
A BOUND ON MEASURABLE CHROMATIC
NUMBERS OF LOCALLY FINITE BOREL GRAPHS

CLINTON T. CONLEY AND BENJAMIN D. MILLER

Abstract. We show that the Baire measurable chromatic number
of every locally finite Borel graph on a Polish space is strictly less
than twice its ordinary chromatic number, provided this ordinary
chromatic number is finite. In the special case that the connect-
edness equivalence relation is hyperfinite, we obtain the analogous
result for the µ-measurable chromatic number.

Introduction

A graph on a set X is an irreflexive, symmetric set G ⊆ X × X.
Such a graph is locally finite if every point has only finitely many G-
neighbors. A (κ-)coloring of such a graph is a function c : X → κ with
the property that ∀(x, y) ∈ G c(x) 6= c(y). The chromatic number of
such a graph, or χ(G), is the least cardinal κ for which there is such
a κ-coloring. Note that any locally finite graph may be colored with
countably many colors. In this paper, we consider measurable analogs
of these notions, a subject of increasing interest over the last few years
due to its connections with descriptive set-theoretic dichotomies and
dynamical properties of group actions.

A subset of a topological space is Borel if it is in the σ-algebra gen-
erated by the underlying topology, and a function between topological
spaces is Borel if pre-images of open sets are Borel. A Polish space
is a separable topological space which admits a compatible complete
metric. While it is hardly standard terminology, we use the term Polish
cardinal to refer to a cardinal equipped with a Polish topology. Thus
the Polish cardinals are exactly those in the set {0, 1, . . . ,ℵ0, 2ℵ0}, with
the two infinite cardinals supporting various topologies.

When X is a Polish space, the Borel chromatic number of G, or
χB(G), is the least Polish cardinal κ for which there is a Borel κ-coloring
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of G. The Baire measurable chromatic number of G, or χBM(G), is the
least Polish cardinal κ for which there is a Baire measurable κ-coloring
of G. And given a Borel probability measure µ on X, the µ-measurable
chromatic number of G, or χµ(G), is the least Polish cardinal κ for
which there is a µ-measurable κ-coloring of G. Mirroring the situation
for ordinary chromatic numbers, [KST99, Proposition 4.5] shows that
χB(G) ≤ ℵ0 whenever G is a locally finite Borel graph. In this paper,
we study what further bounds may be gleaned when χ(G) is finite.

We say that an equivalence relation is countable if all of its equiva-
lence classes are countable, and finite if all of its equivalence classes are
finite. We say that a Borel equivalence relation E on a Polish space X
is hyperfinite if there is an increasing sequence (En)n∈N of finite Borel
equivalence relations on X whose union is E.

Ruling out a strong connection between ordinary and measurable
chromatic numbers, [CK13, Corollary 0.8] yields a locally finite Bor-
el graph G and a Borel probability measure µ on a Polish space for
which χ(G) = 2 and χµ(G) = ℵ0. However, the equivalence relation
EG generated by G is quite complicated, in the sense that it is not
hyperfinite. In §1, we show that this is no accident.

Theorem A. Suppose that X is a Polish space, G is a locally finite
Borel graph for which χ(G) < ℵ0 and EG is hyperfinite, and µ is a Borel
probability measure on X. Then there is a µ-conull EG-invariant Borel
set C ⊆ X such that χB(G � C) ≤ 2χ(G)−1, thus χµ(G) ≤ 2χ(G)−1.

It is natural to ask whether the analogous result holds for Baire
category. As [HK96, Theorem 6.2] implies that every countable Bor-
el equivalence relation is hyperfinite on a comeager invariant Borel
set, such an analog would necessarily imply its generalization in which
the assumption that EG is hyperfinite is removed, thereby ruling out
any analog of [CK13, Corollary 0.8] for Baire category. Perhaps it is
then a surprise that, after establishing a technical preliminary result
concerning Borel chromatic numbers in §2, we do indeed establish such
an analog in §3.

Theorem B. Suppose that X is a Polish space and G is a locally finite
Borel graph on X for which χ(G) < ℵ0. Then there is a comeager EG-
invariant Borel set C ⊆ X such that χB(G � C) ≤ 2χ(G) − 1, thus
χBM(G) ≤ 2χ(G)− 1.

In §4, we show that all of these results imply their generalizations to
analytic graphs.
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1. Measurable chromatic numbers

In this section, we obtain our bound on µ-measurable chromatic
numbers in terms of ordinary chromatic numbers.

For each n ∈ N, a G-path of length n is a sequence (xi)i≤n such that
∀i < n xi G xi+1. The graph metric induced by G on a connected
component of G is given by

dG(x, y) = min{n ∈ N | there is a G-path from x to y of length n}.

A G-ray is a sequence (xn)n∈N such that ∀n ∈ N xn G xn+1. A G-
barrier for a point x is a set Y ⊆ X with the property that every
injective G-ray emanating from x intersects Y .

Theorem 1. Suppose that X is a Polish space, G is a locally finite Bor-
el graph for which χ(G) < ℵ0 and EG is hyperfinite, and µ is a Borel
probability measure on X. Then there is a µ-conull EG-invariant Borel
set C ⊆ X such that χB(G � C) ≤ 2χ(G)−1, thus χµ(G) ≤ 2χ(G)−1.

Proof. Fix real numbers εn > 0 such that
∑

n∈N εn < ∞, as well as
an increasing sequence (En)n∈N of finite Borel equivalence relations
on X whose union is EG. Recursively construct a sequence of natural
numbers kn such that µ({x ∈ X | dG([x]Ekn

, [x]EG
\[x]Ekn+1

) ≤ 4}) ≤ εn
for n ∈ N. Set Cn = {x ∈ X | ∀m ≥ n dG([x]Ekn

, [x]EG
\ [x]Ekn+1

) ≥ 5}
and An = {x ∈ X | 2 ≤ dG(x, [x]EG

\ [x]Ekn+1
) ≤ 3} ∩ Cn+1. As

every connected component of G � An is contained in an equivalence
class of Ekn+1 , and is therefore finite, the Lusin-Novikov uniformization
theorem for Borel subsets of the plane with countable vertical sections
(see, for example, [Kec95, Theorem 18.10]) yields a Borel χ(G)-coloring
cn of G � An. Set Bn = {x ∈ An | cn(x) > 0}, and define B =

⋃
n∈NBn

and C =
⋂
n∈N

⋃
m≥nCm.

As µ(∼Cn) ≤
∑

m≤n εm, it follows that µ(
⋃
m≥nCm) = 1, thus

µ(C) = 1. As each Cn is En-invariant, it follows C is EG-invariant.
Since no point in Bm is G-related to a point in Bn for distinct m,n ∈ N,
it follows that

⋃
n∈N cn � Bn is a Borel (χ(G) − 1)-coloring of G � B,

and since B is clearly a G-barrier for C, König’s Lemma ensures that
every connected component of G � (C \B) is finite, so the uniformiza-
tion theorem for Borel subsets of the plane with countable sections
yields a Borel χ(G)-coloring of G � (C \ B). Finally, amalgamating
the (χ(G)− 1)-coloring of G � B and the χ(G)-coloring of G � (C \B)
yields a Borel (2χ(G)− 1)-coloring of G � C.

The hypothesis that G is locally finite is essential: the graph G on 2N

relating two elements if they differ in exactly one coordinate satisfies
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χ(G) = 2, but χBM(G) = χµ(G) = 2ℵ0 when µ is the (1/2, 1/2)-product
measure.

2. Intersection graphs

In this section, we obtain bounds on Borel chromatic numbers of
very specific sorts of graphs.

The intersection graph on a family X of subsets of a set X consists
of all pairs of distinct sets in X with non-empty intersection. When X
is the collection of finite subsets of a Polish space X, it inherits a Borel
structure when viewed as a quotient of X<N modulo permutations.
Given in addition an equivalence relation E on X, we use [X]<ℵ0E to
denote the family of all finite subsets of X which are contained in a
single E-class, with the induced Borel structure.

Proposition 2 (Kechris-Miller). Suppose that X is a Polish space and
E is a countable Borel equivalence relation on X. Then there is a Borel
ℵ0-coloring of the intersection graph on [X]<ℵ0E .

Proof. Fix an enumeration (Un)n∈N of a base for X. By the uniformiza-
tion theorem for Borel subsets of the plane with countable sections,
there is a Borel function associating with each finite set S ⊆ X an
enumeration (xSi )i<|S| of S, in addition to Borel functions fn : X → X
with the property that E =

⋃
n∈N graph(fn).

Define c : [X]<ℵ0E → N<N by letting c(S) be the lexicographically least
sequence (kSi )i<|S| of natural numbers such that the sets UkSi are pair-
wise disjoint and xSi ∈ UkSi for all i < |S|. Define d : [X]<ℵ0E → N<(N×N)

by letting d(S) be the lexicographically least sequence (kSi,j)i,j<|S| such
that xSi = fkSi,j(x

S
j ) for all i, j < |S|.

It remains to show that c×d is a coloring of the intersection graph on
[X]<ℵ0E . Suppose, towards a contradiction, that S and T are neighbors,
but (c×d)(S) = (c×d)(T ). Set n = |S| = |T | and fix j, k < n such that
xSi = yTj . As the sets of the form Vi = UkSi = UkTi are pairwise disjoint,
it follows that j = k. But then xSi = fkSi,j(x

S
j ) = fkTi,j(x

T
j ) = xTi for all

i < n, thus S = T , a contradiction.

We next turn our attention to a somewhat more general collection
of graphs. Let ([X]<ℵ0E )<N

E denote the family of all finite sequences of
sets in [X]<ℵ0E which are contained in the same E-class.

Proposition 3. Suppose that X is a Polish space and E is a countable
Borel equivalence relation on X. Then there is a Borel ℵ0-coloring of
the graph on ([X]<ℵ0E )<N

E consisting of all pairs of distinct non-empty
sequences whose zeroth entries have non-empty intersection.
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Proof. We use the following general lemma. Recall that if R ⊆ X ×X
and S ⊆ Y × Y , a map φ : X → Y is a homomorphism from R to S if
x0 R x1 =⇒ φ(x0) S φ(x1). We denote by ∆(X) the diagonal of X,
namely {(x, x) | x ∈ X} ⊆ X ×X.

Lemma 4. Suppose that X and Y are Polish spaces, and G and H are
Borel graphs on X and Y respectively. If χB(H) is countable and there
is a countable-to-one Borel homomorphism from G to H ∪∆(Y ), then
χB(G) is countable.

Proof. Fix a countable-to-one Borel homomorphism φ : X → Y from
G to H ∪ ∆(Y ) and a Borel coloring c : Y → N of H. Using the
uniformization theorem for Borel subsets of the plane with countable
vertical sections we may fix Borel functions fn : Y → X such that
φ−1(y) = {fn(y) | n ∈ N}. Define a Borel function d : X → N by
d(x) = min{n ∈ N | x = fn ◦ φ(x)}. Finally, (c ◦ φ) × d is our desired
countable coloring of G.

The proposition then follows by observing that projection onto the
zeroth coordinate is a countable-to-one homomorphism from the graph
in question to the union of the diagonal and the intersection graph.

3. Baire measurable chromatic numbers

In this section, we obtain our bound on Baire measurable chromatic
numbers in terms of ordinary chromatic numbers.

Given r ∈ R and Y ⊆ X, the closed dG-ball of radius r around Y is
given by BdG(Y, r) = {x ∈ X | ∃y ∈ Y dG(x, y) ≤ r}.

Theorem 5. Suppose that X is a Polish space and G is a locally finite
Borel graph on X for which χ(G) < ℵ0. Then there is a comeager
EG-invariant Borel set C ⊆ X such that χB(G � C) ≤ 2χ(G)− 1, thus
χBM(G) ≤ 2χ(G)− 1.

Proof. We will recursively construct a sequence (Bs)s∈N<N of Borel sub-
sets of X satisfying the following conditions:

(1) No point of any Bs is G-related to a point of any Bsa(n) \Bs.
(2) Every connected component of every G � Bs is a finite set on

which the chromatic number of G is at most χ(()G)− 1.
(3) For all s ∈ N<N and x ∈ X, some Bsa(n) is a G-barrier for x.
(4) There is no injective G-ray through any BdG(Bs, 2).

We begin by setting B∅ = ∅.
Suppose now that s ∈ N<N and Bs has already been defined. Let
Xs denote the set of all triples (x, S, T ) ∈ X × [X]<ℵ0EG

× [X]<ℵ0EG
, where

S, T ⊆ [x]EG
, S is a G-barrier for x, no point of S is G-related to a
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point of Bs, χ(G � S) ≤ χ(G) − 1, and there is no G-path from
BdG(S, 2) to ∼T through BdG(Bs ∪ S, 2). Let Gs denote the graph on
Xs in which two distinct triples (x, S, T ) and (x′, S ′, T ′) are related if T
and T ′ have non-empty intersection. By Proposition 3, there is a Borel
coloring cs : Xs → N of Gs. For each n ∈ N, the Lusin-Novikov theorem
that images of Borel sets under countable-to-one Borel functions are
Borel (see, for example, [Kec95, Lemma 18.12]) ensures that the set
Bsa(n) = Bs ∪

⋃
{S ∈ [X]<ℵ0EG

| ∃x, T c(x, S, T ) = n} is Borel.
The definition of Xs ensures that no point of Bs is G-related to a

point of any Bsa(n) \Bs.
The definitions of Xs and Gs ensure that every connected component

of every G � Bsa(n) is a finite set on which the chromatic number of G
is at most χ(G)− 1.

To see that for all x ∈ X, some Bsa(n) is a G-barrier for x, note
first that, together with the inexistence of injective G-rays through
BdG(Bs, 2), an application of König’s Lemma yields a finite G-barrier
R ⊆ [x]EG

\BdG(Bs, 2) for x. Fix a coloring cR : BdG(R, 1)→ χ(G) and
define S = {y ∈ BdG(R, 1) | c(y) > 0}, noting that S is a G-barrier for
x, no point of S is G-related to a point of Bs, and χ(G � S) ≤ χ(G)−1.
One more application of the inexistence of injective G-rays through
BdG(Bs, 2) and König’s Lemma then yields a finite set T ⊆ [x]EG

for
which there is no G-path from BdG(S, 2) to ∼T through BdG(Bs ∪S, 2).
It follows that (x, S, T ) ∈ Xs, in which case Bsa(n) is a G-barrier for x,
where n = cs(x, S, T ).

To see that there is no injective G-ray through any BdG(Bsa(n), 2),
note that if (xi)i∈N is such a G-ray, then the inexistence of injective G-
rays through BdG(Bs, 2) ensures that dG(xi, Bsa(n) \ Bs) ≤ 2 for some
i ∈ N. The definition of Xs and Gs then implies that this holds for all
i ∈ N, contradicting the fact that G is locally finite.

This completes the description of the recursive construction. For
each parameter p ∈ NN, we now consider the sets Bp =

⋃
n∈NBp�n and

Cp = {x ∈ X | ∀y ∈ [x]EG
Bp is a G-barrier for y}. König’s lemma and

the uniformization theorem for Borel subsets of the plane with count-
able vertical sections easily imply that the latter set is Borel.

Lemma 6. For comeagerly many p ∈ NN, the set Cp is comeager.

Proof. The uniformization theorem for Borel subsets of the plane with
countable vertical sections yields Borel functions fn : X → X such that
EG =

⋃
n∈N graph(fn). Given x ∈ X, condition (3) ensures that for all

n ∈ N, every s ∈ N<N has an extension t ∈ N<N such that Bt is a
G-barrier for fn(x). It follows that the set of p ∈ NN such that Bp is a
G-barrier for fn(x) is dense and open, thus the set of p ∈ NN such that
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Bp is a G-barrier for all y ∈ [x]EG
is comeager. The Kuratowski-Ulam

quantifier exchange theorem for comeager subsets of the plane (see, for
example, [Kec95, Theorem 8.41]) therefore gives the desired result.

Fix p ∈ NN for which Cp is comeager, and set B = Bp and C = Cp.
Conditions (1) and (2), together with the uniformization theorem for
Borel subsets of the plane with countable vertical sections, yield a Bor-
el (χ(G)− 1)-coloring of G � B, and the fact that B is a G-barrier for
every point of C, together with the uniformization theorem for Bor-
el subsets of the plane with countable vertical sections, gives a Borel
χ(G)-coloring of G � (C \B). We may then amalgamate the colorings
as in the proof of Theorem 1 to get a Borel (2χ(G) − 1)-coloring of
G � C.

4. Analytic graphs

In this final section, we show that all of our earlier results generalize
to analytic graphs.

The horizontal sections of a set R ⊆ X × Y are the sets of the form
Ry = {x ∈ X | x R y}, and the vertical sections of a set R ⊆ X × Y
are the sets of the form Rx = {y ∈ Y | x R y}. A property P of subsets
of a Polish space Y is Π1

1-on-Σ1
1 if whenever X is a Polish space and

R ⊆ X × Y is analytic, the set {x ∈ X | Rx satisfies P} is co-analytic.
The first reflection theorem ensures that every analytic set satisfying
such a property P is contained in a Borel set satisfying P (see, for
example, [Kec95, Theorem 35.10]). This will be our primary tool in
the arguments to come.

The generalizations of Propositions 2 and 3 to analytic equivalence
relations are consequences of the following well-known fact.

Proposition 7. Suppose that X is a Polish space and E is a countable
analytic equivalence relation on X. Then there is a countable Borel
equivalence relation F on X such that E ⊆ F .

Proof. By a result of Mazurkiewicz-Sierpiński, the property of being
countable is Π1

1-on-Σ1
1 (see, for example, [Kec95, Theorem 29.19]), thus

so too is the property (of subsets of X ×X) that every horizontal and
vertical section is countable. The first reflection theorem therefore
yields a Borel set R ⊆ X × X, all of whose horizontal and vertical
sections are countable, such that E ⊆ R.

Define S = {(x, y) ∈ X×X | x R y or y R x}. By the uniformization
theorem for Borel subsets of the plane with countable vertical sections,
there are Borel functions fn : X → X such that S =

⋃
n∈N graph(fn).
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For each sequence s ∈ N<N, let fs denote the composition of the func-
tions of the form fs(i), for i < |s|. As graphs of Borel functions are them-
selves Borel (see, for example, [Kec95, Proposition 12.4]), it follows that
the equivalence relation F =

⋃
s∈N<N graph(fs) is as desired.

Along similar lines, the generalization of Theorem 5 to analytic
graphs can be seen as a consequence of the following fact.

Proposition 8. Suppose that X is a Polish space and G is a locally
finite analytic graph on X. Then there is a locally finite Borel graph
H on X, with χ(G) = χ(H), such that G ⊆ H.

Proof. A directed graph on X is an irreflexive set H ⊆ X × X. The
notions of coloring and chromatic number extend to directed graphs in
the obvious way. Note that, by the axiom of choice, if n ∈ N is a natural
number, then there is an n-coloring of G if and only if for every finite
set Y ⊆ X, there is an n-coloring of G � Y . In particular, it follows
that the property of being a directed graph with chromatic number
at most n is Π1

1-on-Σ1
1. As the property of having finite horizontal

and vertical sections is also Π1
1-on-Σ1

1, it follows that there is a Borel
directed graph K on X, with the same chromatic number as G, as well
as with finite horizontal and vertical sections, such that G ⊆ K. Then
the graph H = {(x, y) ∈ X ×X | x K y or y K x} is as desired.

To see that the above use of the axiom of choice is unnecessary, note
that the proof of Theorem 5 actually yields a comeager EG-invariant
Borel set C ⊆ X with χB(G � C) ≤ supY ∈[X]<ℵ0 χ(G � Y ). But even
without the axiom of choice, the idea behind the proof of Proposition
8 gives a locally finite Borel graph H on X with the property that
supY ∈[X]<ℵ0 χ(G � Y ) = supY ∈[X]<ℵ0 χ(H � Y ) and G ⊆ H.

It remains to discuss the generalization of Theorem 1. Before getting
to this, however, we first note the following.

Proposition 9. Suppose that X is a Polish space and E is a finite ana-
lytic equivalence relation on X. Then there is a finite Borel equivalence
relation F on X such that E ⊆ F .

Proof. As the property of being finite is Π1
1-on-Σ1

1, so too is the prop-
erty (of subsets of X × X) that every horizontal and vertical section
of the transitive closure of the symmetrization of the set in ques-
tion is finite. The first reflection theorem therefore yields a Borel set
R ⊆ X ×X, with the latter property, such that E ⊆ R.

Define S = {(x, y) ∈ X × X | x R y or y R x}. By the uni-
formization theorem for Borel subsets of the plane with countable
vertical sections, there are Borel functions fn : X → X such that
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S =
⋃
n∈N graph(fn). For each sequence s ∈ N<N, let fs denote the

composition of the functions of the form fs(i), for i < |s|. As graphs
of Borel functions are themselves Borel, it follows that the equivalence
relation F =

⋃
s∈N<N graph(fs) is as desired.

An analytic equivalence relation E on X is hyperfinite if there is
an increasing sequence (En)n∈N of finite analytic equivalence relations
on X whose union is E. The generalization of Theorem 1 to analytic
graphs is a consequence of Proposition 8 and the following observation.

Proposition 10. Suppose that X is a Polish space and E is a hyper-
finite analytic equivalence relation on X. Then there is a hyperfinite
Borel equivalence relation F on X such that E ⊆ F .

Proof. Fix an increasing sequence (En)n∈N of finite analytic equivalence
relations on X whose union is E. By Proposition 9, there are finite
Borel equivalence relations Fn on X such that En ⊆ Fn. Then we
obtain an increasing sequence of finite Borel equivalence relations by
setting F ′n =

⋂
m≥n Fm. As En ⊆ F ′n, it follows that the equivalence

relation F =
⋃
n∈N F

′
n is as desired.
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