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What model is good for
packings?

• There must be a container of some sort for
the packing elements.

• Is the packing jammed?
• If so, what criteria do you want for

jamming?
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Some containers

Put the packing in a box.  Let the box shrink in size
or let the packing elements grow in size until you
are stuck.
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More possible containers

• A rectangular box
• A circle
• A torus
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Jammed packings

When the packing is locally most dense, there is a
rigid cluster that is jammed, but there could be
“rattlers”, non-rigid pieces.

The most dense packing of 7 congruent circles in a
square.  (Note the "rattler" in the upper right corner.)
(Due to Shaer)
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 Random close packings

“Is Random Close Packing of Spheres Well
Defined?”  (Torquato, Truskett and Debenedetti 2000)
Experimentally, if you pour ball bearings into a
large container, shake, and calculate the density,
you get about 0.636.  But this depends on the
method you use to “densify”.  Other methods give
0.642, 0.649, 0.68 …  This paper suggests “order
parameters”…

The following is joint work with A. Donev, F. Stillinger, and
S. Torquato.  See also my papers in:

http://www-iri.upc.es/people/ros/StructuralTopology/
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Definitions

If P is a packing in a container C, call it locally
maximally dense if every other packing of the
same packing elements, sufficiently close to P in
C has a packing density (=packing fraction) no
larger than the density of P in C.

A packing P is (collectively) jammed in C if any
other packing sufficiently close to P in C is the
same as P.  (I also say P is rigid in C.)
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Why jammed?

Theorem:  If a packing P of circles (or spherical
balls in 3-space) is locally maximally dense in a
polygonal container C, then there is subset P0 of P
that is collectively jammed in C.

Theorem (Danzer 1960): A packing P of circles (or
spherical balls in 3-space) is collectively jammed
in a polygonal container C, if and only if the
underlying strut tensegrity framework is
infinitesimally rigid.
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Remarks

• If the packing P has no part that is collectively
jammed, then the packing can be moved slightly
and the container shrunk slightly to improve the
overall density.

• Since a necessary condition for being jammed is
infinitesimal rigidity, circle packings in polygons
can be tested for being jammed with reasonably
efficient linear programming (feasability)
algorithms and the nearby improved packing
calculated as well.
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Proofs
Let the configuration p = (p1, p2, … pn) be the

centers of the packing circles, including the pinned
points on the boundary.  If the associated strut
framework G(p) is infinitesimally rigid, even for a
subset of the packing centers, then there is no
nearby configuration satisfying the packing
constraints for that subset that increases density.

If G(p) is not infinitesimally rigid, let p¢= (p1¢, p2¢,
… pn¢) be the (non-zero) infinitesimal flex of
G(p).  Then for each i define pi(t)= pi + t pi¢, 0 ≤ t .
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The crucial calculation

|pi(t)- pj(t)|2 = |pi- pj|2+2t(pi - pj)(pi¢ - pj¢)+t2|pi¢ - pj¢ |2.
So |pi(t)- pj(t)| ≥ |pi- pj| for each pair of disks that

touch, and there is strict inequality unless pi¢ = pj¢.
For example, the following shows this at work.
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The crucial calculation
|pi(t)- pj(t)|2 = |pi- pj|2+2t(pi - pj)(pi¢ - pj¢)+t2|pi¢ - pj¢ |2.

So |pi(t)- pj(t)| ≥ |pi- pj| for each pair of disks that touch, and
there is strict inequality unless pi¢ = pj¢.

I call this motion, the canonical push. For example, the
following shows this at work.
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Remarks
• The motion provided by the linear programming

algorithm (LP) can be quite complicated, and it
seems best to use it to clear up log jams, rather
than ongoing “densification”.

• For example, the Lubachevsky-Stillinger
algorithm of slow densification (bump-and-slow
down) is more efficient in converging to a jammed
state than LP.

• The (LP) motion does not continue forever.  Some
non-incident packing disks will get closer together
and collide, sometimes quite soon.
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Statics
When the packing is collectively jammed, it must be

statically rigid, which means it must be able to
resolve arbitrary loads.  But such tensegrity
frameworks are never statically determinant, since
by the Roth-Whiteley Theorem, there is always a
non-zero proper self stress.  On the other hand, a
physical system must resolve loads in some way…
Later more about this.  The final resolution of an
external load is a function of the relative elasticity
in the packing elements.  Geometry, alone, cannot
“resolve” this.
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The fundamental conundrum
Do numerical simulations make sense for large numbers of

packing elements?  For example, for monodispersed (i.e.
congruent) disks in the plane, the following configuration
often appears in some simulations, which is impossible.
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Infinite packings

How can infinite packings be “jammed”?
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Infinite packings

How can infinite packings be “jammed”?
They can’t.  We have to keep them from flying apart.

Some ideas…
1. Insist that each packing element be fixed by its

neighbors.  (Locally jammed.)
2. Pin all but a finite number. (Finite stability

=collectively jammed)
3. Enforce periodicity.  This amounts to putting the

packing on a torus.  (Periodic stability)
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Difficulties

The locally jammed property is very weak. K.
Böröczky (1964) showed that there is a
packing of congruent disks in the plane with
0 density that is locally jammed.  If you
move 8 disks at a time, the packing falls
apart.
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Difficulties

The collectively jammed property is better,
but as the number of packing elements that
are allowed to move gets large, the packing
can be very fragile.  For example, the
following square lattice packing in a square
seems to be not collectively jammed ... (A.
Bezdek, K. Bezdek, R. Connelly 1998)
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A near unjamming
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The size of the square
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Discrete rigidity
Theorem:  Suppose that G(p) is a finite (tensegrity)

framework, with pinned vertices, that is rigid in
Ed.  Then there is an e > 0 such that when |pi-qi| <
e for all i, and the same member constraints hold
for G(q), then p=q.

Even when the member constraints are relaxed by
d > 0, say, then the configuration can jiggle about,
but not too far.

The e for the square lattice packing in a square
seems quite small.
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Calculations for the square lattice
packing in a square

Let s be the length of the side of the bounding
square during the deformation shown.  Then when
the first pair of circles are rotated by q, then s is
calculated as

s = 4n cos q + 2 sin q + 2,
where the radius of the circles are 1, and there are

n+1 circles on a side, hence (n+1)2 circles in all.
So the square expands less than 1/(2n), and
s < 4n +2, the side length of the square, for
q > 2/n.
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The point

The e needed to insure rigidity converges to 0
as n -> • for the square lattice packing.  In
other words, you have to decrease the
tolerances to 0 as you release more and
more of the packing elements and allow
them to move.

A suggestion to address this problem …
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Uniform stability
An infinite packing of circles in the plane is uniformly stable

if there is an e > 0 such that the only finite rearrangement
of the disks as a packing, where each center is displaced
less than e, is the identity. (This is related to a different, but
similar, definition of L. Fejes Toth.)
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Examples
1. The square lattice packing (or the cubic lattice

packing in higher dimensions) is NOT uniformly
stable.

2. The triangular lattice packing in the plane IS
uniformly stable, even with the removal of one
packing element. (I. Bárány and N.P. Dolbilin (1988)
as well as A. Bezdek, K. Bezdek, R.C. (1998))

3. Most of the candidates for the most dense
packings of congruent spheres in higher
dimensions are uniformly stable. (A. Bezdek, K.
Bezdek, R. Connelly 1998)

Another suggestion for this problem:
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How do you handle infinite
packings?

• Only allow a finite number of packings to
move.  . . . or

• Consider periodic packings with a fixed
lattice defining the periodicity . . . or

• Consider periodic packings with a variable
lattice as well as a variable configuration,
but such that the density is locally maximal.
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Periodic Packings

A packing is periodic with lattice L if for
every packing element X, l + X is a
packing element for every l in L. Regard
this as a packing of a finite number of
packing elements in the torus R2/L.  So such
a packing can be regarded as stable if there
is no perturbation of the configuration
except trivial perturbations.
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The problem with fixing the
lattice defining the torus

The packing (with only  2 disks) defined on a torus, whose
fundamental region is the small yellow square, is jammed.

The packing (with 8 disks) defined on a torus, whose
fundamental region is the larger square, is NOT jammed.
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Counting in Coverings

Let k be the order of the covering, so there are
exactly kn disks in the covering and ke contacts. If
there are the minimal number of contacts e = 2n-1
in the original rigid configuration, there will be

ke = k(2n-1) = 2kn-k < 2kn-1
   contacts in the cover, and so the cover will NOT be

rigid.
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Strictly Jammed

So we define a packing on a (flat) torus to be
strictly jammed if there is no non-trivial
infinitesimal motion of the packing, as well
as the lattice defining the torus, subject to
the condition that the total area of the torus
does not increase during the infinitesimal
motion.
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Counting for Strictly Jammed
Packings

• Variables:
– Coordinates:  2n           - Lattice vectors: 2 + 2 = 4

• Constraints:
– Packing contacts: e      -  Area constraint: 1

• Trivial motions:
– Translatons: 2              -  Rotations: 1

The final count is then
e +1 ≥ 2n + 4 - 3 + 1 or  e ≥ 2n +1.

So the packing covers have a chance to be strictly jammed,
although it is not guaranteed.  The number of constraints in
a cover is more than is needed for stability.
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The Crystallization Conjecture

If a periodic packing is strictly jammed, what
does it look like?

Conjecture:  The only strictly jammed
periodic packing in the plane is the
triangular lattice packing, possibly with
some disks missing.
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The Crystallization Conjecture

If a periodic packing is strictly jammed, what
does it look like?

Conjecture:  The only strictly jammed
periodic packing in the plane is the
triangular lattice packing, possibly with
some disks missing.

Sadly this is false.
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Start with this tiling
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The construction of the pentagon
in the tiling

1

1

1

1

1

2a + b + 60 = 360

120120

b

aa

33



50

Split it apart and add some
“bracing triangles” as well as
some connecting rhombuses.
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Split it apart and add some
“bracing triangles” as well as
some connecting rhombuses.
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This what the packing looks like.
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Another possible example of a
strictly jammed packing
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Low density strictly jammed
packings

Conjecture:  The density of a strictly jammed
periodic packing is greater than (3/4)p/√12, the
density of the Kagome packing.
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“In fact, in a flat two-dimensional space it is
believed that only the triangular lattice
configuration … is stable in the alter case.” (Einar L.
Hinrichsen, Jens Feder, and Torstein Jossnag, Random
packing of disks in two-dimensions, Phys. Rev. A, Vol 41,
No. 8, 15 April 1990, p.4200.)
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