
PARTITION RELATIONS VIA IDEAL PRODUCTS

CLINTON T. CONLEY

Abstract. We analyze how a simple splitting condition relating an
ideal with a linear order allows the construction of certain embeddings
of the rationals into the order. We extract as consequences proofs of
some well known partition relations, including the Baumgartner-Hajnal
theorem (ϕ → (ω)1ω implies ϕ → (α)22 for all countable ordinals α) for
uncountable orders ϕ not containing ω1, the result of Erdős-Rado that
η → (η,ℵ0)

2, and the standard canonization of colorings of pairs of
rationals.

We fix a linearly ordered set (X,<). For sets A,B ⊆ X, A < B means a < b
for all a ∈ A and b ∈ B. We also fix some ideal I of subsets of X, and use terms
like small, positive (or nonsmall), and cosmall in the obvious way. We say positive
sets split over the order if any positive set A ⊆ X contains positive sets A0 and A1

with A0 < A1. Finally, ı is shorthand for 1− i.

Definition 1. Given a coloring c : [X]2 → 2 and i ∈ 2, we say that (A,B) is an
i-compatible pair if A and B are both positive subsets of X, and moreover for every
positive B′ ⊆ B the set

{a ∈ A : the set {b ∈ B′ : c({a, b}) = i} is positive}

is co-small in A.

Definition 2. Given a coloring c : [X]2 → 2 and i ∈ 2, we say that (A,B) is an
i-focused pair if A and B are both positive subsets of X, and moreover for all a ∈ A
the set

{b ∈ B : c({a, b}) = i}

is co-small in B.

Remark 3. If (A,B) is an i-compatible pair (respectively, an i-focused pair) and
A′ ⊆ A and B′ ⊆ B are both positive, then (A′, B′) is an i-compatible (resp.,
i-focused) pair. Also, if (A,B) is an i-focused pair, then it is an i-compatible pair.

We first establish a lemma granting structure similar to the sort bequeathed by
localization and Kuratowski-Ulam in the special case of the meager ideal (or, if you
prefer, density and Fubini in the case of the null ideal).
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Lemma 4. Suppose that c : [X]2 → 2 is an arbitrary coloring, and suppose further
that A,B ⊆ X are positive sets. Then there exist positive sets A? ⊆ A and B? ⊆ B
such that one of the following holds:

1. (A?, B?) is an i-focused pair for some i ∈ 2, or

2. (A?, B?) is an i-compatible pair for all i ∈ 2.

Proof. We simply consider two exhaustive cases, determined by the truth value of
the sentence

∃i ∈ 2 ∃IB′ ⊆ B ∃IA′ ⊆ A ({a ∈ A′ : {b ∈ B′ : c({a, b}) = i} is positive} is small),

where ∃I is shorthand for “there exists a positive set.”
Case 1: it is true. In this case, we may choose i, A′, and B′ witnessing the

statement’s truth, and let

A? = A′ \ {a ∈ A′ : {b ∈ B′ : c({a, b}) = i} is positive}.

Subsequently, we observe that (A?, B′) is an ı-focused pair.
Case 2: it is false. We then have

∀i ∈ 2 ∀IB′ ⊆ B ∀IA′ ⊆ A ({a ∈ A′ : {b ∈ B′ : c({a, b}) = i} is positive} is positive),

where ∀I is shorthand for “for all positive sets.” But this is equivalent to

∀i ∈ 2 ∀IB′ ⊆ B ({a ∈ A : {b ∈ B′ : c({a, b}) = i} is positive} is cosmall in A).

Consequently, (A,B) is i-compatible for all i ∈ 2. 2

It would be nice if we could symmetrize our notion of compatibility, strength-
ening the conclusion of Lemma 4. Unfortunately, we can’t, but we can do the next
best thing.

Definition 5. Given a coloring c : [X]2 → 2 and i, j ∈ 2, we say that (A,B) is an
(i, j)-compatible pair if (A,B) is an i-compatible pair, and (B,A) is a j-compatible
pair.

Using this notion, it is easy to prove the following two corollaries by first applying
Lemma 4 to the pair (A,B), and then to the pair (B?, A?) obtained by flipping the
pair granted by the lemma.

Corollary 6. Suppose that c : [X]2 → 2 is an arbitrary coloring, and suppose
further that A,B ⊆ X are positive sets. Then there exist positive sets A? ⊆ A and
B? ⊆ B such that one of the following holds:

1. (A?, B?) is an i-focused pair for some i ∈ 2, or

2. (A?, B?) is an (i, i)-compatible pair for some i ∈ 2.

Corollary 7. Suppose that c : [X]2 → 2 is an arbitrary coloring, and suppose
further that A,B ⊆ X are positive sets. Then there exist positive sets A? ⊆ A and
B? ⊆ B and i, j ∈ 2 such that (A?, B?) is an (i, j)-compatible pair.
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In particular, we can apply these corollaries to the pairs obtained by splitting
positive sets, as we see in the lemma below.

Lemma 8. Suppose that positive sets split over the order and c : [X]2 → 2 is an
arbitrary coloring. Then there is a positive A ⊆ X and i, j ∈ 2 such that whenever
A′ ⊆ A is positive, then we may find A′

0 < A′
1, both positive subsets of A′, so that

the pair (A′
0, A

′
1) is (i, j)-compatible.

Proof. This follows from Corollary 7 and an easy density argument. 2

The upshot of all this is that, passing down to a positive set if necessary, we may
assume that there is a universal choice of i, j ∈ 2 so that we can always split positive
sets into (i, j)-compatible pairs. For convenience, we will refer to this situation by
saying that the coloring is (i, j)-splitting. In fact, we can do slightly better than
merely splitting — we can split with a point in the middle!

Lemma 9. Suppose that c : [X]2 → 2 is an (i, j)-splitting coloring. Then there
exist X0, X1 ⊆ X and x ∈ X with X0 < {x} < X1 such that (X0, X1) is an (i, j)-
compatible pair. Moreover, for all x0 ∈ X0 and x1 ∈ X1 we have c({x0, x}) = j and
c({x, x1}) = i.

Proof. Since c is (i, j)-splitting, we may split twice to find positive subsets A <
B < D of X such that (A,B), (A,D), and (B,D) are all (i, j)-compatible pairs.
Since (B,A) is j-compatible, we know that the set

BA := {b ∈ B : the set {a ∈ A : c({a, b}) = j} is positive}

is cosmall in B. Similarly, since (B,D) is i-compatible, we know that the set

BD := {b ∈ B : the set {d ∈ D : c({b, d}) = i} is positive}

is cosmall in B. We may thus choose x ∈ BA ∩BD, and we are done once we set

X0 = {a ∈ A : c({a, x}) = j}
X1 = {d ∈ D : c({x, d}) = i} 2

The complete binary tree, 2<ω, plays a central role in the remainder of the note.
We extend the lexicographical order on each 2n to a linear order on 2<ω by setting
s < t iff s(n) < t(n) where n is the first coordinate on which they differ (adopting
the convention that 0 < undefined < 1). Clearly, the order type of 2<ω under this
ordering is η. For s ∈ 2<ω, we denote by |s| the length of s.

We also define, using this ordering, four colorings of [2<ω]2. For i, j ∈ 2, we
define cij : [2<ω]2 → 2 by

cij({s, t}) =

¨
i if s < t and |s| ≤ |t|
j if s < t and |s| > |t|.

These can be viewed as colorings of [Q]2 in the obvious way. The two colorings
cii and cjj simply correspond to constant colorings, while the other two are the
standard impediments to Ramsey’s theorem on order type η. The main result of
this note is that these four colorings form a basis for colorings of pairs in well
behaved spaces.
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Theorem 10. Suppose that positive sets split over the order and c : [X]2 → 2 is
an arbitrary coloring. Then there exists i, j ∈ 2 and an order-preserving injection
ϕ : 2<ω → X such that

∀s, t ∈ 2<ω c({ϕ(s), ϕ(t)}) = cij({s, t}).

Proof. By Lemma 8, we may assume that c : [X]2 → 2 is an (i, j)-splitting coloring.
We will embed the coloring cij corresponding to these values of i and j.

We recursively construct for each n ∈ ω a function ϕn : 2n → X approximating
the desired function. In addition, we construct for each s ∈ 2n+1 a positive set
As ⊆ X such that for all s < t ∈ 2n+1, (As, At) is an (i, j)-compatible pair.
Moreover, for all s ∈ 2<n+1 and t ∈ 2<n+1,

a ∈ At ⇒ c({ϕ|s|(s), a}) = cij({s, t}).

At stage n = 0 of the construction, simply use the splitting assumption and
Lemma 9 to find x ∈ X, and positive sets A0 and A1 satisfying A0 < {x} < A1

such that c({a0, x}) = j and c({x, a1}) = i for all a0 ∈ A0 and a1 ∈ A1, and
additionally that (A0, A1) is an (i, j)-compatible pair. Set ϕ(∅) = x.

Now suppose that we have completed the construction up through stage n− 1.
We complete stage n from left to right. By the assumption of compatibility, we may
assume that there is a set A′

0n cosmall in A0n such that for all x ∈ A′
0n and t ∈ 2n

with 0n < t, the set

{a ∈ At : c({a, x}) = cij({0n, t}) = i}

is positive. We apply Lemma 9 to A′
0n as before to obtain ϕn(0n) ∈ A′

0n , and an
(i, j)-compatible pair (A0n0, A0n1). Then, replace each At with the set

{a ∈ At : c({ϕn(0n), a}) = cij({0n, t})},

which is guaranteed to be positive.
Continuing from left to right, fix s ∈ 2n and suppose we have defined ϕn, As0,

and As1 for all elements of 2n less than s. By the assumption of compatibility, we
may assume (discarding a small set if necessary) that for all x ∈ As and t ∈ 2n with
s < t, the set

{a ∈ At : c({x, a}) = cij({x, a}) = i}

is positive. Moreover, we may assume that for all x ∈ As and t ∈ 2n+1 with t < s,
the set

{a ∈ At : c({a, x}) = cij({a, x}) = j}

is positive. We apply Lemma 9 to As as before to obtain ϕn(s) ∈ As, fn(s) ∈ 2,
and a (i, j)-compatible pair (As0, As1). For each t ∈ 2n with s < t, replace At with
the set

{a ∈ At : c({ϕn(s), a}) = cij({s, t})},

and, analogously, for each t ∈ 2n+1 with t < s, replace At with the set

{a ∈ At : c({a, ϕn(s)}) = cij({t, s})},

Now suppose that we have completed the construction for all n ∈ ω; we set
ϕ =

S
n ϕn. We just need to check that this function works. Fix s, t ∈ 2<ω.
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Without loss of generality, we may assume that ϕ(s) was determined before ϕ(t).
Then, since ϕ(t) belongs to the refined version of At constructed when ϕ(s) was
decided, we know that c({ϕ(s), ϕ(t)}) = cij({s, t}). 2

We close the note with a couple of applications of the main theorem.

Corollary 11 (Devlin, Galvin, Vuksanovic). Suppose that c : [Q]2 → 2 is an
arbitrary coloring. Then we may find i, j ∈ 2 and A ⊆ Q of order type η such that
c|A = cij |A.

Proof. Simply apply Theorem 10 to Q equipped with the ideal of sets not containing
a set of order type η. 2

Remark 12. The above result (and everything else in the note) holds for any
finite number of colors. In this setting, you get a larger basis of colorings, but
they are all either constant functions or cij for i 6= j (in particular, they all use at
most two colors). Also, this corollary yields the result (due to Erdős-Rado) that
η → (η,ℵ0)2, meaning that any coloring of pairs of rationals by {0, 1} admits either
a 0-homogeneous set of order type η or an infinite 1-homogeneous set.

Corollary 13. Suppose that I is a σ-additive ideal on X, that positive sets split
over the order, and c : [X]2 → 2 is an arbitrary coloring. Then for all α < ω1 there
exists a c-homogeneous set A ⊆ X of order type α.

Proof. Note that if we can find an (i, i)-splitting, positive X ′ ⊆ X, Theorem 10
would let us construct a c-homogeneous set of order type η, which is more than
enough to get c-homogeneous sets of order type α.

By Corollary 6 and a standard density argument, we may assume that there
exists i ∈ 2 such that every positive set X ′ ⊆ X can split into X0 < X1 with
(X0, X1) an i-focused pair. We use transfinite induction to argue that in any such
set we may find a homogeneous set (of color i) for all α < ω1.

Suppose first that α = β + 1. Simply split X into X0 < X1 with (X0, X1) an
i-focused pair. We know we may find a homogeneous set Aβ of order type β inside
X0. For each x0 ∈ Aβ , the set

{x1 ∈ X1 : c({x0, x1}) = i}

is cosmall in X1. Since I is σ-additive and Aβ is countable, we may find an xβ in
the intersection of all these sets. The set Aβ ∪ {xβ} is as desired.

Suppose now that α =
S
n βn with each βn < α. Splitting X several times,

we may find X0 < X1 < · · · such that (Xn0 , Xn1) is an i-focused pair whenever
n0 < n1. By the inductive hypothesis, we may find a homogeneous set Aβ0 of order
type β0 inside X0. As before, we may refine Xn for all n > 0 so that for all x0 ∈ Aβ0

and xn ∈ Xn, c({x0, xn}) = i. We continue in this fashion, finding a homogeneous
Aβn of order type βn within Xn, refining after each step. In the end,

S
nAβn is a

homogeneous set of order type
P
n βn ≥ α. 2

Corollary 14 (Baumgartner-Hajnal, Galvin). Suppose that ϕ is an order type
such that ϕ → (ω)1ω and, moreover, that ω1 does not embed into ϕ. Then for all
α < ω1, ϕ→ (α)22.
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Proof. Suppose that ϕ is an order type satisfying the hypotheses of the corollary,
and let (X,<) be a linearly ordered set of order type ϕ. We equip X with the ideal
I defined by

A ∈ I ⇔ A 6→ (ω)1ω.

It is clear that I is a σ-additive ideal (indeed, it is the σ-ideal generated by subsets
of X not containing a copy of ω), so once we check that positive sets split over the
order we may appeal to Corollary 13.

Towards that end, suppose that A ⊆ X is not in I. For each x ∈ A, define the
sets A<x and A>x by

A<x = {a ∈ A : a < x}
A>x = {a ∈ A : a > x}.

We argue that there is a set A′ cosmall in A such that for all x ∈ A′, both A<x and
A>x are positive, which is more than enough to show that positive sets split over
the order.

First, let B0 = {x ∈ A : A<x is small}. Let (xβ)β<κ be an increasing, cofinal
sequence in B0. Since ω1 does not embed into ϕ, we may assume that κ is countable.
Then B0 ⊆

S
β<κA<xβ , and consequently B0 is small.

Next, let B1 = {x ∈ A : A>x is small}. Parallel to the earlier argument, let
(xβ)β<κ be a decreasing, coinitial sequence in B1. We may no longer assume κ is
countable, but we can directly argue that B1 is in I. Define a function f : B1 → κ
by f(x) = min{β < κ : x ∈ A>xβ}, and fix for each β < κ colorings cβ : A>xβ → ω
witnessing A>xβ 6→ (ω)1ω. Define a coloring c : B1 → ω by

c(x) = cf(x)(x).

We claim that this coloring witnesses B1 6→ (ω)1ω.
Suppose, towards a contradiction, that we have an increasing sequence (bn)n∈ω

in B1 such c is constant on {bn : n ∈ ω}. Since the sequence (f(bn))n∈ω is a
nondecreasing sequence of ordinals, it must be eventually constant. We may thus
assume without loss of generality that there exists β < κ such that f(bn) = β for all
n ∈ ω. But we would then have that cβ is constant on {bn : n ∈ ω}, contradicting
the choice of cβ .

Consequently, both B0 and B1 are small, and thus the set A \ (B0 ∪ B1) is
cosmall in A as desired. 2

Remark 15. In fact, for all countable α the statement ω1 → (α)22 is true, so the
hypothesis in Corollary 14 that ω1 does not embed into ϕ is unnecessary. Todorcevic
has shown that an analog holds in the greater generality of partial orders.


