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Abstract

Given a countable Borel equivalence relation E on a Polish space, let IE denote the
σ-ideal generated by the Borel partial transversals of E. We show that there is a
Borel homomorphism from IE to IF if and only if there is a smooth-to-one Borel
homomorphism from a finite index Borel subequivalence relation of E to F . As a
corollary, we see that IE is homogeneous in the sense of Zapletal (2007, Forcing
Idealized, Preprint) if and only if E is hyperfinite. Using this, we prove that all Σ1

2

sets and Σ1
1 quasi-orders are Borel on Borel reducible to the quasi-order of Borel

homomorphism on the class of inhomogeneous Π1
1 on Σ1

1 σ-ideals.

Key words: Countable Borel equivalence relations, σ-ideals, homomorphisms
2000 MSC: 03E15, 28A05

1 Introduction

Suppose that E and F are countable Borel equivalence relations on Polish
spaces X and Y . A reduction of E to F is a map π : X → Y such that

∀x1, x2 ∈ X (x1Ex2 ⇐⇒ π(x1)Fπ(x2)),
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and E is Borel reducible to F , or E ≤B F , if there is a Borel reduction of E to
F . The study of Borel reducibility plays a central role in the descriptive set-
theoretic study of classification problems (see Jackson-Kechris-Louveau [8]).

A partial transversal of E is a set B ⊆ X such that

∀x1, x2 ∈ B (x1Ex2 ⇒ x1 = x2).

Associated with E is the σ-ideal IE on X generated by the Borel partial
transversals of E. Our primary goal here is to understand the extent to which
descriptive set-theoretic properties of E are encoded in IE.

Several robust classes of countable Borel equivalence relations were isolated
early on in the development of the subject, and these classes will be important
for our work here. Recall that E is smooth if X ∈ IE, E is hyperfinite if there
is an increasing sequence 〈En〉n∈N of finite Borel equivalence relations such
that E =

⋃
n∈NEn, and E is treeable if there is an acyclic Borel graph G on X

whose connected components coincide with the equivalence classes of E.

Suppose that E is a family of countable Borel equivalence relations on standard
Borel spaces. We say that an equivalence relation E ′ is of finite index below
E if E ′ ⊆ E and every E-class is the union of finitely many E ′-classes, and
we say that E is almost E if some equivalence relation in E is of finite index
below E. Given a measure µ on X, we say that E is µ-E if there is a µ-conull
Borel set C ⊆ X such that E|C ∈ E . We say that E is measure E if E is µ-E
for every Borel probability measure µ on X.

Suppose that I and J are σ-ideals on X and Y . A homomorphism from I to
J is a map π : X → Y such that

∀B ∈ J (π−1(B) ∈ I).

It is easy to see that if π : X → Y is a Borel reduction of E to F , then π
is also a Borel homomorphism from IE to IF . While the converse is clearly
false, here we prove a version of the converse for a natural weakening of Borel
reducibility.

A homomorphism from E to F is a map π : X → Y such that

∀x1, x2 ∈ X (x1Ex2 ⇒ π(x1)Fπ(x2)).

It makes little sense to study the existence of Borel homomorphisms between
equivalence relations, as constant functions are necessarily homomorphisms.
To avoid such degeneracies, we restrict our attention to homomorphisms which
do not collapse a large portion of the complexity of E into a single point of
Y . We say that a function π : X → Y is E-to-one if ∀y ∈ Y (E|π−1(y) ∈ E).
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In §2, we show that the notion of smooth-to-one Borel homomorphism is
robust, in the sense that it preserves the key classes of smooth, hyperfinite,
and treeable equivalence relations. We show also that the class of measure
hyperfinite equivalence relations is closed under measure hyperfinite-to-one
Borel homomorphism.

We say that π : X → Y is an almost homomorphism if the image of each
E-class under π is contained in the union of finitely many F -classes, or equiv-
alently, if the equivalence relation E ′ on X given by

x1E
′x2 ⇐⇒ (x1Ex2 and π(x1)Fπ(x2))

is of finite index below E. In §3, we outline the straightforward modifications
necessary to extend the measure-theoretic rigidity arguments employed by
Hjorth-Kechris [6] to produce countable Borel equivalence relations which are
incomparable with respect to any quasi-order that lies between almost measure
treeable-to-one Borel almost homomorphism and Borel reducibility.

With these preliminaries involving E-to-one Borel homomorphisms out of the
way, in §4 we prove our main result, which characterizes the circumstances
under which there is a Borel homomorphism from IE to IF :

Theorem 1 Suppose that E and F are countable Borel equivalence relations
on Polish spaces. Then the following are equivalent:

(1) There is a Borel homomorphism from IE to IF ;
(2) There is a smooth-to-one Borel almost homomorphism from E to F .

Our proof uses the usual sort of Glimm-Effros style technique. The corre-
sponding splitting lemma relies upon the elementary observation (which is
explored in greater detail in Caicedo-Clemens-Conley-Miller [2]) that if F is a
non-empty family of finite subsets of a set X such that ∀S, T ∈ F (S∩T 6= ∅),
then a non-empty, finite subset of X is definable from F .

The restriction of I to a Borel set B ⊆ X is given by I|B = {A∩B : A ∈ I}.
Following Zapletal [17], we say that I is homogeneous if for every Borel set
B /∈ I, there is a Borel homomorphism from I to I|B. In §5, we characterize
the circumstances under which IE is homogeneous:

Theorem 2 Suppose that E is a countable Borel equivalence relation on a
Polish space. Then E is hyperfinite ⇐⇒ IE is homogeneous.

It follows that if IE is not homogeneous, then X is not the union of countably
many Borel sets on which IE is homogeneous. Modulo a positive answer to the
long-standing open question of whether every measure hyperfinite equivalence
relation is hyperfinite, we in fact obtain that if IE is not homogeneous, then
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there is no hyperfinite Borel partition of X into E-invariant sets on which IE
is homogeneous.

Zapletal [17] has asked whether there is a natural example of an inhomo-
geneous σ-ideal whose corresponding forcing is proper. Now, the argument
behind Theorem 4.7.3 of Zapletal [17] easily generalizes to show that if E
is a countable Borel equivalence relation, then the forcing associated with
IE is proper. As a consequence, it follows that IE is of the desired form if
and only if E is not hyperfinite. Unfortunately, Theorem 1.1 of Harrington-
Kechris-Louveau [7] easily implies that there is a dense subset of the forcing
associated with IE on which it is homogeneous. In particular, the question of
whether there is a natural example of a nowhere homogeneous σ-ideal whose
corresponding forcing is proper remains open.

Recall that a σ-ideal I on X is Π1
1 on Σ1

1 if for every Polish space W and Σ1
1

set R ⊆ W ×X, the set {w ∈ W : Rw ∈ I} is Π1
1. Theorem 1.1 of Harrington-

Kechris-Louveau [7] easily implies that the σ-ideals of the form IE are Π1
1 on

Σ1
1. Let �B denote the quasi-order of Borel homomorphism on such σ-ideals.

A reduction of a quasi-order � on X to �B is a function x 7→ Ix such that

∀x1, x2 ∈ X (x1 � x2 ⇐⇒ Ix1 �B Ix2).

A reduction of a set B ⊆ X to �B is a function x 7→ (Ix,Jx) such that

∀x ∈ X (x ∈ B ⇐⇒ Ix �B Jx).

We say that an assignment x 7→ Ix of σ-ideals on a Polish space Z is Borel on
Borel if for every Borel set B ⊆ X × Z, the set {x ∈ X : Bx ∈ Ix} is Borel.
We say that an assignment x 7→ (Ix,Jx) is Borel on Borel if the assignments
x 7→ Ix and x 7→ Jx are both Borel on Borel. Finally, we give lower bounds
on the complexity of Borel homomorphism:

Theorem 3 Every Σ1
1 quasi-order on a Polish space is Borel on Borel re-

ducible to �B. Every Σ1
2 subset of a Polish space is Borel on Borel reducible

to �B.

2 Smooth-to-one homomorphisms

We say that a map π : X → Y is locally injective (with respect to E) if

∀x1Ex2 (π(x1) = π(x2)⇒ x1 = x2),

and we say that π is essentially locally injective if there is a cover 〈Bn〉n∈N of
X by Borel sets such that ∀n ∈ N (π|Bn is locally injective).
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Theorem 2.1 Suppose that X and Y are Polish spaces, E is a countable
Borel equivalence relation on X, and π : X → Y is Borel. Then the following
are equivalent:

(1) π is essentially locally injective;
(2) π is smooth-to-one.

Proof. To see (1) ⇒ (2), suppose that π is essentially locally injective, and
fix a cover 〈Bn〉n∈N of X by Borel sets such that each of the restrictions π|Bn

is locally injective. Then for each y ∈ Y and n ∈ N, the set [π|Bn]−1(y)
is a partial transversal of E, so the restriction of E to the set π−1(y) =⋃
n∈N[π|Bn]−1(y) is smooth, thus π is smooth-to-one.

To see (2) ⇒ (1), suppose that π : X → Y is smooth-to-one, and define an
equivalence relation F ⊆ E by setting

x1Fx2 ⇐⇒ (x1Ex2 and π(x1) = π(x2)).

Lemma 2.2 F is smooth.

Proof. Suppose, towards a contradiction, that F is non-smooth. By Theorem
1.1 of Harrington-Kechris-Louveau [7], there is a continuous embedding φ :
2N → X of E0 into F . The generic ergodicity of E0 therefore ensures that
there exists y ∈ Y such that (π ◦ φ)−1(y) is comeager, so E0|(π ◦ φ)−1(y) is
non-smooth, thus E|π−1(y) is non-smooth, the desired contradiction. 2

By Lemma 2.2, there is a sequence 〈Bn〉n∈N of Borel partial transversals of
F which covers X. As it is clear that each of the restrictions π|Bn is locally
injective, it follows that π is essentially locally injective. 2

As a consequence, we can now show that various classes of equivalence relations
which are defined by structurability constraints are preserved under smooth-
to-one Borel homomorphisms:

Theorem 2.3 Suppose that X and Y are Polish spaces, E and F are count-
able Borel equivalence relations on X and Y , and there is a smooth-to-one
Borel homomorphism from E to F .

(1) If F is smooth, then E is smooth.
(2) If F is hyperfinite, then E is hyperfinite.
(3) If F is treeable, then E is treeable.

Proof. Fix a smooth-to-one Borel homomorphism π : X → Y from E to F . By
Theorem 2.1, there is a cover 〈An〉n∈N of X by Borel sets on which π is locally
injective. For each x ∈ X, let n(x) denote the least natural number n such
that An ∩ [x]E 6= ∅. Then the set A = {x ∈ X : x ∈ An(x)} is an E-complete
section on which π is locally injective.
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If F is smooth, then there is a cover of Y by countably many Borel partial
transversals Bn of F . Then the sets of the form Am ∩ π−1(Bn), for m,n ∈ N,
are Borel partial transversals of E which cover X, thus E is smooth.

If F is hyperfinite, then there is an increasing sequence 〈Fn〉n∈N of finite Borel
equivalence relations on Y whose union is F . Define En on A by

x1Enx2 ⇐⇒ (x1Ex2 and π(x1)Fnπ(x2)).

Then 〈En〉n∈N is an increasing sequence of finite Borel equivalence relations
on A whose union is E|A, so E|A is hyperfinite, thus E is hyperfinite, by
Proposition 1.3 of Jackson-Kechris-Louveau [8].

If F is treeable, then the idea behind the proof of part (ii) of Proposition 3.3 of
Jackson-Kechris-Louveau [8] adapts in a straightforward manner to show that
E|A treeable, and part (iv) of Proposition 3.3 of Jackson-Kechris-Louveau [8]
then implies that E is treeable. 2

Remark 2.4 Suppose that E ′ is of finite index over E. It is easy to see that
if E is smooth, then so too is E ′. Similarly, if E is hyperfinite, then so too
is E ′, by Proposition 1.3 of Jackson-Kechris-Louveau [8]. As a consequence,
parts (1) and (2) of Theorem 2.3 require only the existence of a smooth-to-one
Borel almost homomorphism.

Before going further, we need first a basic fact concerning measure hyperfinite
equivalence relations. Recall that a measure µ is E-ergodic if every E-invariant
Borel set is µ-null or µ-conull.

Proposition 2.5 Suppose that X is a Polish space and E is a countable Borel
equivalence relation on X which is µ-hyperfinite for every E-ergodic Borel
probability measure µ on X. Then E is measure hyperfinite.

Proof. Let P (X) denote the standard Borel space of Borel probability measures
on X. By arguments of Segal [16] (see also §10 of Kechris-Miller [10]), there is
an increasing sequence 〈En〉n∈N of Borel subsets of P (X)×X ×X such that:

(1) ∀n ∈ N∀µ ∈ P (X) ((En)µ is a finite subequivalence relation of E);
(2) ∀µ ∈ P (X) (E is µ-hyperfinite ⇒ µ({x ∈ X : [x]E =

⋃
n∈N[x]En}) = 1).

Suppose now that µ is a Borel probability measure on X. By Theorem 3.2 of
Louveau-Mokobodzki [12], there is a Borel function x 7→ µx such that:

(a) ∀x ∈ X (µx is E-ergodic);
(b) ∀xEy (µx = µy);
(c) ∀x ∈ X (µx({y ∈ X : µx = µy}) = 1);
(d) µ =

∫
µx dµ(x).
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Define equivalence relations Fn on X by setting

xFny ⇐⇒ x(En)µxy,

and observe that

µ({x ∈ X : [x]E =
⋃
n∈N

[x]Fn}) =
∫
µy({x ∈ X : [x]E =

⋃
n∈N

[x](En)µy}) dµ(y).

As our assumption on E ensures that the latter quantity has value 1, this im-
plies that E is µ-hyperfinite. As µ was an arbitrary Borel probability measure
on X, it follows that E is measure hyperfinite. 2

As a corollary, we see that the equivalence relations determined by measure
hyperfinite-to-one Borel functions are themselves measure hyperfinite:

Proposition 2.6 Suppose that X and Y are Polish spaces, E is a countable
Borel equivalence relation on X, and π : X → Y is a measure hyperfinite-to-
one Borel function. Then the equivalence relation F ⊆ E given by

xFy ⇐⇒ (xEy and π(x) = π(y))

is measure hyperfinite.

Proof. Suppose, towards a contradiction, that F is not measure hyperfinite.
By Proposition 2.5, there is an F -ergodic Borel probability measure µ on X
such that F is not µ-hyperfinite. Fix y ∈ Y such that µ(π−1(y)) = 1, and
observe that F |π−1(y) is not measure hyperfinite, the desired contradiction.

2

Finally, we are ready to show that the measure hyperfinite equivalence rela-
tions are closed under measure hyperfinite-to-one Borel homomorphism:

Theorem 2.7 Suppose that X and Y are Polish spaces, E and F are count-
able Borel equivalence relations on X and Y , and there is a measure hyperfinite-
to-one Borel almost homomorphism from E to F . If F is measure hyperfinite,
then E is measure hyperfinite.

Proof. By Proposition 1.3 of Jackson-Kechris-Louveau [8], we can assume that
there is a measure hyperfinite-to-one Borel homomorphism π : X → Y from
E to F . Define E ′ ⊆ E by

xE ′y ⇐⇒ (xEy and π(x) = π(y)).

Proposition 2.6 ensures that E ′ is measure hyperfinite. Suppose now that µ is
a Borel probability measure on X, let ν = π∗µ, and fix a Borel set C ⊆ Y and
an increasing sequence 〈Fn〉n∈N of finite Borel equivalence relations on C such
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that ν(C) = 1 and F |C =
⋃
n∈N Fn. For each n ∈ N, define En on π−1(C) by

xEny ⇐⇒ (xEy and π(x)Fnπ(y)).

Then En is of finite index over E ′, thus Proposition 1.3 of Jackson-Kechris-
Louveau [8] ensures that En is µ-hyperfinite. By a well known theorem of
Dye [4] and Krieger [11] (see also Theorem 6.11 of Kechris-Miller [10]), it now
follows that E|π−1(C) =

⋃
n∈NEn is µ-hyperfinite. As µ was an arbitrary Borel

probability measure on X, it follows that E is measure hyperfinite. 2

3 Complexity of almost homomorphism

In this section, we give several straightforward strengthenings of results of
Adams-Kechris [1] and Hjorth-Kechris [6]. We say that µ is (E,F )-ergodic if
for every Borel homomorphism π : X → Y from E to F , there exists y ∈ Y
such that µ(π−1([y]F )) = 1. We say that µ is weakly (E,F )-ergodic if for every
Borel homomorphism π : X → Y from E to F , there exists y ∈ Y such that
µ(π−1(y)) > 0. Note that if F has at least two equivalence classes, then µ is
(E,F )-ergodic if and only if µ is E-ergodic and weakly (E,F )-ergodic.

Recall that E0 is the equivalence relation on 2N given by

xE0y ⇐⇒ ∃n ∈ N∀m ≥ n (x(m) = y(m)).

Theorem 7.1 of Dougherty-Jackson-Kechris [3] ensures that an equivalence
relation is hyperfinite if and only if it is Borel reducible to E0. It follows that
if µ is (E,E0)-ergodic, then µ is (E,F )-ergodic, for every measure hyperfinite
equivalence relation F . It then follows from a well known result of Ornstein-
Weiss [14] (see also Theorem 10.2 of Kechris-Miller [10]) that µ is (E,F )-
ergodic, for every countable Borel equivalence relation F which is generated
by a Borel action of an amenable group on a Polish space.

For each set S ⊆ PRIMES, put ΓS = Z× (∗p∈S Z/pZ) and let XS denote the
free part of the action of ΓS on 2ΓS via the shift. Let µS denote the (1/2, 1/2)
product measure on XS, let ΓS act on XS by the shift, and let ES denote the
associated orbit equivalence relation. If |S| ≥ 2, then ΓS is not amenable, thus
µS is (ES, E0)-ergodic (see, for example, Theorem A4.1 of Hjorth-Kechris [6]).

Theorem 3.1 Suppose that S ⊆ PRIMES is of cardinality at least 2, E is a
Borel equivalence relation on XS of finite index below ES, T ⊆ PRIMES does
not contain S, and ΓT acts freely on a Polish space X by Borel automorphisms.
Then µS is weakly (E,EX

ΓT
)-ergodic.

Proof. Suppose that π : XS → X is a Borel homomorphism from E to EX
ΓT

.
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The ES-ergodicity of µS ensures that by throwing out a µS-null, ES-invariant
Borel subset of XS, we can assume that there exists n ∈ Z+ such that every
equivalence class of ES is the disjoint union of n equivalence classes of E. By
the Lusin-Novikov uniformization theorem (see, for example, Theorem 18.10
of Kechris [9]), there are Borel functions πi : XS → X such that

∀x ∈ XS ∀y ∈ [x]ES ∃1 ≤ i ≤ n (π(y)EX
ΓT
πi(x)).

We use Sn to denote the symmetric group on {1, . . . , n}. Let α : ΓS ×XS →
Sn × (ΓT )n denote the unique function such that

∀1 ≤ i ≤ n (πi(γ · x) = αi(γ, x) · π[α0(γ,x)](i)(x)),

for all γ ∈ ΓS and x ∈ XS, where α(γ, x) = 〈α0(γ, x), α1(γ, x), . . . , αn(γ, x)〉.
For each 1 ≤ i ≤ n, fix αi0 : ΓS ×XS → Z and αi1 : ΓS ×XS → ∗p∈T Z/pZ
such that αi = 〈αi0, αi1〉. It is clear that α is a Borel cocycle, thus so too are
the functions βi : ΓS ×XS → ∗p∈T Z/pZ given by βi = αi1, for 1 ≤ i ≤ n.

Lemma 3.2 Suppose that 1 ≤ i ≤ n. Then there is an amenable group ∆i ⊆
∗p∈T Z/pZ such that off of a µS-null, ES-invariant Borel set, there is a Borel
cocycle β′i ∼ βi and β′i(ΓS ×XS) ⊆ ∆i.

Proof. By Theorem 2.2 of Hjorth-Kechris [6], we can assume that there is a
finite group ∆ ≤ ∗p∈T Z/pZ and a Borel cocycle β ∼ βi such that β(Z×XS) ⊆
∆ and ∀γ ∈ ΓS (x 7→ ∆β(γ, x)∆ is constant). As in the proof of Theorem 3.1
of Hjorth-Kechris [6], it follows from Theorem 11.57 of Rotman [15] that there
exists δ ∈ ∗p∈T Z/pZ and p ∈ T such that δ∆δ−1 ⊆ Z/pZ. Set β′i = δβδ−1 and
∆i = Z/pZ, noting that β′i(Z×XS) ⊆ ∆i. As in the proof of Theorem 3.1 of
Hjorth-Kechris [6], it now follows that β′i(ΓS ×XS) ⊆ ∆i. 2

Fix Borel functions λi : XS → ∗p∈T Z/pZ such that

βi(γ, x) = λi(γ · x)β′i(γ, x)λi(x)−1,

for all 1 ≤ i ≤ n, γ ∈ ΓS, and x ∈ XS. Define φ : XS → X by

φ(x) = (1Sn , λ1(x), . . . , λn(x))−1 · π(x),

and observe that φ is a homomorphism of ES into the equivalence relation
generated by the amenable group Sn × ∆1 × · · · × ∆n. As µS is (ES, E0)-
ergodic, there exists x ∈ X such that µS(φ−1([x]E)) = 1, and it follows that
there exists y ∈ [x]E such that µS(π−1(y)) > 0. 2

Corollary 3.3 If S, T ⊆ PRIMES, |S| ≥ 2, and S 6⊆ T , then there is no
µS-almost treeable-to-one Borel almost homomorphism from ES to ET .

Proof. Suppose that π : XS → XT is a Borel almost homomorphism from ES
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to ET . Define E ⊆ ES by

xEy ⇐⇒ (xESy and π(x)ETπ(y)).

Then E is of finite index below ES, so Theorem 3.1 implies that there exists
x ∈ XT such that µS(π−1(x)) > 0. Then E|π−1(x) is not µS-almost treeable
by Proposition 3.3 and Theorem 3.29 of Jackson-Kechris-Louveau [8], thus π
is not µS-almost treeable-to-one. 2

We say that a function π : X → P(Y ) is Borel if the set

graph(π) = {(x, y) ∈ X × Y : y ∈ π(x)}

is Borel. An embedding of E into F is an injective reduction of E to F .

Theorem 3.4 Suppose that ≤ is a quasi-order on equivalence relations which
sits between measure almost treeable-to-one Borel almost homomorphism and
Borel embeddability.

(1) Every Σ1
2 subset of a Polish space is Borel reducible to ≤.

(2) Every Σ1
1 quasi-order on a Polish space is Borel reducible to ≤.

Proof. The proof of (1) is just as in the proof of Theorem 5.1 of Adams-
Kechris [1], using Corollary 3.3 in place of Theorem 4.2 of Adams-Kechris [1].
To obtain (2), we will employ a modification of the idea behind the proof of
Theorem 4.1 of Adams-Kechris [1] in the spirit of the proof of Theorem 3 of
Gao [5]. By Theorem 5.1 of Louveau-Rosendal [13], there is a complete Σ1

1

quasi-order � on a Polish space X which is induced by an action of a Polish
monoid G. It is enough to show that � is Borel reducible to ≤.

Fix a Borel assignment x 7→ Sx of sets of primes to points of X such that

∀x ∈ X (|Sx| ≥ 2) and ∀x, y ∈ X (x 6= y ⇒ Sx 6⊆ Sy).

SetR = {(g, y, z) : g ∈ G and y ∈ X and z ∈ XSy}, and for each x ∈ X, let Ex
denote the equivalence relation onR obtained by putting (g1, y1, z1)Ex(g2, y2, z2)
if either (g1, y1, z1) = (g2, y2, z2) or g1 = g2, y1 = y2, x = g1 · y1, and z1ESy1z2.

Observe that if x1 � x2, then there exists h ∈ G such that x2 = h · x1, thus
the map (g, y, z) 7→ (hg, y, z) is a Borel embedding of the restriction of Ex1 to
the set {(g, y, z) ∈ R : x1 = g · y} into Ex2 , and it easily follows that there is
a Borel embedding of Ex1 into Ex2 .

Suppose now, towards a contradiction, that x1 6� x2 but there is a measure
almost treeable-to-one Borel almost homomorphism φ : R → R from Ex1

to Ex2 . Then the function ψ : XSx1
→ R given by ψ(z) = (1G, x1, z) is a
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Borel embedding of ESx1 into Ex1 . Set π = φ ◦ ψ. By throwing out a µSx1 -
null, ESx1 -invariant Borel subset of XSx1

, we can assume that π is of the
form π(x) = (g, y, π′(z)), where π′ : XSx1

→ XSy is a Borel function and
x2 = g · y, thus x1 6= y. Then π′ is a µSx1 -almost treeable-to-one Borel almost
homomorphism from ESx1 to ESy , which contradicts Corollary 3.3. 2

4 The existence of Borel homomorphisms

In this section, we establish a technical result concerning special types of
embeddings of E0. Central to our work here is an elementary observation
concerning the definability of non-empty finite sets from certain families of
finite sets.

Let [X]n denote the family of subsets of X of cardinality n. We say that
F ⊆ [X]n is an intersecting family if it is non-empty and

∀S, T ∈ F (S ∩ T 6= ∅).

For each positive integer m < n, define F (m) ⊆ [X]m by

F (m) = {T ∈ [X]m : |{S ∈ F : T ⊆ S}| ≥ ℵ0}.

Proposition 4.1 Suppose that F ⊆ [X]n is an infinite intersecting family.
Then there is a positive integer m < n such that F (m) is an intersecting
family.

Proof. Our assumption that F is an infinite intersecting family ensures that
F (1) 6= ∅ and n ≥ 2. Fix m < n largest such that F (m) 6= ∅.

Lemma 4.2 Suppose that T ∈ F (m) and U ⊆ X is finite. Then there exists
S ∈ F such that T ⊆ S and S ∩ U = T ∩ U .

Proof. For each x ∈ U \ T , the definition of m ensures that there are only
finitely many S ∈ F for which T ∪ {x} ⊆ S. As T ∈ F (m), it therefore follows
that there exist infinitely many S ∈ F such that T ⊆ S and S ∩ U = T ∩ U .

2

To see that F (m) is an intersecting family, suppose that T, U ∈ F (m). Lemma
4.2 ensures that there is a set ST ∈ F such that T ⊆ ST and ST ∩U = T ∩U ,
and another application of Lemma 4.2 then ensures that there is a set SU ∈ F
such that U ⊆ SU and SU ∩ ST = U ∩ ST = T ∩ U , thus T ∩ U 6= ∅. 2

Define F (s) recursively, for s ∈ N<N, by setting F (∅) = F and

F (sn) = (F (s))(n).
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Proposition 4.3 Suppose that F ⊆ [X]n is an intersecting family. Then there
is a sequence s ∈ N<N such that F (s) is a finite intersecting family.

Proof. By induction on n. If n = 1, then |F| = 1, thus s = ∅ is as desired.
Suppose now that we have established the proposition up to n, and F ⊆
[X]n+1. If F is finite, then s = ∅ is again as desired. Otherwise, Proposition
4.1 ensures that there is a positive integer m < n + 1 such that F (m) is an
intersecting family, and the induction hypothesis then ensures that there is a
sequence s ∈ N<N such that (F (m))(s) is a finite intersecting family, thus ms
is as desired. 2

Recall that the full group of E is the group [E] of all Borel automorphisms
γ : X → X such that graph(γ) ⊆ E. Suppose now that φ : X → Y is a Borel
function and Γ ⊆ [E] is finite. We say that a set B ⊆ X is (φ,Γ)-intersecting if
for each x ∈ B, the set Sx = {[φ(γ · y)]F : γ ∈ Γ} is of the same cardinality as
Γ and the set Fx = {Sy : y ∈ [x]E|B} is an intersecting family. We say that B is
φ-intersecting if there is a finite set Γ ⊆ [E] such that B is (φ,Γ)-intersecting,
and we use Iφ to denote the σ-ideal generated by φ-intersecting Borel sets.

Proposition 4.4 Suppose that X and Y are Polish spaces, E and F are
countable Borel equivalence relations on X and Y , φ : X → Y is Borel, and
X ∈ Iφ. Then there is a Borel function ψ : X → X whose graph is contained
in E such that φ ◦ ψ is an almost homomorphism from E to F .

Proof. By breaking X into countably many E-invariant Borel sets, we can
assume that there is a finite set Γ ⊆ [E] and a (φ,Γ)-intersecting Borel set B ⊆
X which intersects every E-class. Proposition 4.3 ensures that for each x ∈ B,
there is a sequence s ∈ N<N such that F (s)

x is a finite intersecting family. The
Lusin-Novikov uniformization theorem ensures that, by again breaking X into
countably many E-invariant Borel sets, we can assume that there is a single
s ∈ N<N such that for every x ∈ B, the set F (s)

x is a finite intersecting family.
Let A = {x ∈ B : [φ(x)]F ∈

⋃F (s)
x }, and appeal once more to the Lusin-

Novikov uniformization theorem to find a Borel function ψ : X → A whose
graph is contained in E. It is clear that φ ◦ψ is an almost homomorphism. 2

We will now prove a Glimm-Effros style dichotomy theorem:

Theorem 4.5 Suppose that X and Y are Polish spaces, E and F are count-
able Borel equivalence relations on X and Y , and φ : X → Y is Borel. Then
exactly one of the following holds:

(1) X ∈ Iφ;
(2) There is a continuous embedding π : 2N → X of E0 into E such that

∀α, β ∈ 2N (α 6= β ⇒ ¬φ ◦ π(α)Fφ ◦ π(β)).

12



Proof. To see that (1) and (2) are mutually exclusive suppose, towards a
contradiction, that X ∈ Iφ and there is a Borel embedding π : 2N → X of E0

into E such that

∀α, β ∈ 2N (α 6= β ⇒ ¬φ ◦ π(α)Fφ ◦ π(β)).

Then π(2N) ∈ Iφ, so by Proposition 4.4, there is a Borel function ψ : π(2N)→
π(2N) whose graph is contained in E|π(2N) such that φ ◦ ψ is an almost ho-
momorphism from E to F . It follows that π−1(ψ ◦ π(2N)) intersects every
equivalence class of E0 in a non-empty finite set, thus E0 is smooth, the de-
sired contradiction.

It remains to show ¬(1) ⇒ (2). Towards this end, suppose that X /∈ Iφ. Fix
countable groups Γ and ∆ of Borel automorphisms such that E = EX

Γ and
F = EY

∆. The usual change of topology arguments allow us to assume that
X and Y are zero-dimensional, Γ and ∆ act by homeomorphisms, and φ is
continuous. Fix exhaustive, increasing sequences 〈Γn〉 ∈ P(Γ)N and 〈∆n〉 ∈
P(∆)N of finite, symmetric neighborhoods of 1Γ and 1∆.

We will recursively find clopen sets X ⊇ U0 ⊇ U1 ⊇ · · · and group elements
γn ∈ Γ. Associated with these are the group elements

γs =
∏
n<|s|

γs(n)
n ,

and the clopen sets Us = γs(U|s|), for each s ∈ 2<N, as well as the Borel sets

Xn = {x ∈ X : ∀s, t ∈ 2n (s 6= t⇒ ¬φ(γs · x)Fφ(γt · x))},

for each n ∈ N. We will ensure that the following conditions are satisfied:

(1) Un ∩Xn 6∈ Iφ;
(2) ∀s ∈ 2n+1 (diam(Us) ≤ 1/n);
(3) ∀s, t ∈ 2n ∀γ ∈ Γn (γ(Us0) ∩ Ut1 = ∅);
(4) ∀s, t ∈ 2n+1 ∀δ ∈ ∆n (s 6= t⇒ δ(φ(Us)) ∩ φ(Ut) = ∅).

We begin by setting U0 = X. Suppose now that we have found U0 ⊇ U1 ⊇
· · · ⊇ Un and γ0, γ1, . . . , γn−1 ∈ Γ which satisfy conditions (1)− (4). For each
ζ ∈ Γ, let Un,ζ denote the set of all x ∈ X such that:

(a) x, ζ · x ∈ Un;
(b) ∀s, t ∈ 2n ∀γ ∈ Γn (ζ · x 6= γ−1

t γγs · x);
(c) ∀s, t ∈ 2n+1 ∀δ ∈ ∆n (s 6= t⇒ δ · φ(γs|nζ

s(n) · x) 6= φ(γt|nζ
t(n) · x)).

Define also Xn,ζ ⊆ Xn by

Xn,ζ = {x ∈ X : ∀s, t ∈ 2n+1 (s 6= t⇒ ¬φ(γs|nζ
s(n) · x)Fφ(γt|nζ

t(n) · x))},

13



and put Bn = (Un ∩Xn) \ ⋃ζ∈Γ(Un,ζ ∩Xn,ζ).

Lemma 4.6 Bn ∈ Iφ.

Proof. Note first that Bn is the union of countably many Borel sets Bn,k with
the property that

∀x ∈ Bn,k ∀s, t ∈ 2n ∀γ ∈ Γn (x 6= γ−1
t γγs · x⇒ γ−1

t γγs · x /∈ Bn,k).

It is clearly enough to show that ∀k (Bn,k ∈ Iφ). Towards this end, suppose
that x, x′ ∈ Bn,k are distinct and E-equivalent, and fix ζ ∈ Γ with x′ = ζ · x.
As x /∈ Un,ζ ∩Xn,ζ , there exist s, t ∈ 2n such that φ(γs · x)Fφ(γt · x′), and it
follows that Bn,k is (φ, {γs : s ∈ 2n})-intersecting. 2

By Lemma 4.6, there exists γn ∈ Γ such that Un,γn ∩Xn,γn /∈ Iφ. As Un,γn is
open, the continuity of φ and the actions of Γ and ∆ ensures that Un,γn is the
union of countably many clopen sets U ′n,k such that:

(i) ∀s ∈ 2n+1 (diam(γs(U
′
n,k)) < 1/n);

(ii) ∀s, t ∈ 2n ∀γ ∈ Γn (γγs(U
′
n,k) ∩ γtγn(U ′n,k) = ∅);

(iii) ∀s, t ∈ 2n+1 ∀δ ∈ ∆n (s 6= t⇒ δ(φ(γs(U
′
n,k))) ∩ φ(γt(U

′
n,k)) = ∅).

As Iφ is a σ-ideal, there exists k such that U ′n,k∩Xn,γn /∈ Iφ. Put Un+1 = U ′n,k.

This completes the recursive construction. Condition (2) ensures that for each
α ∈ 2N, the decreasing sequence 〈Uα|n〉n∈N has vanishing diameter, thus we
can define π : 2N → X by setting

π(α) = the unique element of
⋂
n∈N

Uα|n.

Conditions (2) and (3) ensure that π is a continuous injection.

To see that αE0β ⇒ π(α)Eπ(β), it is enough to check the following:

Lemma 4.7 If k ∈ N, s ∈ 2k, and α ∈ 2N, then π(sα) = γs · π(0kα).

Proof. Simply observe that

{π(sα)}=
⋂
n∈N

Us(α|n)

= γs
( ⋂
n∈N

U0k(α|n)

)
= γs({π(0kα)}),

thus π(sα) = γs · π(0kα). 2

To see that (α, β) 6∈ E0 ⇒ (π(α), π(β)) 6∈ E, it is enough check the following:

14



Lemma 4.8 Suppose that α(n) 6= β(n). Then ∀γ ∈ Γn (γ · π(α) 6= π(β)).

Proof. Suppose, towards a contradiction, that there exists γ ∈ Γn with γ ·
π(α) = π(β). By the symmetry of Γn, we can assume that α(n) < β(n). Set
s = α|n and t = β|n, and put

x = γ−1
s · π(α) and y = γ−1

n γ−1
t · π(β),

noting that these are both elements of Un+1. Then γγs · x = γtγn · y, which
contradicts condition (3). 2

It only remains to check that if α 6= β, then ¬[φ◦π](α)F [φ◦π](β). This follows
from the fact that if n ∈ N is sufficiently large that α|n 6= β|n, then condition
(4) ensures that ∀δ ∈ ∆n (δ · [φ ◦ π](α) 6= [φ ◦ π](β)). 2

We are now ready to prove the primary result of the paper:

Theorem 4.9 Suppose that X and Y are Polish spaces and E and F are
countable Borel equivalence relations on X and Y . Then the following are
equivalent:

(1) There is a smooth-to-one Borel almost homomorphism from E to F ;
(2) There is a Borel homomorphism from IE to IF .

Proof. To see (1) ⇒ (2), simply observe that by Remark 2.4, every smooth-
to-one Borel almost homomorphism from E to F is necessarily a Borel ho-
momorphism from IE to IF . To see (2) ⇒ (1), suppose that φ : X → Y is
a Borel homomorphism from IE to IF . Then X ∈ Iφ, by Theorem 4.5, thus
Proposition 4.4 ensures that there is a Borel function ψ : X → X whose graph
is contained in E such that φ ◦ ψ is an almost homomorphism from E to F .
As φ is a homomorphism from IE to IF , so too is φ ◦ ψ, and it follows that
π = φ ◦ ψ is a smooth-to-one Borel almost homomorphism from E to F . 2

5 Homogeneous σ-ideals

In this section, we obtain our main results concerning the homogeneity of IE.

Theorem 5.1 Suppose that X is a Polish space and E is a countable Borel
equivalence relation on X. Then the following are equivalent:

(1) E is hyperfinite;
(2) IE is homogeneous.

Proof. We begin with (1) ⇒ (2). It is clear that if E is smooth, then IE is
homogeneous. By Corollary 4.7.6 of Zapletal [17], the σ-ideal IE0 is homoge-
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neous. By Theorem 7.1 of Dougherty-Jackson-Kechris [3], every non-smooth
hyperfinite equivalence relation E is Borel bi-reducible with E0, thus it follows
from Theorem 4.9 that IE is homogeneous.

To see ¬(1) ⇒ ¬(2), suppose that E is not hyperfinite. By Theorem 1.1 of
Harrington-Kechris-Louveau [7], there is a Borel set B ⊆ X such that E|B
is non-smooth and hyperfinite. By Remark 2.4 and Theorem 4.9, there is no
Borel homomorphism from IE to IE|B, thus IE is not homogeneous. 2

As a corollary, it follows that if E is not hyperfinite and 〈Bn〉n∈N is a cover of
X by Borel sets, then there exists n ∈ N such that IE|Bn is not homogeneous.
Along similar lines, we have the following:

Theorem 5.2 Suppose that X and Y are Polish spaces, E is a non-measure
hyperfinite equivalence relation on X, F is a measure hyperfinite equivalence
relations on Y , and π : X → Y is a Borel homomorphism from E to F . Then
there exists y ∈ Y such that IE|π−1([y]F ) is not homogeneous.

Proof. Suppose, towards a contradiction, that each of the σ-ideals IE|π−1([y]F )

is homogeneous. Theorem 5.1 then implies that π is hyperfinite-to-one, and
Theorem 2.7 ensures that E is measure hyperfinite, a contradiction. 2

We are now ready for our final result:

Theorem 5.3 Every Σ1
1 quasi-order on a Polish space is Borel on Borel re-

ducible to �B, as is every Σ1
2 subset of a Polish space.

Proof. This follows from Theorems 3.4 and 4.9. 2
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