theorem is that it provides an algebro-topological approach to interpreting
the fusion product, which is usually defined using conformal blocks or moduli spaces of G-bundles
on Riemann surfaces (cf. [Be], [BL] and [V]). Moreover, Freed-Hopkins-Teleman also provides the
framework for a formulation of geometric quantization of q-Hamiltonian spaces (cf. [M2] and [M3]).
This will be elaborated in Section 3.4.
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Seeing the possible applications in string theory as well as moduli spaces of nonorientable sur-
faces, we find it is of interest to obtain a generalization of FHT in the context of KR-theory. We
first set the scene by developing such preliminary material as the equivariant Real 3rd cohomology
group which is shown to classify the Real Dixmier-Douady bundles representing the Real twists,
and Real Spinc structures. Our main result shows that, by incorporating a group anti-involution of
G, the corresponding equivariant twisted KR-homology of G is essentially a module over the equi-
variant KR-homology coefficient ring, generated by the irreducible positive energy representations
of real, complex and quaternionic types. Moreover, the ring structure of the equivariant twisted
KR-theory induced by the Pontryagin product, when restricted to those generators of positive
energy representations, is precisely the fusion product. In short, the group anti-involution as the
additional Real structure in the equivariant twisted KR-homology respects the algebra structure
of the Verlinde algebra. The following is the precise statement of the main result.

Theorem 1.5 ([Fo5]). Suppose G is a compact, connected and simply-connected Lie group with an
involutive automorphism σG. Let A be the equivariant Real fundamental DD bundle over (G, σG ◦
inv). Let the level k Verlinde ideal Ik be generated by r1, · · · , rm ∈ R(G), and RIk be the ideal in
KRG∗ (pt) with generators obtained from r1, · · · , rm by the followings.

(1) Assigning each irreducible component of ri which is not in R(G,C) with degree 0 (resp. −4)
according as whether it can be made a Real representation (resp. Quaternionic representa-
tion), and

(2) replacing each irreducible component s of ri which is in R(G,C) with the double s + σ∗Gs,
which is assigned with degree 0.

Then the pushforward map

ιR∗ : KR
(G,σG)
∗ (pt)→ KR

(G,σG)
∗ (G, σG ◦ inv,Ak+h∨)

is onto with kernel RIk.

Using the description of Verlinde ideal in [Dou] and the KR-homology coefficient ring, we can

obtain an explicit description of KR
(G,σG)
∗ (G, σG ◦ inv,Ak+h∨). As a consequence, the degree zero

piece of the equivariant Real twisted KR-homology of G gives the Real Verlinde algebra, the
Grothendieck group of the isomorphism classes of Real positive energy representations of the Real
loop group LG, where the involution is induced by the Lie group involution on G and reflection on
the loop.

1.5. Adams operations on classical compact Lie groups. Adams operations are important
cohomological operations on K-theory which are utilized with great success by Adams in solving
the famous problem of finding parallelizable spheres (cf. [Ad]). Another application of Adams
operations is the extraction of certain information of homotopy groups of H-spaces and Lie groups
in particular (cf. [Bou], [D], [DP]). It would be of interest to find out Adams operations on compact
Lie groups. This task was first carried out in the paper [N], which unfortunately is strewn with
many typos, and whose results on classical compact Lie groups are incomplete, not so concise and
not explicit. Adams operations ψl on rank 2 compact Lie groups, and on SU(n) for l = −1, 2, 3
were obtained in [Wa2], [Wa3] and [DP]. Ever since then no further formulas for Adams operations
on other classical compact Lie groups have appeared. However, Adams operations on exception Lie
groups and their eigenvectors were completely settled in [D]. In [Fo8], I settled the remaining cases
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by giving explicit formulas of Adams operations on all types of classical compact Lie groups, and
eigenvectors of Adams operations on U(n).

Theorem 1.6 ([Fo8]). (1) Let l be a positive integer, σn the standard representation of U(n),
and δ : R(G)→ K−1(G) the derivation of R(G) defined in [Ho]. For G = U(n), we have

ψl(δ(
∧k

σn)) = (−1)kl

n∑
p=1

k−1∑
q=0

(−1)p+q
(
n

q

)(
n+ l(k − q)− p− 1

n− 1

)
δ(
∧p

σn).

In particular, when l = 2,

ψ2(δ(
∧k

σn)) = (−1)k · 2
2k∑
p=1

(−1)p
(

n

2k − p

)
δ(
∧p

σn).

The formula for G = SU(n) is the same except that δ(
∧n

σn) becomes 0 in this case.
(2) Let {pj(y)}∞j=0 be the sequence of polynomials which are coefficients of the Taylor series of(

t

sinh t

)y
, i.e. (

t

sinh t

)y
=

∞∑
j=0

pj(y)t2j .

Then pj(y) is of degree j and satisfies the following recurrent relation

p0(y) = 1, pj(y) = − y

2j

j∑
k=1

22kB2k

(2k)!
pj−k(y)

where B2k is the 2k-th Bernoulli number. Moreover,

n∑
i=1

(−1)i−1

b k2 c∑
j=0

pj(n)

(k − 2j)!
(n− 2i)k−2j

 δ(
∧i

σn)(1)

is an eigenvector of ψl ⊗ IdQ : K∗(U(n)) ⊗ Q → K∗(U(n)) ⊗ Q (for l any integer) corre-
sponding to the eigenvalue ln−k, for k = 0, 1, · · · , n− 1.

Adams operations on Sp(n) and Spin(n) can be found in [Fo8, Theorem 1.1]. I also use Theorem
1.6 (1) to recover Adams operations on the exceptional Lie group G2, which was obtained previously
in [Wa3] by the indirect means of appealing to Chern character isomorphism.

1.6. Equivariant formality of isotropic action of homogeneous spaces. Equivariant for-
mality is a special property of topological spaces with group actions which allows for easy com-
putation of their equivariant cohomology. Roughly speaking, equivariant formality amounts to
the existence of equivariant extension in the equivariant cohomology theory of any element in
the ordinary cohomology theory. Equivalently, a G-space X is equivariantly formal if and only if
H∗G(X) ∼= H∗G(pt) ⊗ H∗(X) as H∗G(pt)-modules. It would be desirable to have a classification of
equivariantly formal spaces, but the task is still too ambitious even if we restrict our attention to
those with compact Lie group actions. An easier question would be to determine if, for a com-
pact Lie group G and a closed subgroup K, the K-action on G/K by isotropy action (i.e. left
multiplication) is equivariantly formal. We call (G,K) an isotropy formal pair if K acts on G/K
equivariantly formally. There were some known partial results. For instance, in [Sh] and [ShTa] it
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was shown that if G/K is a formal manifold in the sense of Sullivan (or equivalently (G,K) is a
Cartan pair. See [GHV] for definition) and satisfies an injectivity condition on cohomology, then
(G,K) is an isotropy formal pair. In [Go] and [GoNo] it is proved that if (G,K) is a pair satisfying

(1) rank G = rank K, i.e. equal rank pair,
(2) the restriction map H∗(G)→ H∗(K) is onto, i.e. cohomologically surjective pair,
(3) G/K is a symmetric space, or
(4) G/K is a generalized symmetric space, i.e. Gσ0 ⊂ K ⊂ Gσ for some automorphism σ of G

of finite order,

then (G,K) is isotropy formal. Carlson showed in [Ca] that if T is a maximal torus of K, then
(G,K) is an isotropy formal pair if and only if (G,T ) is. This result enables us to reduce the
whole problem to the case where K is a torus subgroup S of G. Carlson also gave a sufficient and
necessary condition for (G,S) to be an isotropy formal pair when S is a circle subgroup (cf. [Ca,
Algorithm 1.4]).

One feature in common in the main arguments used by [Ca], [Go], [GoNo] and [ShTa] to estab-
lish equivariant formality of isotropy action is the application of the condition of dim H∗(M) =
dim H∗(MT ) which is equivalent to T acting on M equivariantly formally. In our opinion, while
checking the equality of cohomological dimensions to prove equivariant formality is not as straight-
forward as checking the surjectivity of the forgetful map from the equivariant cohomology of the
homogeneous space to its ordinary cohomology, the latter approach does not come in handy either,
as this involves solving tedious ODEs if we work in the equivariant de Rham model. Besides to us
appealing to the classification theorem in the proof of isotropy formality of (generalized) symmetric
pairs in [Go] and [GoNo] is not satisfactory.

In joint work [CF] with Carlson, we apply K-theory instead to approach this problem and try to
find alternative sufficient conditions for isotropy formality. Inspired by the notion of weakly equi-
variant formality, introduced in [HL], we study the similar notion of rational K-theoretic equivariant
formality (RKEF for short).

Definition 1.7. X is a RKEF G-space if the forgetful map

f : K∗G(X)⊗Q→ K∗(X)⊗Q

is onto.

The use of K-theory is feasible in this problem on cohomological equivariant formality of homo-
geneous spaces because of the following result which is crucial in our work.

Theorem 1.8 ([Fo9]). Let X be a finite CW-complex with an action by a torus group T . X is a
RKEF T -space if and only if it is an equivariantly formal T -space.

Using the above Theorem we translate the whole problem to the context of K-theory. One
advantage of working in K-theory is that it is more straightforward to check if the forgetful map
is onto, since this amounts to determining if a vector bundle can be equipped with a T -action
so as to become an equivariant T -vector bundle. After obtaining the K-theory ring of compact
homogeneous spaces and topological realizations of each element in the K-theory ring when the
homogeneous spaces are formal, we get a simple criterion for a formal homogeneous space to be
isotropy formal, which we apply to give a more uniform proof of the aforementioned result that the
homogeneous spaces (3)-(4) are isotropy formal. Furthermore we also get
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Theorem 1.9 ([CF]). Let G be a compact connected Lie group and S a torus subgroup. G/S is
both isotropy formal and formal in the sense of Sullivan if and only if the image of the restriction
map i∗ : R(G)→ R(S) is regular at the augmentation ideal.

Theorem 1.9 provides a uniform proof of the fact that homogeneous spaces (1)-(4) above are
both formal and isotropy formal in one fell swoop (that these spaces are formal were first proved in
[GHV], [KT] and [St]). The regularity criterion in the Theorem can be conveniently verified using
computer algebra packages such as Macaulay2 and SAGE. Two examples are worked out in [Fo9]
to demonstrate the usefulness of Theorem [Fo9]; one of the examples is both formal and isotropy
formal, but does not belong to the classes of homogeneous spaces (1)-(4).

2. Topological classification of almost symplectic integrable systems

A symplectic manifold M is a smooth manifold equipped with a nondegenerate and closed 2-
form ω, called the symplectic form. The study of symplectic manifolds was motivated by classical
mechanics, where the phase spaces of classical mechanical systems are themselves symplectic. Any
smooth function H on M induces a vector field XH , called the Hamiltonian vector field, by the
Hamiltonian equation

ιXHω = dH

H is correspondingly called a Hamiltonian function of the vector field. The terminology comes from
the physical quantities conserved in classical mechanical systems in Hamiltonian mechanics, as H
is constant on the flow line of XH . We say that two Hamiltonian functions H1 and H2 Poisson
commute if XH1 and XH2 commute. It is easy to show that, for a 2d-dimensional symplectic
manifolds, there are at most d Poisson-commuting, functionally independent Hamiltonian functions.
If the maximum number of independent commuting Hamiltonian functions is achieved, then the
symplectic manifold is called a completely integrable system. The famous Liouville-Arnold Theorem
gives a description of the local symplectic structure of completely integrable systems. It asserts
that, for a completely integrable system with Hamiltonian functions H1, · · · , Hd, if the level sets
of (H1, · · · , Hd) : M → Rd are compact and connected, then M is a torus fiber bundle, and
symplectomorphic to the trivial torus fiber bundle (U × (S1)n,

∑n
i=1 dqi ∧ dpi), where U is an open

subset in Rn. In other words, M locally admits action coordinates pi and angle coordinates qi.

Let us consider a special class of symplectic manifolds, symplectically complete isotropic realiza-
tions (SCIR), which correspond to integrable systems in classical mechanics. They are fiber bundles
π : M2d → Bk with compact and connected fibers and a symplectic form ω which vanishes on re-
striction to any fiber, and the base B has a regular Poisson structure Π induced by the symplectic
structure of M through π. There is a natural action of the conormal bundle ν∗F of the symplectic
foliation F of B on M . The stabilizer bundle P , called the period bundle, is a Zn-subbundle of ν∗F
whose sections represent some closed 1-forms of B which vanish on restriction to any symplectic leaf.
Therefore, T := ν∗F/P , a torus fiber bundle, acts on M freely, making M a T -torsor. Conversely, if
there exists a period bundle P on B, then B can support a SCIR where the stabilizer bundle of the
ν∗F-action is P . The SCIR are locally symplectomorphic to T , and admit local action and angle
coordinates when d = k by Liouville-Arnold Theorem. In other words, there is no local invariant for
SCIR. It is therefore interesting to look for topological invariants which measure the obstruction of
the existence of global action and angle coordinates, and a topological classification of SCIRs over
a fixed base Poisson manifold (B,Π) with a period bundle P . The first problem was settled in the
early 80s by Duistermaat in the case d = k, who showed that global action and angle coordinates
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exist if and only if the monodromy and the Lagrangian class1 of SCIR vanish (see [Du]). Dazord
and Delzant later on in [DD] showed more generally that the isotropic class completely classifies all
SCIRs over a fixed Poisson manifold B with a given period bundle P . They also gave a sufficient
and necessary condition for a T -torsor to possess a compatible symplectic form so as to be an SCIR.

In recent years there has been a growing interest in the study of nonholonomic systems, and as a
preliminary step of investigation in this context spaces with certain generalities are considered. For
instance, in [FaSa] Fassò and Sansonetto studied more general integrable systems which are SCIR
except that they are almost symplectic, i.e. equipped with a nondegenerate 2-form which is not
necessarily closed. They obtained a generalization of Liouville-Arnold Theorem under the condition
of the existence of strongly Hamiltonian vector fields. Moreover, twisted Poisson manifolds, first
introduced in [SW] and motivated by string theory, provides the framework for the study of such
nonholonomic systems as the Veselova systems and the Chaplygin sphere (see [BG-N]).

In ([Fo7]), I generalize Duistermaat/Dazord-Delzant’s result in the almost symplectic context as
in [FaSa]. In particular, I consider almost symplectically complete isotropic realizations (ASCIR),
which are almost symplectic with linearly independent, locally strongly Hamiltonian vector fields
tangent to fibers. We found that the base manifold of an ASCIR is necessarily a twisted regular
Poisson manifold with a twisting 3-form η satisfying dω = π∗η. Let ASCIR(B,P,Π,Θ) be the
category of ASCIR over the twisted Poisson manifold (B,Π) with period bundle P and a character-
istic 2-form Θ, i.e. a 2-form which on restriction to any almost symplectic leaf becomes its almost
symplectic form. Furthermore, we let P be the sheaf of local sections of P , and KF := Z1

F/P,
where Z1

F is the sheaf of the closed 1-forms which vanish on each leaf. Then we have the long exact
sequence of sheaf cohomology (here H∗(B,F) means relative cohomology of B with respect to the
foliation F).

· · · −→ H1(B,P)
dP,∗−→ H2(B,F) −→ H1(B,KF ) −→ H2(B,P)

∂2

−→ H3(B,F) −→ · · ·(2)

Theorem 2.1 ([Fo7]). (1) The set of isomorphism classes of ASCIR(B,P,Π,Θ) can be equipped
with an abelian group structure. We denote this group by Pic(B,P,Π,Θ). The identity el-
ement is represented by T := ν∗F/P with almost symplectic form ωcan + π∗Θ, where ωcan

is the canonical 2-form on T . The inverse of [(M,ω)] is [(M,−ω + 2π∗Θ)]. The product
of two ASCIRs can be defined by means of a symplectic reduction (see [Sj] for a related
construction).

(2) Let ASCIR0(B,P,Π,Θ) be the subcategory of ASCIR(B,P,Π,Θ) whose objects are ASCIR
with twisting 3-form dΘ. The map

π0(ASCIR0(B,P,Π,Θ))
isotropic class−→ H1(B,KF )

is an isomorphism. Moreover we have the short exact sequence

0 −→ H2(B,F)/dP,∗H
1(B,P) −→ π0(ASCIR0(B,Π, P,Θ)) −→ ker(∂2) −→ 0

where the second map sends [γ] to [(T, ωcan + π∗(Ω + γ)] for γ, a closed 2-form which
vanishes on restriction to any leaf of F , and the third map gives the Chern class of ASCIRs
as a T -torsor.

(3) Any T -torsor M can be equipped with a compatible almost symplectic form so as to be in
ASCIR(B,P,Π,Θ). We have the exact sequence

0 −→ H1(B,KF ) −→ Pic(B,P,Π,Θ) −→ Z3
F (B)

1The notion of Lagrangian class was implicit in [Du] and introduced later by Dazord and Delzant in [DD].



RESEARCH STATEMENT 9

where the last map sends an ASCIR M with twisting 3-form η to dΘ− η.
(4) We have the short exact sequence

0 −→ Ω2
F/dΩ1

F −→ Pic(B,Π, P,Θ) −→ H2(B,P) −→ 0

where ΩkF is the space of k-forms which vanish on restriction to any leaf of F , and the
second map sends [γ] to [(T, ωcan + π∗(Ω + γ)]

As H2(B,P) is a discrete group, the image of Ω2
F/dΩ1

F under the second map in the last exact
sequence is the identity component subgroup of the Picard group. This subgroup is to the Jacobian
variety consisting of isomorphism classes of degree 0 invertible sheaves on a scheme in algebraic
geometry what H2(B,P) is to the Néron-Severi group.

3. Future directions

3.1. Liouville-Arnold Theorem for ASCIRs. In [DD], Dazord and Delzant established a non-
abelian version of Liouville-Arnold Theorem. It asserts that if L is a symplectic leaf of a Poisson
manifold (B,Π) which is symplectomorphic to a regular coadjoint orbit O of a compact simply-
connected semi-simple Lie group G, and π : M2d → Bk is a SCIR, then there is a saturated
neighborhood of L in M2d such that it is symplectomorphic to G × Z × C, where Z is a certain
torus subgroup of G and C the positive Weyl chamber of G. When G is a torus T , we recover
Liouville-Arnold Theorem which is the special case when k = d (or equivalently the symplectic
leaves are zero dimensional). Their proof consists of a careful study of the Dazord-Delzant homo-
morphism ∂2 : H2(B,P)→ H3(B,F) as in Equation 2 in the last Section. I would like to generalize
this nonabelian Liouville-Arnold Theorem in the context of ASCIRs, based on the results in [Fo7].
The generalization possibly would involve ASCIRs over quasi-Poisson G-manifolds (cf. [AK-SM]
for definition), and the standard local model would be G×Z ×∆, where ∆ is the Weyl alcove (an
example is given in [Fo7, Section 6]). This can be seen as the ‘exponentiated’ version of the local
model G× Z × C.

3.2. Equivariant formality in other cohomology theories. Seeing that the two notions of
equivariant formality in cohomology and K-theory are equivalent (cf. Theorem 1.8), I would like
to formulate equivariant formality in other complex oriented cohomology theories (i.e. those where
Chern classes and formal group laws can be defined), and determine if it is equivalent to cohomo-
logical equivariant formality. In particular I will focus on complex cobordism which is ‘universal’
among all complex oriented cohomology theories. To get a more concrete taste of this project, in
[Fo9] I am working on other equivariant cohomology theories of spaces with moment maps (e.g.
(quasi-) Hamiltonian manifolds, Hamiltonian Poisson manifolds, etc.). This work in progress is
inspired by a long chain of previous work, including the well-known results on moment maps and
equivariant formality of Hamiltonian manifolds by Kirwan, the established theory of GKM mani-
folds, and the paper [HL] on the K-theory of Hamiltonian manifolds. I would like to obtain explicit
topological description of any element of the other equivariant cohomology theories of spaces with
moment maps.

3.3. Equivariant quantum Schubert calculus and equivariant Verlinde algebra. Schubert
calculus concerns the study of the cohomology of the Grassmannian Gr(k, n), or more precisely,
how the Schubert varieties, whose Poincaré duals (called the Schubert classes) form a Z-basis of
the cohomology group, intersect. Schubert classes can be indexed by Young diagrams within the
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k× (n−k)-rectangle, and there is a well-established combinatorial theory of Young diagrams which
enables one to compute the structural constants of the cohomology ring of Gr(k, n), which record
the number of intersection points among Schubert varieties.

First studied mathematically in [Ber], the quantum version of Schubert calculus is about the more
general notion of ‘fuzzy intersection theory’ of Gr(k, n). The quantum cohomology QH∗(Gr(k, n))
is an algebra over the ring Z[q] on the quantum variable q, generated by the Schubert classes.
The ring structure is dictated by the Gromov-Witten invariants, which give the number of rational
curves of specified degree passing through given Schubert varieties in general position in Gr(k, n).
Again there is an extensive research on the quantum version of the combinatorial theory of Young
diagrams which compute the ring structure of the quantum cohomology. See, for example, [BCFF].

There is a deep link betweenQH∗(Gr(k, n)) and the Verlinde algebra, first discovered and studied
in physical terms by Witten in [W], and proved mathematically in [Ag]. It asserts that there is an
isomorphism

QH∗(Gr(k, n))/(q − 1) ∼= Rn−k(U(k))

In light of the equivariant generalization (a la Borel) of quantum Schubert calculus (first studied
in [Mi]), it would be of interest to get an equivariant analogue of the above isomorphism. We
note that any formulation of such an equivariant generalization necessitates a notion of equivariant
Verlinde algebra, of which there are a few possible candidates. We find that using equivariant
twisted K-homology, inspired by Freed-Hopkins-Teleman theorem, would be the most convenient
and promising for such a generalization, namely, we propose that the RHS of the above isomorphism

be replaced by K
U(k)×T
∗ (U(k),A), where T is an n-dimensional torus acting on U(k) trivially, and

A is a certain Dixmier-Douady bundle. The LHS is conceivably the Mihalcea’s equivariant quantum
cohomology. We find that when k = 1 and DD(A) = nx+

∑n
i=1 ti ∈ H3

U(1)×T (U(1)),

K
U(1)×T
∗ (U(1),A) ∼= Z[x, y1, · · · , yn]/(xny1 · · · yn − 1)

QH∗T (Pn−1,Z) ∼= Z[σ, t1, · · · , tn, q]/((σ − t1) · · · (σ − tn)− q)

and we have the isomorphism

QH∗T (Pn−1,Z)/(q − 1) ∼= K
U(1)×T
∗ (U(1),A)

through the map σ 7→ x, ti 7→ x(1 − yi). In [Fo6] we are working on a proof of this equivariant
analogue of the isomorphism.

We would also like to define equivariant Verlinde algebra by geometric means instead of rep-
resentation theory. This is another candidate for formulating equivariant Verlinde algebra. For
ordinary Verlinde algebra, it is well-known that the structural constants (with respect to the set of
generators of irreducible positive energy representations) is the quantization of the moduli space of
flat connections on a thrice-punctured Riemann sphere with prescribed holonomies along the three
holes. We would like to define a suitable T -action on this moduli space and use the equivariant
quantization to define the equivariant Verlinde algebra. Our goal is to show that such a definition
is equivalent to the aforementioned equivariant twisted K-homology version and hence establish an
equivariant version of Freed-Hopkins-Teleman.

3.4. Geometric quantization of Real quasi-Hamiltonian manifolds. Quasi-Hamiltonian man-
ifolds, introduced in [AMM], are a variant of Hamiltonian manifolds which possess G-valued moment
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maps µ : M → G. Motivated by Freed-Hopkins-Teleman Theorem, Meinrenken realized the quan-
tization of quasi-Hamiltonian G-manifolds as equivariant K-homology pushforward induced by the
G-valued moment maps. He applied his results to examples such as moduli spaces of flat connec-
tions of principal G-bundles over orientable compact surfaces (see [M2], [M3]). This quantization
scheme has several advantages in that it does not involve quantizing the corresponding Hamilton-
ian LG-space, which is an infinite dimensional Banach manifold, and does not mention any twisted
Dirac operator at all.

I have been working on a generalization to the Real context of the results in [M3]. By now I have
formulated the notion of Real quasi-Hamiltonian manifolds, obtained extension of related results
in [AMM]. These, together with my work [Fo5] on the Real FHT, will serve as the framework
for a possible generalization of Meinrenken’s quantization scheme in the Real case. In particular,
the Real quasi-Hamiltonian manifolds, among other things, requires the existence of the Real G-
valued moment map µ : (M,σM )→ (G, σG ◦ inv). Meinrenken’s quantization scheme prompts us to
generalize FHT using group anti-involutions. Given that the twisted equivariant KR-homology of G
has a richer structure than the Verlinde algebras, it will be interesting to understand what physical
interpretations the extra information gives. For example, what extra information can be gleaned
from the torsions and the elements in higher degree of the twisted equivariant KR-homology under
the Real quantization scheme? I would like to address this kind of questions in the future.

3.5. Equivariant K-theory of compact Lie groups with finite fundamental groups. By
using Hodgkin’s spectral sequence, Brylinski-Zhang showed that the equivariant K-theory K∗G(G)
of any compact Lie group G with torsion-free fundamental group is a free module over the complex
representation ring (see [BZ]). Though they worked out the example of PSU(3), little is known
about the equivariant K-theory of any compact Lie groups with fundamental groups with torsion,
in particular, the torsion part of the equivariant K-theory. In [Fo3], I plan to first attack the special
case where the compact Lie group has fundamental group of prime order. I conjecture that K∗G(G)
consists of two parts, namely, the free R(G)-submodule which is an exterior algebra and the torsion

R(G)-submodule generated by the twisted line bundle G̃×π1(G)Cµ, where G̃ is the universal cover of
G and µ is a character of π1(G). I verified that the conjecture is true for SO(3), whose equivariant
K-theory can be easily computed by Segal’s spectral sequence:

K∗SO(3)(SO(3)) ∼=
∧

R(SO(3))
(ε)⊗Z R(SO(3))[ξ]

/
(εξ, 2ξ + ξ2, (σ3 + 1)ξ)

Here ε is a −1 degree class associated with the standard representation of SO(3), ξ is the class of
reduced line bundle SU(2)×Z2 Cµ−SO(3)×C, and σ3 ∈ R(SO(3)) is the standard representation.
I want to find out, in more general cases, the primitive generators of the exterior algebra part of
K∗G(G) and their topological interpretations. This will involve a detailed study of R(G) (which is
not a free polynomial ring and more complicated). I expect that the index theory argument in [Fo2]
(which actually gives an alternative, shorter proof to a special case of Brylinski-Zhang’s result) will
be helpful in this regard. As to the torsion part, I intend to generalize to the equivariant setting
the approach in [HS], where the torsion part of the ordinary K-theory ring of such Lie groups was
worked out by applying the Atiyah-Hirzebruch spectral sequence to a certain fiber bundle associated
to the Lie group and its fundamental group.

3.6. K-theory of the space of n-tuples of commuting elements in a compact Lie group.
Moduli spaces of flat bundles are important objects in physics, so it will be desirable to have more
understanding about their topology. The cohomology of moduli spaces of flat G-bundles over a torus
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(S1)n, which are nothing but the space of n-tuples of commuting elements in a compact Lie group
G (denoted by Yn(G)), was studied in [AC], [B] and [BJS]. In [B] the rational cohomology ring
was obtained using an abelianization argument, whereas in [AC] and [BJS] integral cohomology
groups of examples of Yn(G) were computed by analyses of its suspension. In [AG] Adém and
Goméz obtained the module structure of rational equivariant K-theory of Yn(G) by applying their
result about the more general case of G-spaces with maximal rank isotropy groups satisfying certain
technical conditions.

To the best of my knowledge, a complete description of the torsion part of both (equivariant)
cohomology and K-theory of Yn(G) for general compact Lie group G are not known. I intend to
work on the equivariant K-theory of Yn(G) by using an alternative approach involving index theory.
I suspect that the torsion part comes from the singularities of Yn(G). Understanding the structure
of the singularities and working out their local K-theory (in analogy with local cohomology) using
index theory argument may shed some light on the torsions.
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