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1. INTRODUCTION

We begin by recalling a classical theorem of Brooks from finite combina-
torics:

Theorem 1.1 (Brooks’s Theorem [6, Theorem 5.2.4]). Suppose G is a graph
on a finite vertexr set X with vertex degree bounded by d. Suppose further
that G contains no cliques on d + 1 wvertices, and if d = 2 that G contains
no odd cycles. Then G admits a d-coloring.

Throughout, by a graph we mean a simple undirected graph, where the
degree of a vertex is its number of neighbors, and a d-coloring is a function
assigning each vertex one of d colors so that adjacent vertices are mapped
to different colors.

This paper examines measurable analogues of Brooks’s Theorem. While
a straightforward compactness argument extends Brooks’s Theorem to in-
finite graphs, such an argument cannot produce a coloring with desirable
measurability properties such as being being p-measurable with respect to
some probability measure, or being Baire measurable with respect to some
Polish topology. Indeed, in this setting a straightforward analogue of the
d = 2 case of Brooks’s Theorem does not hold for either of these measur-
ability notions. Let S : T — T be an irrational rotation of the unit circle
T, and let Gg be the graph on T rendering adjacent each point x € T" and
its image S(z) under S. Then Gg is acyclic, each vertex has degree 2, and
an easy ergodicity argument shows that Gg has no Lebesgue measurable
2-coloring: since S is measure preserving, the color sets would have to have
equal measure, but since S? is ergodic, the color sets would each have to
be null or conull. Similarly, Gg has no Baire measurable 2-coloring (see
Section 8).

Our main result is the following measurable analogue of Brooks’s theorem
for the case d > 3. Recall that a standard Borel space is a set X equipped
with a o-algebra generated by a Polish (separable, completely metrizable)
topology. Then a Borel graph G is a graph whose vertices are the elements
of some standard Borel space X, and whose edge relation is Borel as a subset
of X x X.
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Theorem 1.2. Suppose that G is a Borel graph on a standard Borel space
X with vertex degree bounded by a finite d > 3. Suppose further that G
contains no cliques on d + 1 vertices.

(1) Let p be any Borel probability measure on X. Then G admits a
u-measurable d-coloring.

(2) Let T be any Polish topology compatible with the Borel structure on
X. Then G admits a Baire measurable d-coloring.

In the purely Borel setting, Kechris, Solecki, and Todorcevic [9, Proposi-
tion 4.6] have shown that every Borel graph of vertex degree bounded by d
admits a Borel (d + 1)-coloring. Here, Marks [12, Theorem 1.3] has shown
that this result is optimal even for acyclic graphs; for every d, there is an
acyclic Borel graph of degree d with no Borel d-coloring. Hence, to ob-
tain a measurable analog of Brooks’s theorem as in Theorem 1.2, we must
consider measurability constraints weaker than Borel measurability. In this
vein, Theorem 1.2 improves prior results of Conley and Kechris who proved
an analogous result for approximate colorings where one is allowed to discard
a set of arbitrarily small measure [5, Theorems 2.19, 2.20].

The proof of Theorem 1.2 first reduces the general statement to the case
d = 3. We then give two different proofs of the d = 3 case of Theorem 1.2.
For the first proof, every use of the measure and the topology comes down
to one of a few general combinatorial statements, studied in [12], which
were shown to hold after discarding a null set or a meager set (see Lemma
2.5). The second proof proceeds by showing the existence of a.e. one-ended
spanning subforests of every acyclic Borel graph of degree > 3.

In the case d = 2 we also prove an analogue of Brooks’s theorem. However,
here we must enlarge our notion of an odd cycle to include the ergodic-
theoretic obstruction discussed above.

Theorem 1.3. Suppose G is a Borel graph on a standard Borel space X
with vertex degree bounded by d = 2 such that G contains no odd cycles.
Let Eo g be the equivalence relation on X where x Foq y if v and y are
connected by a path of even length in G.

(1) Let p be a G-quasi-invariant Borel probability measure on X. Then
G admits a p-measurable 2-coloring if and only if there does not exist
a non-null G-invariant Borel set A such that every Es g-invariant
Borel subset of A differs from a G-invariant set by a nullset.

(2) Let T be a G-quasi-invariant Polish topology compatible with the
Borel structure on X. Then G admits a Baire measurable 2-coloring
if and only if there does not exist a non-meager G-invariant Borel
set A so that every Ea g-invariant Borel subset of A differs from a
G-invariant set by a meager set.

The organization of the paper is as follows. In Section 2 we establish no-
tation and gather some background results from descriptive combinatorics.
In Section 3 we reduce the proof of Theorem 1.2 to the case d = 3. The first
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proof of the d = 3 case is given in Section 4, and the second proof is given
in Section 6 after proving some results on one-ended subforests in Section
5. In Section 7 we apply Theorem 1.2 to graphs arising from group actions,
and we apply the methods of Section 5 along with results from probability
to obtain factor of IID d-colorings of Cayley graphs of degree d, apart from
two exceptional cases. In Section 8, we prove Theorem 1.3. In Appendix A,
discuss the relationship between Borel colorings and p-measurable and Baire
measurable colorings. We discuss quasi-invariant topologies in Appendix B.

2. PRELIMINARIES

A graph G on a vertex set X is a symmetric, irreflexive relation on X.
Given such a graph, we say that two points x,y € X are neighbors or are
adjacent in G if G y. A set A C X of vertices of G is (G-)independent
if for every z,y € A it is not the case that x G y. A G-independent set
A is said to be a maximal independent set if every vertex of G is either an
element of A, or a neighbor of an element of A.

A path in a graph G is a sequence of vertices zg G x1 G ... x, containing
no repeated vertices. If G is a graph on X, then the graph metric dg : X? —
NU {oco} on G maps z,y € X to the length of the shortest path connecting
x and y, if such a path exists. A cycle in a graph G is a sequence of vertices
20 G x1 G x2... 2, = 29 such that n > 2, and x; # z; for all i < j <n. We
say that a graph is acyclic if it does not contain any cycles.

A Borel graph is a graph whose vertices are the elements of a standard
Borel space X, and whose edge relation is Borel as a subset of X x X.
The restriction G | A of G to a set A C X is the graph on A obtained by
restricting the relation G to A. If G is a Borel graph, and A is a Borel set,
then since A inherits the standard Borel structure of X, we see that G [ A
is also a Borel graph. A subset A C X of vertices of G is called an n-clique
in G if G | A is isomorphic to the complete graph on n vertices.

The (G-)degree of a vertex x € X of G is the cardinality of the set
{y € X : x G y}. We say that G is d-regular if every vertex in G has
degree d, and G has degree < d if every vertex has degree < d. Throughout
the paper, d will always be some finite number indicating the maximum
degree of a vertex in our graph. If G is a Borel graph on X of degree < d,
then if A C X is a G-independent Borel set, then there exists a maximal
G-independent Borel set A’ O A, by the proof of [9, Proposition 4.2]. From
this fact one obtains the following result of Kechris, Solecki, and Todorcevic.
Recall that a (proper) (Y-)coloring of G is a function ¢: X — Y such that
if x G y, then c(x) # c(y).

Theorem 2.1 (Kechris, Solecki, and Todorcevic [9, Proposition 4.6]). If G
is a Borel graph of degree < d, then G admits a Borel (d + 1)-coloring.

A Borel equivalence relation E on a standard Borel space X is a equiva-
lence relation on X that is Borel as a subset of X x X. A Borel equivalence
relation F is said to be countable if all of its F-classes are countable. We say
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that E is aperiodic if all of its equivalence classes are infinite. A set A C X
is E-invariant if for all z,y € X if x € A and zFy then y € A. If G is a
Borel graph on X of degree < d, then we denote by F¢ its connectedness
relation, which is a countable Borel equivalence relation. We say that a set
A C X is G-invariant if it is Eg-invariant, i.e., it is a union of connected
components of G. If A C X is a subset of X, we let [A]g note the smallest
G-invariant set containing A. The Feldman-Moore theorem gives a useful
way of decomposing a countable Borel equivalence relation into a union of
countably many functions:

Theorem 2.2 (Feldman-Moore [8, Theorem 1.3]). Suppose that E is a
countable Borel equivalence relation on a standard Borel space X. Then
there is a set {T;};en of Borel automorphisms of X such that E = |, graph(T;).

Let X and Y be standard Borel spaces. Let p be a Borel probability
measure on X. We say that a function f : X — Y is u-measurable if it is
measurable for the completion of . Let 7 be a compatible Polish topology
on X (by compatible we mean that the sigma algebra generated by the 7-
open sets coincides with the given Borel sigma algebra on X). We say that a
function f : X — Y is Baire measurable (with respect to T ) if it is measurable
for the sigma algebra of sets which have the Baire property with respect to
the completion of 7; the smallest sigma algebra containing the Borel sets
and all 7-meager sets.

There is an equivalence between the admitting a u-measurable or Baire
measurable coloring, and admitting a Borel coloring modulo an invariant
null or meager set:

Proposition 2.3. Suppose G is a Borel graph on o standard Borel space
X whose connected components are countable. Suppose that G admits some
n-coloring.

(1) Let p be any Borel probability measure on X. Then G admits a p-
measurable n-coloring if and only if there is a p-conull G-invariant
Borel set A C X such that G [ A has a Borel n-coloring.

(2) Let T be any Polish topology compatible with the Borel structure on
X. Then G admits a Baire measurable n-coloring if and only if there
is a comeager G-invariant Borel set A C X such that G | A has a
Borel n-coloring.

Proof. We begin with the direction = of 1. Suppose ¢ is a pu-measurable
n-coloring of G. By the Feldman-Moore theorem, let {T;};en be a set of
Borel automorphisms of X so that the connectedness relation FEg of G has
Eg = U;enTi- Now for each 4, since c o T; is pu-measurable, there is a pu-
conull set A; such that coT; [ A; is Borel. Thus, if A = [[),cy 4i]g, then
A is p-conull, and ¢ [ A is Borel. This is because for all x € A, if i is least
such that T, !(z) € A;, then c(z) = (co T;)(T; *(x)).
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The direction < of 1 is straightforward; given a Borel n-coloring ¢ of
G | A, and an arbitrary n-coloring ¢ of G | (X \ A), then cU is a
p-measurable coloring of G.

The proof of part 2 is identical to the above. Simply replace the phrase
p-conull with comeager (with respect to 7), and p-measurable with Baire
measurable (with respect to 7). O

While we have stated our main results in terms of the existence of pu-
measurable and Baire measurable colorings, throughout the paper we will
mostly work with the equivalent formulations given by Proposition 2.3 above.
Note here that the classical Brooks’s theorem shows the existence of the req-
uisite d-coloring that we will need to apply the above proposition. Note that
here we are assuming the axiom of choice.

Suppose G is a Borel graph on X, and p is a Borel probability measure on
X. Then we say that u is G-quasi-invariant if every p-null set is contained
in a G-invariant p-null set. Now if G has countable connected components,
then for every Borel probability measure p on X, there exists a G-quasi-
invariant Borel probability measure p/ on X such every p/-null set is p-null
(that is, ¢/ dominates p). This follows from the Feldman-Moore theorem
by letting {7;}ien be a set of Borel automorphisms of X such that Eg =
\U; graph(7;), and then setting p/(A) = >~ 27" (T;(A)) (see [8, Section
8]). A key property of a quasi-invariant measure is that if A is p/-conull,
then it contains a G-invariant p/-conull set. This is because the set {x : x ¢
ANz € [A]g} is null since it is contained in the complement of A, and hence
is saturation is null.

Similarly, suppose G is a Borel graph on X, and 7 is a compatible Polish
topology for X. Then we say that 7 is G-quasi-invariant if every T7-meager
set is contained in a G-invariant 7-meager set. We show in Appendix B that
if G has countable connected components, then for every compatible Polish
topology 7 on X, there is a G-quasi-invariant compatible Polish topology 7’
such that every 7/-meager set is T-meager.

The combination of the above discussion and Proposition 2.3 justifies
our assumption from now on that our measures and topologies are quasi-
invariant with respect to the graphs we consider. This is because Proposi-
tion 2.3 allows us to reformulate Theorems 1.2 and 1.3 to state the existence
of a Borel d-coloring of G | A for some G-invariant Borel A which is conull
or comeager. Thus, the assumption of quasi-invariance is harmless since we
may always pass to a quasi-invariant measure or topology without adding
any new conull or comeager sets. OQur assumption of quasi-invariance is help-
ful because it frees us from talking constantly about invariant sets; assuming
quasi-invariance, a null set or meager set of vertices is always contained in
a null set or meager set of connected components respectively.

To finish this section, we will recall a lemma from [12] on disjoint complete
sections. We then provide some straightforward strengthenings which we
will use often in our constructions.
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Lemma 2.4 ([12, Lemma 4.4.1]). Suppose E and F are countable Borel
equivalence relations on a standard Borel space X, so that every E-class has
cardinality > 3 and every F-class has cardinality > 2.

(1) Let p be any Borel probability measure on X. Then there is set
A C X such that A meets p-a.e. E-class, and its complement meets
p-a.e. F-class.

(2) Let T be any Polish topology compatible with the Borel structure on
X. Then there is a set A C X such that A meets T-comeagerly many
FE-classes, and its complement meets T-comeagerly many F'-classes.

Our next lemma follows from this result.

Lemma 2.5. Let E and F be countable Borel equivalence relations on a
standard Borel space X, and let u be a Borel probability measure on X.

(1) If every E-class has at least 3 elements and all the F-classes have at
most 2 elements, then there is a Borel set A that meets p-a.e. E-class
in at least one place, and p-a.e. F-class in at most one place.

(2) If every E-class has infinitely many elements, and there is a k € N
so that every F-class has at most k elements, then there is a Borel
set A that meets p-a.e. E-class in infinitely many places, and p-a.e.
F-class in at most one place.

(8) For arbitrary E and F, there is a Borel set A that meets p-a.e.
infinite E-class and its complement meets p-a.e. infinite F'-class.

Moreover, if T is any Polish topology compatible with the Borel structure on
X, then the same statements hold with “u-a.e.” replaced by T-comeagerly
many.

Proof. For part 1, let X’ be {0,1} x X, so that we have the canonical embed-
ding 7: X — X’ where m(z) = (0,z). Let u/ = m(p) be the pushforward
of u under m where p/(A) = u(r~1(A)). Let E’ and F' be the equivalence
relations on X', where (i,z)E'(j,y) if i = j and zEy, and (i,z)F'(j,y) if
i = jand xFy, or i # j, x = y and [z]p has one element. Hence, every
F’'-class has exactly two elements. Now apply Lemma 2.4 to the equivalence
relations E’ and F”’, and p/. We obtain a Borel set A’ C X’ so that A" meets
i'-a.e. E'-class and its complement meets p/-a.e. F’ class. But then if we
let A= 7n"1(A"), then A meets u-a.e. E-class in at least one place, and A
meets p-a.e. F-class in at most one place, since the complement of A’ meets
every F’'-class.

For part 2, first observe that if every E class has infinitely many elements,
and every F' class has at most 2 elements, then there is a Borel set A
that meets p-a.e. E-class infinitely many times, and p-a.e. F-class at most
once. This is because by [8, Proposition 7.4] there is some E’ C E such
that every E’-class has 3 elements, so we can apply part (1) to E' and F.
For the general case, use Theorem 2.2 to obtain finitely many equivalence
relations Fy, I, ..., F, such every Fj-class has at most 2 elements, and so
that every pair of F-related points is F; related for some ¢ < n. By the
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above observation there is some Borel set Ay which meets p-a.e. E-class
infinitely many times, and which meets p-a.e. Fjy class at most once. Now
inductively, for i > 0 there is some Borel set A; which meets py-a.e. E [ A;_1
class infinitely many times, and p-a.e. F; | A;-class at most once. Take
A=A,

For part 3, let X’ = N x X, let 7: X — X' be defined by =(x) = (0, z),
and let ¢/ = m.(p). Now let E’ be the equivalence relations on X’ where
(t,2)E'(j,y) if E'y and i = j, or xE'y and [x]g is finite. Similarly, let F’
be the equivalence relations on X’ where (i,z)F’(j,y) if zF'y and i = j, or
xF'y and [z]p is finite. Now apply Lemma 2.4 to E’ and F’ to obtain a set
A" C X' meeting p/-a.e. E’-class, and so that its complement meets y/'-a.e.
F'-class. Then let A =n~1(A"). O

In Sections 3 through 6, except for Lemma 5.3, the only way in which the
measure p and the topology 7 will be used is via Lemma 2.5. Otherwise,
all our constructions in those sections are purely Borel. With this in mind,
we will work in just the measure theoretic setting, since the Baire category
version of each statement and proof is obtained through a straightforward
translation.

3. MEETING CLIQUES

In this section, we show that the case d = 3 in Theorem 1.2 implies every
other case.

Lemma 3.1. Suppose G is a Borel graph on a standard Borel space X of
finite bounded degree < d, where d > 3. Suppose further that G contains
no cliques on d 4+ 1 vertices. Let p be any Borel probability measure on X.
Then there is a mazximal independent Borel set A C X such that A meets
p-a.e. d-clique contained in G.

Proof. Suppose R, S C X are distinct d-cliques of G. Then it is easy to see
that either R and S are disjoint, or R NS contains exactly d — 1 vertices.
If RNS # (), then furthermore we can see that R and S are disjoint from
every other d-clique in G.

Now we construct our independent set meeting p-a.e. d-clique. First, let
A be a Borel set consisting of one vertex in RN .S for every pair of d-cliques
R and S with nonempty intersection. By our discussion above, no vertex in
A is adjacent to an element of any d-clique except the two containing it.

Now let Y be the set of vertices that are contained in d-cliques that do not
meet any other d-clique. If Y is p-null, we are done; our set A above can be
extended in a Borel way to be maximal and independent. Otherwise, equip
Y with the normalized measure v = (1/u(Y))(p [ Y). We define two Borel
equivalence relations £ and F on Y. First, x E y if the unique d-cliques
containing x and y are equal. Second, x F'y if x = y or  and y are adjacent
in G and are not F-related. Clearly, every F' class has cardinality at most 2.
Now by Lemma 2.5.1, we see that there exists some A’ such that A’ meets
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v-a.e. F-class in exactly one place, and meets v-a.e. F'-class in at most one
place. To finish, extend A U A’ to a maximal independent Borel set. O

It is interesting to note that this Lemma is not true in the Borel context
for any d > 1. If we equip the group Z/27Z with is usual single generator,
and generate the group Z/dZ with all the nonidentity elements of this group,
then the Caley graph of their free product I' = (Z/2Z)*(Z/dZ) is a d-regular
graph consists of infinitely many d-cliques connected to each other by single
edges. Now in the notation of [12], for the graph G(I',N) generated by the
free part of the left shift action of this group on Free(NF)), there can be no
independent Borel set A meeting every d-clique by citeMarks*Theorem 1.6.

Using Lemma 3.1, we can now deduce the Theorem 1.2 from the special
case d = 3.

Lemma 3.2. The case d = 3 of Theorem 1.2 implies every other case.

Proof. We prove part 1. As discussed in Section 2, the proof for Baire
category is analogous. Suppose G is a Borel graph on X of vertex degree
bounded by d, and suppose p is a Borel probability measure on X. As
discussed in Section 2, we may assume that p is G-quasi-invariant. Now
applying Lemma 3.1 and using the quasi-invariance of u, there must be a
G-invariant conull Borel set Y, and a maximal independent Borel set A CY
such that A meets every d-clique of G. If we color every vertex in A a single
color and remove these vertices from the graph, we obtain a Borel graph
G | (Y \ A) of vertex degree < d — 1 with no d-cliques. Now since p is
G-quasi-invariant, we see Y \ A is not p-null, so we can equip Y \ A with
the normalization of the measure u [ Y \ A. Iterating this process until we
reach a graph of degree < 3 proves the lemma. ]

4. A PROOF OF THE MEASURABLE BROOKS’S THEOREM

In this section, we prove the d = 3 case of Theorem 1.2. We begin with
the following lemma:

Lemma 4.1. Suppose E is an aperiodic countable Borel equivalence relation
on a standard Borel space X, and G is a Borel graph on X of finite bounded
degree < d. Let i be a Borel probability measure on X, and dg be the graph
metric on G. Then for every n, there exists a Borel set A that meets p-a.e.
E-class such that if x,y € A and x # y, then d(x,y) > n.

Proof. Let H be the graph where x H y if x and y are at most distance n
in G. Let H be the dual graph of H where the vertices of H are the edges
of H, and where two such edges are adjacent in H if they share a single
vertex. Since H has finite bounded degree, so does H. Hence, H has a
Borel coloring ¢ with finitely many colors {0, 1,...,m} by Theorem 2.1. Let
Fy, Iy, ... F,, be the equivalence relations on X where x F; y if ¢ = y or
(z,y) € H and c(x,y) = i. Then the equivalence classes of F; all have size
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< 2, and it is enough for us to prove that there is a Borel set A that meets
p-a.e. E-class, and so that A meets each Fj-class in at most one point.
Now we can apply Lemma 2.5.2 to obtain a Borel Ay C X such that Ay
meets p-a.e. E-class in infinitely many places, and Ag meets each Fy class
in at most once place. Then inductively, given A;, consider E | A; and
F;11 T A; and use Lemma 2.5.2 to obtain a Borel A;11 C A; such that A; 1
meets p-a.e. F [ Aj-class infinitely many times, and each F; 1 [ A; class at
most once. Our desired set is A,,. O

Now we prove the special case of Theorem 1.2 when d = 3 and our graph
is acyclic.

Lemma 4.2. Suppose that G is a Borel graph on a standard Borel space
X with degree < 3. Suppose further that G is acyclic. Then there exists a
u-measurable coloring of G with 3 colors.

Proof. Let A be a maximal independent Borel set for G, so G | (X \ A)
has degree < 2. Our basic idea is to transform A into another maximal
independent Borel set A’ whose complement we can measurably 2-color.
Now to measurably 2-color such a graph G [ (X \ A’), it is sufficient for A’
to be such that there is a Borel set B meeting p-a.e. connected component
of component of G [ (X \ A’) in exactly one place. Given such a set B, we
can then color starting from this set in the usual greedy fashion.

Let Y be the set of vertices contained in an infinite 2-regular connected
component of G [ (X \ A). Let E be the equivalence relation on X where
x FE y if either x and y are elements of Y, and are in the same connected
component of G [ Y, or  and y are not in Y, and z and y are in the same
connected component of G. Now by taking a complete section for £ from
Lemma 4.1 and intersecting it with Y, we can find a Borel set B meeting
u-a.e. connected component of G [ Y so that the distance in G between any
two points in B is greater than 10.

Let f: B — A map each x € B to its unique neighbor in A. Let g be
the function from B to finite subsets of X mapping x € B to the set of
neighbors y of f(x) such that f(z) is the unique neighbor of y that is in
A. Hence, for each z € B, the set g(x) contains z, and at most 2 other
points. Now we see that for all x € B, we have that (A4 \ f(x)) U (Ug(z))
is a maximal independent set; it is independent since the elements of g(x)
have no neighbors other than f(z) in A, and maximal by the definition of
g. Further, for any C' C B, we have that Ac = (A\ f(C))U(Jg(C)) is also
a maximal independent subset of GG, since elements of B are far apart. Our
plan is to use Lemma 2.5 to find a Borel C' C B so that G | (X \ A¢) has a
p-measurable 2-coloring.

Now for any C' C B, each 2-regular connected component of G | (X \ A¢)
must either be a 2-regular connected component of G | (X\ A), or a 2-regular
connected component of G | (X \ Ap). Further, each 2-regular connected
component of G [ (X \ A¢) must contain at least one element of B or of
f(B). To see this, note A\ Ac = f(C) contains only points in ran(f).
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Hence, any 2-regular connected components in G | (X \ A¢) not contained
in (X \ A) must consist of connected components from G | (X \ A) that
were “joined up” when we removed some points of the form f(z) from A.

Now let E be the equivalence relation on B where x F y if z and y are
in the same connected component of G [ (X \ A). Note E is aperiodic. Let
F be the equivalence relation on B where = F' y if f(x) and f(y) are in
the same connected component of G | (X \ Ag). Now by Lemma 2.5.3 let
C C B be a Borel set such that C meets u-a.e. E-class, and its complement
meets p-a.e. infinite F-class. Then each 2-regular connected components of
G | (X \ A¢) must meet meet only finitely many elements of B, or finitely
many elements of f(B).

Now if welet B = BU{z € X(\A¢) : z has degree <1in G | (X \ A¢)},
then B’ is a Borel set meeting p-a.e. connected component of G | (X \ A¢),
and meeting each connected component in only finitely many places. Recall
from Section 2 that we may assume that there is a Borel linear ordering
of X. From this we can obtain a set B” C B’ meeting p-a.e. connected
component exactly once by letting B” be the set of elements of B’ that are
leftmost in their connected component of G | (X \ A¢). Finally, we can
obtain a p-measurable 2-coloring of G [ (X \ A¢) by using one color for
vertices an even distance from B”, and the other color for vertices an odd
distance from B”. O

Before we move to the full theorem, we need two more easy lemmas:

Lemma 4.3. Suppose G is a Borel graph of finite bounded degree < d, and
in every connected component of G there is a vertex of degree < d. Then G
admits a Borel coloring d-coloring.

Proof. This lemma is special case of a more general fact we will prove in
Section 5.

Let X be the set of vertices of G. Let f : X — N be the function assigning
to each vertex z the distance f(z) from x to a vertex of degree < d. Note
that if f(z) > 0, then z has at least one neighbor y such that f(y) < f(x).

Let Ag = 0 and ¢y be the empty function. Iteratively, given A; and a
Borel d-coloring ¢; of G | A;, let

Aip1 = A U{x: f(z) > f(y) for all y € N(z) with y ¢ A;}.

Now each = € A; 1\ A; has at most d — 1 neighbors in A;;1; either f(z) =0
so x has degree < d, or f(x) > 0 in which case there is some neighbor
y of z with f(y) < f(z), and inductively y cannot be in A;;;. Hence,
we can partition A;1q \ 4; into d many maximal G-independent Borel set
By, ...Bg_1. We can then extend ¢; to ¢; 11, a Borel d-coloring of G | A;y1,
by coloring the elements of By,..., Bg_1 in order, coloring x € B; the least
color not already used by one of its neighbors. Now let A, = |JA; and
oo = o

Notice that each z € X \ A has at least one neighbor y in X \ Ay such
that f(y) > f(x). Hence, if we let Cp = A, and Ciy1 = C;U{z : f(z) < i},
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then every = € C;11\ C; has at most d— 1 neighbors in B;11. Then as above,
we can recursively extend our Borel d-coloring of Cy to a Borel d-coloring
of each C;. We are done then, since X =, C;. g

We need one more trivial lemma from classical graph theory. In what
follows, we will say that a meighbor of a cycle is a neighbor of one of the
vertices of the cycle which is not contained in the cycle.

Lemma 4.4. Suppose that G is a graph containing a cycle ¢, where each
vertex of the cycle has a unique neighbor not in c. Then given a 3-coloring
of the neighbors of ¢ which does not take a constant value, we can extend
this to a 3-coloring that includes the cycle c.

Proof. Take two adjacent elements x and y in the cycle whose neighbors not
in ¢ are assigned different colors. Then color x the same color as the neighbor
of y, and then color the vertices starting from x one by one, finishing with
y. At the end of this process we can color y since two of its neighbors are
assigned the same color. ([

We’re now ready to finish.

Proof of Theorem 1.2. We begin by noting that we can make a number of
assumptions about our graph. First, we may assume our graph has degree
< 3 by Lemma 3.2. Additionally, by Lemma 4.2, we may assume that the
graph contains a cycle in each connected component. Indeed, by splitting
the graph into countably many invariant pieces, we may assume there is a
single number k € N so that there is an cycle of length k& in each connected
component, and there are no cycles of length < k. Then, given any cycle
¢ of length k, and vertex z in ¢, there is a unique neighbor of x not in ¢,
otherwise ¢ is not of minimal length.

Now let C' be a Borel set of cycles of length k£ that contains at least one
cycle from each connected component of G, and where distinct cycles are
disjoint and of distance > 3 apart (i.e. vertices in distinct cycles are of
distance > 3). To obtain such a set C, consider the standard Borel space
Z of all cycles of length k, and form a graph H on Z where two cycles are
adjacent if two of their vertices are of distance < 2. Now since H has finite
bounded degree, there is a Borel coloring of H with finitely many colors.
Let C be the set of cycles that receive the least color assigned to any cycle
from the same connected component. Let Y be the set of points contained
in the cycles in C.

We define two equivalence relations on Y. First, z E y if 2’ and 3/ are
in the same connected component of G | (X \ Y) where 2’ is the unique
neighbor of z in not in Y, and ¢ is the unique neighbor of y in not in Y.
Second, x F' y if x and y are contained in the same cycle in C. Now by
Lemma 2.5.2, let A be a Borel set that meets p-a.e. infinite E-class at least
once, and that meets every F-class at most once. Let G’ be the graph on
X \ 'Y obtained by adding edges to G | (X \ Y) as follows. For each cycle
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c € O, pick two elements x,y € ¢ not in A, and let 2’ and 3’ be the unique
neighbors of x and y not contained in c. If ' # 3/, connect 2’ to ¥/ in G’.
If 2/ = 3/, then pick any other neighbor 2’ of ¢ not equal to 2/, and connect
2’ to 2/ in G’. In this latter case, note that =’ has degree 2 in G’. Note now
that two neighbors of every cycle ¢ € C' in G are adjacent in G’, and G’ has
degree < 3.

We claim there is a p-measurable 3-coloring of G'. To see this, let Z
be the set of vertices contained in connected components of G’ that are
adjacent to infinitely many cycles in C' (as viewed in our original graph G).
Now p-a.e connected component of G’ | Z contains at least one vertex of
degree < 3. This is because each such connected component corresponds
to an infinite equivalence class of F/, and hence there is some vertex x in
this connected component adjacent to an element of A in G. This vertex
either has degree 2 in G’ because no edges incident to it were added to
G’, or has a neighbor of degree 2, since then this vertex is 2’ in the above
discussion. Thus, there is a g-measurable 3-coloring of G [ Z. Now the
remaining connected components of G’ not in Z are adjacent to only finitely
many cycles in C. Hence, we can find a Borel set meeting each connected
component of G’ | (X \Y)\ Z) exactly once, and hence a Borel 3-coloring
of this graph. Thus, there is a u-measurable 3-coloring of all of G’.

Now we claim we can extend this py-measurable 3-coloring of G’ to a u-
measurable 3-coloring of G. This is by Lemma 4.4; for every remaining cycle
of C, two neighbors of the cycle are assigned different colors by our coloring
of G’, since they are connected in G. O

5. ONE-ENDED SUBFORESTS

This section focuses on definably isolating certain acyclic subgraphs of
various classes of graphs, which will subsequently provide a skeleton along
which to construct a coloring. Given a function f: X — X, we define
the forward orbit of x € X, denoted f*N(z), to be the set {f"(z) : n €
N}. Analogously, we define the backward orbit of x, denoted f~N(x), to be
Unen /(). Unsurprisingly, y € f™(z) if and only if 2 € f~N(y).

It will be useful to define analogous notions for partial functions. Given
a subset B C X and a function f: B — X, we may define the backward
orbit f~N(z) exactly as before. We say such a function is aperiodic if for all
x € X and n > 0 we have f"(x) # . For functions with full domain this is
equivalent to f™N(z) being infinite for all z. We say a function f: B — X
has one end if it is aperiodic and f~(z) is finite for all z. The orbits of a
one-ended function come in two types. Any such orbit is either finite and
contains a unique element of X \ B (and indeed f “points” every vertex
towards this element) or is infinite and each vertex is incident with a unique
injective infinite G-ray (and again f points towards this ray).
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Proposition 5.1. Suppose that G is a locally finite Borel graph on a stan-
dard Borel space X, and A C X is Borel. Then there is a one-ended Borel
function f: [Alg, \ A — [A]g, whose graph is contained in G.

Proof. Without loss of generality we may assume that [A]g, = X. Let B
be the set of 2 € X \ A such that there exists an injective G-ray (z;) € X
with 29 = = and dg(xiy1, A) > dg(z, A) for all ¢ € N; note that Konig’s
lemma ensures that B is Borel. Let f: X \ A — X be a Borel function so
that

(1) f(x) € Go N B with d(f(x),A) > d(z, A) if x € B,
(2) f(x) € Gy with d(f(x),A) < d(z,A) if z ¢ B.

To see that f is as desired, suppose first that 2 ¢ B. Then f~N(z) C X\ B,
and if f~N(x) were infinite an application of Konig’s lemma would allow the
construction of an injective G-ray as in the definition of B, contradicting
the fact that 2 ¢ B. On the other hand, if z € B then f~N(z) N B is finite
and is in fact contained in |J; g, a) f~%x). Consequently f~N(z) is the
union of this finite set with Uigd(LA){f*N(y) :y € f7%x) \ B}, which by
the previous case is a finite union of finite sets. O

An appropriate iteration of Proposition 5.1 allows us to find within certain
graphs a one-ended Borel function with conull domain.

Definition 5.2. We say that a graph G is ample if every vertex is of G-
degree at least 2, every connected component of G contains a vertex of
G-degree at least 3, and moreover if deg(x) > 3 then each component of
G | (X \ {z}) again contains a vertex of G-degree at least 3.

Geometrically, an acyclic graph G is ample if it can be obtained from an
acyclic graph with each vertex of degree at least 3 by subdividing each edge
into some vertices of degree 2.

Lemma 5.3. Suppose that G is a bounded-degree, acyclic Borel graph on a
standard Borel space X. Suppose moreover that G is ample.

(1) Let p be a Borel probability measure on X. Then there is a p-conull
Borel set B and a one-ended Borel function f: B — X whose graph
s contained in G.

(2) Let T be a compatible Polish topology on X. Then there is a T-
comeager Borel set B and a one-ended Borel function f: B — X
whose graph is contained in G.

Proof. We prove 1. and then indicate the changes needed for 2. at the end
of the proof. Fix d € N bounding the degree of vertices of G (so d > 3).
The heart of the construction rests in the following claim.

Claim. There is a Borel subset A C X meeting each connected component
of G and with p(A) <1 —d=3, such that G | A is ample.
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Proof of the claim. Let X3 = {x € X : degy(x) > 3} and define an auxiliary
graph G’ on X3 by putting x G’ y if zEgy and the unique injective G-path
from x to y contains no other points of X3. Define a Borel map 7: X — X3
selecting for each x a closest element of X3 with respect to the graph metric
in G. Define then a measure v on X3 by v = mu, i.e., v(B) = u(r~1(B))
for all Borel B.

Finally, let H be the distance < 3 graph associated with G’, so two distinct
points of X3 are H related if they are connected by a G’ path of length at
most 3. So H has degree bounded by d® — 1, and hence by Theorem 2.1 a
Borel coloring in d* colors. Consequently, there is an H-independent Borel
set C' C X3 with v(C) > d=3.

Define C' C X by x € C'if z € C or z € X \ X3 and can be connected to
a point in C' without using any other points of X3. Note that 7=1(C) C ",
so in particular p(C’) > d=3. We then set A = X \ C’, and check that A
satisfies the conclusion of the claim.

The G’-independence of C' (in conjunction with the ampleness of G) im-
plies that A meets each G component. The only thing remaining to check
is that G | A is ample. Note that the only way a vertex x in X3 can have
(G | A)-degree less than three is if it is G’-adjacent to an element of C. So
the fact that distinct points of C' have G’ distance at least four implies that
x has two G’ neighbors in X3 whose (G | A)-degree remains 3. In particular,
the degree of x is two. Moreover, if x were used to witness the ampleness
condition of one of its neighbors, the condition can be witnessed instead by
the other neighbor. So G [ A is ample and the claim is proved. O

By iterating the claim, we may build a decreasing sequence (A4;);en of
Borel sets so that Ag = X, A;+1 meets each component of G | A;, and
p(N); Ai) = 0. Apply Proposition 5.1 to find an aperiodic Borel function
fi: (A; \ Aiy1) — A; whose graph is contained in G such that f~N(z) is
finite for each € X. Finally, put B = X \ (), 4;, and then the function
f: B — X defined by f =/, fi is as desired.

For part 2., the statement to prove in place of the above claim is the
following: (x) For any non-empty 7-open set U there is a Borel subset A C X
meeting each connected component of G and with U \ A non-meager, such
that G | A is ample. The proof of (x) is the same as the proof of the claim
except that we choose the H-independent Borel set C C X3 with UN7—1(C)
non-meager. Then we fix a countable base {Uy }ren of open sets for 7 and,
as in part 1., we iteratively apply (x) to build a decreasing sequence (A4;);en
of Borel sets so that Ag = X, A;;1 meets each component of G | A4;, and
with U; \ A; non-meager. It follows that Uy \ (); 4; is non-meager for all
k € N, and therefore (), A; is meager. The rest of the proof is as before. [J

At last, we use the ability to find one-ended functions inside a graph to
help definably color the graph.
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Proposition 5.4. Suppose that G is a Borel graph on a standard Borel space
X with degree bounded by d. Suppose moreover B is a Borel subset of X
and that f: B — X is a one-ended Borel function whose graph is contained
in G. Then there is a Borel d-coloring of G | B.

Proof. For convenience, extend f to have full domain X by fixing points
of X \ B. After doing so, we have (), f{[X] = X \ B. Define Borel sets
X, = fUX]\ fX]), so B = | |; X;. Moreover, each vertex z € X; is
G-adjacent to at least one vertex in X;;1, namely, f(x).

In particular, G [ Xy has degree bounded by d — 1, so by Theorem 2.1
there is a Borel coloring ¢o: Xog — d of G | Xg. The following lemma is a
special case of [5, Lemma 2.18], but we include its short proof in the interest
of self-containment.

Lemma 5.5. Any Borel coloring ¢;—1 : Uj<i X;—dofG] Uj<i X extends
to a Borel coloring c;: Ujgz‘ X;—dofG [Ujgz‘ X;.

Proof of the lemma. Again by Theorem 2.1 there is a partition X; = Xi1 L
- -I_IXl-d of X; into Borel G-independent sets. First extend ¢;_1 to a coloring
d: U i< UXi1 by coloring each vertex in X Jl the least color not used among

its (fewer than d many) colored neighbors. Similarly extend in turn to
X2 ..., X4 O

Now iteratively apply the lemma to obtain a coherent sequence of col-
orings ¢;: |J;<; X; = d. Then ¢ = {J;ey ¢ is the desired Borel coloring of
G | B. - O

Corollary 5.6. Suppose that G is a Borel graph on a standard Borel space
X with degree bounded by d. Suppose moreover that f: X — X is a function
with one end whose graph is contained in G. Then there is a Borel d-coloring

of G.

6. A SECOND PROOF

In this section we give another proof of Theorem 1.2. Combining Proposi-
tions 5.1 and 5.4 allow us to color graphs when certain nice complete sections
can be found. Say that a Borel set A C X is 3-flexible if any Borel 3-coloring
of G | (X '\ A) extends to a Borel 3-coloring of A. If G | A has finite con-
nected components, this becomes a purely (finite) combinatorial question:
does every 3-coloring of the G-neighbors of A extend to a coloring of A.

Proposition 6.1. Suppose that G is a graph containing no 4-clique. If each
connected component of G | A is either an isolated vertex of G-degree less
than 3 or a minimal pair of two intersecting cycles, then A is 3-flexible.

We now give another proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.2, we may assume G has degree < 3.
Suppose that A is a Borel G-independent set of vertices with G-degree less
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than 3. Then Propositions 5.1 and 5.4 allow us to find a Borel 3-coloring
of G | ([Ao]E, \ Ao), and 3-flexibility of Ay allows us to extend to a Borel
3-coloring of G | [Ag|g,. Similarly, if A; is a Borel G-independent set of
minimal pairs of intersecting cycles, we may obtain a Borel 3-coloring of
Gl [AﬂEG‘

So it suffices to handle the case in which every vertex has degree 3 and
distinct cycles are disjoint. Following [8, proof of Corollary 10.2] we first
reduce to the case of a quasi-invariant measure. Fix by Theorem 2.2 a
sequence (7;);en of Borel automorphisms such that Eg = |J; graph(7;). Put
v =3.27T;)spu. Note that v is G-quasi-invariant, in the sense that the
FEg-saturation of a v-null set remains v-null. Furthermore, the G-invariant
p-null sets are exactly the G-invariant v-null sets.

Now let G’ be a Borel subgraph of G obtained by deleting exactly one
edge from every cycle. Then G’ is an acyclic graph which is easily confirmed
to be ample. Then, applying Lemma 5.3, we obtain a v-conull Borel set B
and an aperiodic Borel function f: B — X whose graph is contained in G’
(and thus G) such that f~N(z) is finite for each 2 € X. By quasi-invariance,
we may assume that B is G-invariant, and hence f has range contained in
B, and in particular has one end. We then apply Corollary 5.6 to obtain
the desired Borel 3-coloring of G | B. (|

7. APPLICATIONS TO GROUP ACTIONS

We consider now (almost everywhere) free, measure-preserving actions of
a finitely generated group I' on a standard probability space (X, ). Denote
by FR(T', X, i) the set of such actions. With each a € FR(T", X, 1) and finite,
symmetric generating set .S of I not containing the identity we may associate
a graph G(S,a) on X by declaring = and y adjacent if there exists s € S
with s-x = y. Freeness of the action implies that almost every connected
component of G(S,a) is isomorphic to the Cayley graph Cay(I, 5).

In [4, Theorem 6.1] it is shown that for finitely generated infinite groups
I, any a € FR(T', X, u) is weakly equivalent to some b € FR(I", X, u) whose
associated graph G(S,b) is measure-theoretically |S|-colorable. Theorem
1.2 eliminates the need to pass to a weakly equivalent action for almost all
groups.

Corollary 7.1. Suppose that T is an infinite group with finite, symmetric
generating set S such that |S| > 3. Then for any a € FR(T, X, ) the graph
G(S,a) admits a Borel |S|-coloring on a conull set.

Remark 7.2. The only infinite groups with generating sets S satisfying
|S| < 3 are Z with S = {£1} and (Z/2Z) * (Z/27Z) = {(a,b | a* = b* = id)
with S = {a,b}. Indeed, no graph associated with a free mixing action of
either group admits a Borel 2-coloring on a conull set.

Finally, the methods of section 5 may be used in conjunction with some
techniques from probability to improve known bounds on the colorings of
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Cayley graphs attainable by factors of IID. We consider the Bernoulli shift
action of a countable group I' on the space [0,1]" equipped with product
Lebesgue measure j, where v-2(8) = 2(y~16). Denote by G(T', S) the graph
associated with the Bernoulli shift and generating set S. For convenience we
sometimes work instead with the shift action of T on [0, 1]¥, where E is the
edge set of the (right) Cayley graph Cay(T', S) (and as usual I' acts by left
translation on the Cayley graph). We denote the corresponding graph on
[0,1]¥ by G'(T, S). Since the shift action on [0, 1]¥ is measure-theoretically
isomorphic to the Bernoulli shift on [0, 1], we lose nothing by working with
G'(T, S) rather than G(T, S).

We may use each x € [0,1]¥ to label the edges of its connected com-
ponent in G'(T', S), assigning (v - x, sy - ) the label z(y~!,7 's71). The
structure of the action ensures that this labeling is independent of the par-
ticular choice of z, and in particular this labeling is a Borel function from
G'(T', S) to [0, 1]. Following [11] we obtain the wired minimal spanning for-
est, WMSF(G'(T', S)), by deleting those edges from G'(T', S) which receive
a label which is maximal in some simple cycle or bi-infinite path. By con-
struction, WMSF(G'(T', S)) is acyclic.

Theorem 7.3 (Lyons-Peres-Schramm). Suppose that T’ is a nonamenable
group with finite symmetric generating set S, and consider the graph G'(T, S)
defined above. There is a conull, G'(T", S)-invariant Borel set B C [0,1]F on
which each connected component of WMSF(G'(T, S)) has one end.

Proof. See [11, 3.12], which says WMSF(G'(T', S)) is almost surely one-ended
provided the Cayley graph of I" has no infinite clusters at critical percolation.
This holds for nonamenable Cayley graphs by [2, Theorem 1.1]. O

Let Autr s be the automorphism group of the Cayley graph Aut(Cay(I', 5)).
Given a group I' with generating set .S and a natural number k, we may view
the space Col(T', S, k) of k-colorings of the (right) Cayley graph Cay(T",S)
as a closed (thus Polish) subset of k''. The action of I" by left transla-
tions on Cay(T',S) induces an action on Col(T',S,k). An automorphism-
invariant random k-coloring of Cay(T",S) is a Borel probability measure on
Col(I', S, k) invariant under this Autr g action. Such a random k-coloring is
a factor of IID if it is a factor of the shift action of Autr g on [0, 1]'.

In Section 5 of [10] it is asked for which k can automorphism-invariant
random k-colorings of Cayley graphs be attained as IID factors (see also
[1, Question 10.5]). In [4, Corollary 6.4] translation-invariant random d-
colorings of Cayley graphs are constructed, where as usual d is the degree
of the graph, but this involves passing to actions weakly equivalent to the
Bernoulli shift (or alternatively taking weak limits of IID factors). We can
now strengthen this result, giving d-colorings as IID factors except in the
cases Z and (Z/2Z) % (Z/27) where there is an obvious ergodic-theoretic
obstruction.
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Corollary 7.4. Suppose that I' is a countable group not isomorphic to Z
or (Z)2Z) x (Z)2Z), and suppose that S is a finite symmetric generating
set for T' with |S| = d. Then there is an automorphism-invariant random
d-coloring of Cay(T', S) which is an IID factor.

Proof. In the case that I' is amenable, it has finitely many ends, and so
so we can apply [4, Theorem 6.7]. Otherwise, I' is nonamenable and we
can apply Corollary 5.6 to obtain from WMSF(G'(T, S)) a Borel d-coloring
c: B — d of the restriction of G(T', S) to the conull set B C [0,1]! on which
WMSF(G'(T, S)) has one end. Define 7: B — Col(T', S,d) by (7(x))(v) =
c(y~!-z). Then 7,y is a translation-invariant random d-coloring which is a
factor of IID by construction, where as usual 7, u(A) = p(r~1(A)). O

Remark 7.5. Russ Lyons (private communication) points out that this
method of proof using spanning forests works for finitely generated groups
of more than linear growth by using instead the wired uniform spanning
forest (WUSF); see Section 10 of [3]. The realization of the WUSF as a fac-
tor of IID follows from Wilson’s algorithm rooted at infinity (see [7, Proof
of Proposition 9]) in the transient case and Pemantle’s strong Feglner inde-
pendence [14] in the amenable case.

8. THE CASE d = 2

In this section, we prove Theorem 1.3, giving a measurable analogue of
Brooks’ theorem for the case d = 2.

Given a graph G on X, let the equivalence relation Ey ¢ be the equivalence
relation on X where  Ep ¢ y if x and y are connected by a path of even
length in G. Then in the case where X is finite, we can rephrase the existence
of an odd cycle in the following way: there is a nonempty G-invariant subset
A of X such that every nonempty E3 g-invariant subset of A is G-invariant.

Now, in the measurable context, even without the presence of odd cycles,
there are Borel graphs G and measures ;o for which every Fj g-invariant
Borel set differs by a nullset from a Borel G-invariant set. For example,
the Borel graph Gg = {(x,y) € T? : S(x) = y V S(y) = z} induced by an
irrational rotation S : T — T of the unit circle is 2-regular and acyclic, and
since S? is ergodic with respect to Lebesgue measure, every non-null Es -
invariant Borel set is Lebesgue conull. It follows that Gg does not admit a
pr-a.e. Borel 2-coloring, as the color sets in a measurable 2-coloring would
have to be disjoint, Fs g-invariant, and non-null since Gg is induced by a
measure preserving transformation and is hence quasi-invariant. Likewise,
there is no Baire measurable 2-coloring of Gg with respect to the usual
topology on T since every non-meager F g-invariant Borel set of vertices in
Gg is comeager.

If we regard the phenomenon described above as generalization of pos-
sessing on odd cycle, then we have the following generalization of Brooks’s
theorem in the case d = 2:
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Theorem 8.1. Suppose G is a Borel graph on a standard Borel space X
with vertex degree bounded by d = 2 such that G contains no odd cycles.
Let Ey ¢ be the equivalence relation on X where x Ey ¢ y if x and y are
connected by a path of even length in G.

(1) Let i be a G-quasi-invariant Borel probability measure on X. Then
G admits a p-measurable 2-coloring if and only if there does not exist
a non-null G-invariant Borel set A such that every Eo g-invariant
Borel subset of A differs from a G-invariant set by a nullset.

(2) Let T be a G-quasi-invariant Polish topology compatible with the
Borel structure on X. Then G admits a Baire measurable 2-coloring
if and only if there does not exist a non-meager G-invariant Borel
set A so that every Eo g-invariant Borel subset of A differs from a
G-invariant set by a meager set.

Proof. We prove just part 1, since the proof of 2 is similar. Assume first
that G admits a p-measurable 2-coloring with colors sets Cy and Cy. Now
Cy and € must both be non-null, since p is G-quasi-invariant. However, if
A is a non-null G-invariant Borel set, then ANCy is Ey g-invariant, however
AN Cy cannot differ from a G-invariant Borel set by a nullset since p is
(G-quasi-invariant.

For the converse, assume that for every p-measurable non-null G-invariant
set A we can find a p-measurable Fs g-invariant C' € A which is not within
a null-set of being G-invariant. Then the sets Cy = {z € C : [z]g, \ C # 0}
and C1 = [Cylg, \ Co are non-null, and they determine a p-measurable 2-
coloring of G | [Co|g,. We may continue this process on X \ [Cy]g,, and
by measure theoretic exhaustion we can obtain a p-measurable 2-coloring
c:Y —{0,1} of G |'Y for some G-invariant conull Y C X. O

A. BOREL VS MEASURABLE COLORINGS

Let (Z/27)*® be the d-fold free product of the group Z/2Z. This group
acts via the left shift action on the standard Borel space N(Z/ 22)*! et
X = {z € N@2D™ . .2 £y for all nonidentity v € (Z/2Z)*%} be the
free part of this action. Let G((Z/2Z)*?,N) be the Borel graph on X where
r is adjacent to y if there is a generator + of (Z/27)*? such that v-z =y
or v -y = x. Note this graph is acyclic and d-regular. As discussed in the
introduction, Marks [12, Theorem 1.2] has shown that this graph has no
Borel d-coloring. However, our Theorem 1.2 shows that for every d > 3,
there is a p-measurable and Baire measurable d-coloring of G((Z/2Z)*?, N)
with respect to any Borel probability measure or compatible Polish topology
on X.

Hence, for all finite d > 3, for Borel graphs G, admitting py-measurable d-
coloring with respect to every Borel probability measure is a strictly weaker
notion than admitting a Borel coloring, as is admitting a Baire measurable
d-coloring with respect to every compatible Polish topology, as witnessed by
these explicit graphs given above. In this appendix, we show that in the case



20 CLINTON T. CONLEY, ANDREW S. MARKS, AND ROBIN D. TUCKER-DROB

d = 2, these notions are the same, even without any degree assumptions on

G.

Proposition A.1. Let G be a locally countable Borel graph on a standard
Borel space X. Then the following are equivalent:

(1) G admits a Borel 2-coloring.

(2) For every Borel probability measure p on X, G admits a p-measurable
2-coloring.

(3) For every compatible Polish topology 7 on X, G admits a Baire mea-
surable 2-coloring.

Proof. This is actually a Corollary of a more general unpublished result of
Louveau (see [13, Theorem 15]), but we note that there is also a quick proof
using the Go-dichotomy [9, Theorem 6.6]. We will prove the equivalence of
1. and 2., since the proof of the equivalence of 1. and 3. is similar. It suffices
to show that if G admits no Borel 2-coloring then G admits no y-measurable
2-coloring for some Borel probability measure 4 on X. If G contains an odd
cycle then it cannot be 2-colored at all, so we may assume that G con-
tains no odd cycles. Let G4 = {(z,y) € X? : distg(w,y) is odd}, where
distg : X? — NU {co} denotes the graph distance in G. Then G° admits
no Borel N-coloring. (Otherwise, by [9, Proposition 4.2] there is a maximal
G°d_independent set A C X which is Borel, and since G contains no odd
cycles the set X \ A is G°%-independent as well, which contradicts that G
admits no Borel 2-coloring.) It follows from [9, Theorem 6.6] that there is an
injective Borel homomorphism f : 2 — X from the graph G to G4, Then
f is a homomorphism from G§¢ = {(u,v) € (2V)2 : distg, (u,v) is odd} =
{(u,v) € 2V : u and v differ on an odd number of coordinates} to G°dd.
Let v denote the uniform product measure on 2. Then every Borel G§dd-
independent set is v-null (see [5, Example 3.7]), hence every Borel G°dd-
independent set is f,v-null. Fix by Theorem 2.2 a sequence (7;);en of Borel
automorphisms such that Eg = |J; graph(7;) and let u = >, 27(T})« fuv, s0
that p is a G-quasi-invariant probability measure with the same G-invariant
null sets as fyv. Suppose toward a contradiction that there is a y-measurable
2-coloring of G. Then there is a Borel 2-coloring ¢ : B — {0,1} of G | B
for some G-invariant p-conull Borel subset B C X. Since B is invariant, ¢
is a 2-coloring of G°4 | B, and since B is p-conull it is f,v-conull, so either
¢ 1(0) or ¢71(1) is a Borel G°%-independent set with positive f,v-measure,
a contradiction. O

B. QUASI-INVARIANT TOPOLOGIES
In this section, we prove the following proposition:

Proposition B.1. Suppose that E is a countable Borel equivalence relation
on a standard Borel space X, and T is a compatible Polish topology for X.
Then there is an E-quasi-invariant compatible Polish topology ' for X such
that every T'-meager set is T-meager.
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Proof. By the Feldman-Moore theorem, let {7;};n,en be countably many
Borel automorphisms of X such that E = | J;cy graph(T3).

We claim there exists a comeager G5 set A and open sets {U,; };en such
that setting B; = T;(ANU;), we have that the sets A, By, By, ... are pairwise
disjoint, their union A U |J;cy Bi is E-invariant, and for every open U, the
set ANT;(ANU) is open in A. Given this claim we are finished, since we
can define 7’ as follows. Let Y = AU J,cn Bi. Make the sets A, By, By, . ..
all open in 7/. Let the subspace topology on A in 7’ be the same as in 7
(note that since A is Gy, this is Polish) and choose the subspace topology
on B; so that T; | AN U; is a homeomorphism in 7/. Note now that T} | Y
is continuous for every Y by our condition above. Finish by defining 7" on
X \ 'Y to be a compatible Polish topology so that the T; are continuous on
all of X. Now since A is comeager in 7, and open in 7/, and the subspace
topology on A is the same in 7 and 7/, it is clear that every 7-meager set is
also 7/-meager. 7' is F-quasi-invariant because the T} are continuous for 7’.

We turn now to the construction of A and {U; };en, working from now on
only in the topology 7. We begin by recalling a few standard facts. Suppose
T is a Borel automorphism of X. Consider the collection of open sets U
such that there is a meager set M C X such that T~!(M) is comeager in U.
Clearly this collection of open sets is closed under unions, and hence there
is a maximal such open set U. Given this U , note further, that if C' is any
comeager set and open U’ is disjoint from U, then T-(C) is comeager in
U’, else T~1(C) is meager inside some open U” C U’, and so T(U"\T~1(C))
is meager (being disjoint from C') and hence U is not maximal.

We begin by defining a sequence of meager sets {M; };n and our desired
{Ui }ien simultaneously. Given Ay, ... A,_1, let U, be the maximal open set
such that there is a meager set M,, C X such that T~!(M,) is comeager
inside Uy, and T, *(A; N M) is meager for every i < n. Note now that for
every A C X \ My U ...UM, that A, Ty(Uy),...T,(U,) are all disjoint.
Now if A is any comeager subset of X \ |J;cy M;, this already insures that
the sets A, T(ANUy), T(ANUy),... are all disjoint. To finish, by taking a
sufficiently comeager G set A, we can ensure that ANT;(ANU) is open in
A for every open U, and that AU J,cyTi(ANUj;) is E-invariant. O
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