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Abstract

A graph is d-realizable if, for every configuration of its vertices in
EN, there exists a another corresponding configuration in E¢ with the
same edge lengths. A graph is 2-realizable if and only if it is a partial
2-tree, i.e. a subgraph of the 2-sum of triangles in the sense of graph
theory. We show that a graph is 3-realizable if and only if it does not
have K5 or the 1-skeleton of the octahedron as a minor.

1 Introduction

A basic problem in discrete geometry is to determine when a graph with
prescribed edge lengths can be realized in E4. A graph G is a finite set of
vertices V(G) = {1,...,n} and a finite set of edges E(G), where each edge is
a set containing exactly two vertices. The graphs we consider do not contain
loops or multiple edges. The standard way to draw a graph is to draw a point
for each vertex, and to draw a line segment between two vertices for each
edge. The complete graph on n vertices, denoted by K,,, is the graph with n
pairwise adjacent vertices. A good reference on graph theory is [Di00].

A realization of a graph G is a function which assigns to each vertex ¢ of G
a point p; in some Euclidean space. When we draw a realization, we generally
also draw the edges between vertices as straight lines. Note that a realization
is different from an embedding, since the word embedding is usually reserved
for the case when there are no self-intersections. For example, two vertices
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Figure 1: A weighted graph that satisfies the triangle inequality but cannot
be realized in any dimension. The weights are the edge lengths given in the
picture. Vertex 4 is represented by three points, since it would otherwise be
impossible to draw.

may be assigned to the same point in a realization and edges may intersect
and even overlap.

A weighted graph (G,)) is a graph G together with a vector of weights
(or lengths) A = (..., Aij,...), where \;; > 0 is the weight assigned to the
edge {i,7}. A realization p = (p1,...,pn) of a weighted graph is a realization
of the graph where each edge {i,j} has length A;;.

The Molecule Problem is to determine whether a given weighted graph
has a realization in E?, and if so to construct the realization. It is easy to
construct examples of weights A for a graph G such that (G, ) does not
have a realization in E? for any d. For example, if G is a triangle with edge
lengths not satisfying the triangle inequality, then (G, A) cannot be realized
in any Euclidean space. There are also examples of weighted graphs with the
triangle inequalities satisfied such that all proper subgraphs have realizations
in EV, but there is no realization of the whole graph in any Euclidean space
of any dimension. For example, consider the graph Kyy;. Assign a weight
of 1 to each edge of a Ky subgraph so that it has a realization in E4~! as
a d-simplex. Fach remaining edge connects the final vertex to one of the
vertices of the K. Let x be the distance from each vertex of the d-simplex
to the center of the d-simplex. Assign a weight less than = on each remaining
edge, but large enough so that the final vertex and any d — 1 vertices forms
a d-simplex that has a realization in E4~!. Then, the weighted graph K,
does not have a realization in any dimension, but every subgraph of d vertices
has a realization as a d-simplex. Figure 1 shows a picture of this situation

for d = 3.



See [He95] for a discussion of the molecule problem including an algorithm
for solving it when there are sufficiently many edges in GG. In a general setting,
Crippen and Havel [CH88] describe an empirical algorithm for solving the
molecule problem.

In [La98] it is mentioned that there is a polynomial time algorithm for
finding an approximate realization of a weighted graph, but where the di-
mension of the target Euclidean space EV can be large and depends on the
number of vertices of G. With this in mind, we make the following definition.

Definition 1. A graph G is d-realizable if, given any realization p1,...,py
of the graph in some finite dimensional Euclidean space, there exists a real-
ization qi, ..., q, in E? with the same edge lengths: |p; — p;| = | — q;| for

all {i,j} € BE(G).

Note that d-realizability is a property of graphs — for G to be d-realizable,
every realizable (G, \) must have a realization in E>.

Note also that our definitions allow edges to have length zero. If we
required edges to positive length, then it would not change which graphs are
d-realizable.

Examples.

1. A path is 1-realizable, because we can arrange the vertices in order on
a line with the appropriate distance between any two points.

2. Similarly, a tree (a connected graph containing no cycles) is also 1-realizable.

3. A triangle is not 1-realizable, because the triangle with all edge lengths
1 can only be realized in E? but not in E!.

In this paper, we will look at the question of which graphs are d-realizable
for d < 3 and obtain the following results.

Theorem 1. A graph G is 1-realizable if and only if it does not have K3 as
a minor (i.e., G is a forest).

Theorem 2. A graph G is 2-realizable if and only if it does not have K4 as
a minor.

Theorem 3 (Main Theorem). A graph G is 3-realizable if and only if it
does not have either K5 or the 1-skeleton of the octahedron as a minor.



In this paper we will only prove that a graph is 3-realizable if and only
if it does not have either K5 or the 1-skeleton of the octahedron as a minor
assuming that the graphs Vs and C5 x C; are 3-realizable (See figure 3 for the
definitions of these graphs). The graphs Vs and Cs x Cy were recently shown
to be 3-realizable by Sloughter [S104] using techniques of stress theory, but
not assuming any results of this paper.

2 Low Dimensional Results

Our discussion of 1-realizable graphs leads us to the following theorem.

Theorem 1. A graph is 1-realizable if and only if it is a forest (a disjoint
collection of trees).

Proof. Clearly, any forest with any specified edge lengths can be realized
in one dimension. If a graph is not a forest, then it contains a cycle as a
subgraph. This cycle can be realized in the Euclidean plane with three edges
of length 1 and with the remaining edges having length zero. There is no
realization in the line with the same edge lengths. Thus, a graph containing
a cycle is not 1-realizable. O

Observe, in the above proof, it was helpful to consider a subgraph to show
that a graph was not 1-realizable. In general if a graph G is d-realizable, then
any subgraph of G is also d-realizable.

It was also helpful to consider a realization where some edges had length
zero. However, if we required edges to have positive length, it would not
change which graphs are d-realizable. Let G be a graph, and let v = |V(G)|
and e = |E(G)|. Consider the function f : R% — R® which takes a realization
of G in E? and returns the length of each edge of G. The image of f applied
to a closed ball of radius M is a compact set in R€, since f is continuous.
Thus, the set of edge lengths which cannot be realized in E? inside a closed
ball of radius M is an open set in R (as it is the complement of a compact
set). Since every list of edges with a realization in E¢ has a realization inside
a closed ball with sufficiently large radius M, the set of edge lengths which
cannot be realized in E? is an open set in R®. If a graph G has a realization
p=(p1,...,pn) in EY with some zero length edges that is not realizable
in E? with the same edge lengths, then a sufficiently small perturbation of
p = (p1,...,pn) to a configuration with no zero length edges in EV will still



not be realizable with the same edge lengths in E9, since the set of edge
lengths that cannot be realized is open.
The following is a standard definition from graph theory.

Definition 2. A minor of a graph G is any graph obtained from G by a
sequence of

e cdge deletions and

e edge contractions (identify the two vertices belonging to an edge and
then remove any loops or multiple edges)

Theorem 4. If a graph G is d-realizable and H is a minor of G, then H is
d-realizable.

Proof. Zero length edges are allowed. 0

A graph property is called minor monotone if it is closed under the op-
eration of taking minors. Minor monotone graph properties are interesting,
because of the graph minor theorem of Robertson and Seymour [RSSS8].

Theorem 5 (The Graph Minor Theorem). Every minor monotone graph
property has a finite list of forbidden minors; i.e. there exits a finite list of
graphs Gy, ..., G, such that a graph G satisfies the graph property if and only
if G does not have any G; as a minor.

The survey paper [Th99] by Robin Thomas provides many examples of
graph properties and their corresponding forbidden minors.

We do not need Theorem 5 in order to prove our theorem about forbidden
minors. This result simply predicts that there will be a finite list of forbidden
minors for our problem, while it provides no help in finding them.

The forbidden minor for 1-realizability is K3. For d-realizability, the
graph Kgy9 is a forbidden minor (but not necessarily the only minimal for-
bidden minor), because it can be realized as the 1-skeleton of a (d+2)-simplex.

The following definition will be helpful in characterizing 2-realizable graphs.

Definition 3. A graph is series parallel if it is a subgraph of a graph that is
constructed from a Ky by repeatedly attaching subdivided edges to two adja-
cent vertices.

Wagner [Wa37] classified series parallel graphs in terms of minors. See
[Di00] for a more recent proof.



Theorem 6 (Wagner 1937). A graph G is series parallel if and only if
G does not contain Ky as a minor; i.e. Ky ts the only forbidden minor for
series parallel graphs.

We are now ready to classify 2-realizable graphs.

Theorem 2. A graph is 2-realizable if and only if it does not have K, as a
minor.

Proof. First, suppose that a graph G does not have K, as a minor. Then by
Theorem 6, G is series parallel. We can assume that G is maximally series
parallel (if any edge is added to the graph, it is no longer series parallel),
since subgraphs of d-realizable graphs are d-realizable. A maximally series
parallel graph can be constructed from K by attaching subdivided edges
with exactly one subdivision between two adjacent vertices.

We will proceed by induction. The graph K is 2-realizable. If we attach a
subdivided edge to adjacent vertices with edge lengths satisfying the triangle
inequality to a graph that is realized in E?, the resulting graph can also
be realized in E%. By induction, all maximally series parallel graphs are
2-realizable.

Now, suppose that a graph G is 2-realizable. Note that K} is not 2-realizable,
because there are realizations of K, in E3 as the skeleton of a tetrahedron.
Thus, G cannot contain K, as a minor. O

3 Tree Decompositions

It will be helpful to be able to create examples of d-realizable graphs. In
creating some examples d-realizable graphs, we want a generalization of trees
and series parallel graphs. Trees are created by joining paths together along
vertices. Series parallel graphs are created by attaching a subdivided edge to
two adjacent vertices and possibly taking a subgraph. The generalization we
need is provided by tree decompositions, a term defined by Robertson and

Seymour [RS86].

Definition 4. Let G; and G, be two graphs, both containing a K as a
subgraph. The k-sum of G| and G4, denoted Gy @,, G2, is the graph obtained
by identifying the two K} 's.

Note that G; @, G is uniquely defined once the correspondence between
the vertices in the copies of K} in GG; and G is determined.



Definition 5. A graph is a k-tree if it can by obtained through a sequence of
k-sums of Kiy1’s. A graph is a partial k-tree if it is a subgraph of a k-tree.

Clearly, a graph is a partial 2-tree if and only if it is a series parallel
graph. Figure 2 shows an example of a 2-tree, a partial 2-tree and a 3-tree.

2-tree Partial 2-tree 3-tree

Figure 2: Examples of partial k-trees.

Suppose G and Gy are both d-realizable and both contain a K, subgraph.
We can realize both G; and G, in E? and then attach the two realizations
along the common K, subgraph to create a realization of Gy @ G, in E<.
Thus, Gi @, G- is also d-realizable.

Forests are equivalent to partial 1-trees, so 1-realizable graphs are partial
1-trees. Series parallel graphs are equivalent to partial 2-trees, so 2-realizable
graphs are partial 2-trees. Clearly, all partial d-trees are d-realizable.

4 Which graphs are 3-realizable?

Arnborg, Proskurowski, and Corneil [APC90] have determined the forbidden

minors of partial 3-trees.

Theorem 7 (Arnborg, Proskurowski, and Corneil 1990). The for-
bidden minors for partial 3-trees are Ks, the 1-skeleton of the octahedron

(K32,2), Vs, and Cs x Cy (see Figure 3).

Given the above theorem, it is reasonable to ask which graphs in Figure 3
are 3-realizable. If any of these graphs is not 3-realizable, then it 1s a forbid-
den minor for 3-realizability. We already know that K’ is not 3-realizable.
The following theorem shows that the octahedron is not 3-realizable.

Theorem 8. The 1-skeleton of the octahedron (K3 ,) is not 3-realizable.
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Octahedron = K; 5 Cs x C,

Figure 3: Forbidden minors for partial 3-trees.

Proof. We will construct a realization of the octahedron in E* that cannot
be realized in E3. Figure 4 shows the construction.

Step 1: We start with a degenerate triangle with edge lengths 1, 1, and
2. This is the only way to realize these three points with the given lengths
(up to congruence). We will label these vertices 1, 2, and 3 in order.

Step 2: Now we attach vertex 4 to this degenerate triangle at vertices 1
and 3 with edge lengths /2 and /2. This is again the only way to realize
this graph with these edge lengths (up to congruence).

Step 3: Now we attach vertex 5 to vertices 1, 2, and 4. We will place this
vertex in the third dimension above the plane II determined by vertices 1, 2,
3, and 4. We will make all of the new edges have length 1. This is the only
way to realize this graph with these edge lengths (up to congruence).

Step 4: We will now attach the vertex 6 to the vertices 2, 3, and 4. In
three dimensions, we will place it either above or below the plane II. We
will make all of the new edges have length 1. Note that in E? there are only
two possible realizations. However, in E*, there are infinitely many possible
realizations. Vertex 6 can rotate around plane II without changing any of
the edge lengths.

Step 5: There is one final edge to add between vertices 5 and 6. In E?,
this edge has only two possible lengths (/2 and 2 for the given edge lengths),
but in E* this edge can be any length in between.

This gives us infinitely many realizations in E* that cannot be realized in
E3. Thus, the octahedron is not 3-realizable. 0

The graphs Vi and Cs x C; are 3-realizable, as shown in [S104]. This leaves
open the possibility that there are other graphs which are not 3-realizable
but do not have K5 or the octahedron as a minor. We will eliminate this
possibility by showing that any graph containing Vi or Cs5 x Cy as a minor
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Figure 4: Steps 1 through 5 of the proof of Theorem 8.

either contains K5 or the octahedron as a minor or is 3-realizable. We need
some lemmas about V3 and Cs x Cj.

Lemma 1. If any edge is added between non-adjacent vertices of Vg, the
resulting graph has K5 as a minor.

Proof. There are two ways to add an edge to Vi3 up to graph isomorphism.
Figure 5 shows these two graphs. The solid bold edge is the added edge. If
we contract the dotted edges, the resulting graph is K. O

Figure 5: Graphs of V3 with an added edge contract to K.



Lemma 2. If any edge is added between non-adjacent vertices of Cs x Cs,
the resulting graph has either the octahedron or Ks as a minor.

Proof. There are three ways to add an edge to C5 x Cy up to graph iso-
morphism. Figure 6 shows these three graphs. The added edge is in bold.
Contracting the dotted edges produces the octahedron for the first two graphs
and K5 for the third graph. O

Contracts to Octahedron Contracts to Octahedron Contracts to K5

Figure 6: Graphs of C5 x Cy with an added edge contract to either the
octahedron or K.

A graph H is a subdivision of a graph G if H can be obtained from G by
replacing every edge {7, j} of G with a path from vertex i to vertex j. Note
that a graph is a subdivision of itself. The following lemma can be found in

[Re97].

Lemma 3. Let H be a graph whose vertices are of mazimum degree 3. If a
graph G has H as a minor, then G contains a subdivision of H as a subgraph.

Since all vertices of V3 (and Cs x C3) have degree 3, any graph that has
Vi (or Cs x C3) as a minor contains a subdivision of Vi (or Cs x C3) as a
subgraph.

We are now ready to prove the main theorem. We thank Monique Laurent
and Robin Thomas for pointing out omissions in the initial draft of this proof.

Theorem 3 (Main Theorem). The forbidden minors for 3-realizability are
K; and the octahedron.

Proof. We will be assuming that V3 and Cs x Cy are 3-realizable (see [S104]).
We know that K5 is a forbidden minor. By theorem 8, the octahedron is
a forbidden minor.
We need to show that if a graph G does not have K5 or the octahedron
as a minor, then it is 3-realizable. We can assume that G is connected, since

10
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Figure 7: The first graph contains a subdivision of V3. The second graph
shows the components that result from removing the subdivision of V3. Note
that one of the components connects to two of the subdivided edges. The
third graph shows in bold the path between the two subdivided edges. Con-
tracting the dotted edges edges gives a subdivision of V3 with a path between
two vertices that are non-adjacent in Vg. Thus, the graph has K5 as a minor.

each connected component can be realized separately. We will proceed by
induction on the number of vertices of GG. If G does not contain Vz or Cs x C,
as a minor, then it is a partial 3-tree and hence 3-realizable.

Suppose G contains V3 as a minor (the case where G contains Cs x C3 as
a minor is similar). By lemma 3, G must contain a subdivision of V5. Our
plan will be to create GG as the subgraph of the 2-sum of 3-realizable graphs.

Remove the subdivision of V3 from G and consider the components of
the resulting graph. We will show that each component is connected in G
to exactly one of the subdivided edges of V3. The component may or may
not connect to the end vertices of the subdivided edge, but this does not
count as connecting to the other edges adjacent to the end vertices. Also, a
component may connect only to an end vertex, in which case there are three
possible subdivided edges for the component to be considered connected to.
We can choose one of these three subdivided edges to be assigned to this
component.

Suppose that a component did connect to two subdivided edges. Then,
there is a path in G from the subdivided version of edge {i,j} to the subdi-
vided version of edge {k,l}. Since Vg contains no triangles, two of the four
relevant vertices (say ¢ and k) must be non-adjacent in Vz. The subdivided
edges can be contracted in G so that the path goes from ¢ to k, which con-
tradicts lemma 1. Figure 7 shows an example of a graph with a subdivision
of Vg where one of the components connects to two subdivided edges.

11



Thus, we can assign a subdivided edge {7, 7} to each of the components.
Let V{; j; be the union of all vertices from the components associated with
subdivided edge {7, 7} and the vertices from the subdivided edge.

Add the edges to G that correspond to the contraction of the subdivided
edges (if the edge is already in the graph, then it does not need to be added).
Call this new graph H. Our goal will be to create H as a 2-sum of smaller
graphs. Let Hy; ;3 be the induced subgraph of H on the vertices Vy; ;3. Thus,
Hy; ;4 contains the edge {7, j}, the subdivided version of edge {7, 7}, and all
of the components that attach to the subdivided version of edge {7, j}. Then,
H is a 2-sum of V3 and all the Hy; j; by attaching along the edges {1, j}.

The graphs Hy; ;1 are minors of G (the edge that was added is the contrac-
tion of the outer cycle in V3), and thus cannot contain K or the octahedron
as a minor. By the induction hypothesis and by the assumption that V5 is
3-realizable, Vg and all of the Hy; ;, are 3-realizable. The graph H is a 2-sum
of Vg and all Hy; j3, so H is 3-realizable. The graph G is a subgraph of H, so
G 1s 3-realizable.

If G does not contain Vg as a minor, then GG contains Cs x Cy as a minor.
A similar argument using lemmas 3 and 2 and the fact that Cs x Cy contains
no cycles of length three shows that G is 3-realizable. O

We can also classify 3-realizable graphs based on their k-sum “building
blocks.” Every 3-realizable graph is a subgraph of a graph that can be
obtained by a sequence of 3-sums and 2-sums involving Ky, Vg, and Cs x Cs.
Since neither V3 nor Cs x Cy contains a K3 as a subgraph, both of these
graphs must be attached with 2-sums.

5 Examples

Example 1. The 1-skeleton of the cube is a partial 3-tree, and therefore
3-realizable.

Consider the 1-skeleton of the tetrahedron (Kj). Take the 3-sum of this
graph with four other K’s, one for each face of the tetrahedron. The resulting
graph shown in Figure 8 has the cube as a subgraph.

Example 2. The graph K33 is a partial 3-tree, and therefore 3-realizable.

Consider a triangle (K3), and 3-sum this graph with three Kj’s, all being
attached to the original triangle. The resulting graph shown in Figure 2 has
K33 as a subgraph.

12
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K, K, 3-summed with four K4’s

Figure 8: The cube is a partial 3-tree.

Example 3. The Cauchy graph on n > 5 vertices Ch,, (defined below) is
4-realizable, but not 3-realizable.

The graph Ch,, is the graph obtained from a cyclic graph by placing an
edge between every other vertex. Figure 9 shows several Cauchy graphs.
The graph Ch,, is a minor of Ch,1o — if we label the vertices around the
outer cycle 1,2,...,n+ 2, then contracting edges {1,3} and {2,4} of Ch,,4,
yields the graph Ch,,. The Cauchy graph on 5 vertices is K5, so it is not
3-realizable; and the Cauchy graph on 6 vertices is the octahedron, so it is
not 3-realizable. Thus, all Ch,, for n > 5 are not 3-realizable. However, all
Cauchy graphs are partial 4-trees, and thus 4-realizable.

O

Chs Che Chr Chs

Figure 9: The Cauchy graphs on 5, 6, 7, and 8 vertices. Contracting the
dotted edges in Ch; and Chg produces the graphs Chs and Chg, respectively.

6 Discussion and Open Problems

The main theorem along with [S104] classifies all 3-realizable graphs. For
higher dimensions, the problem is even harder. There are over 75 known

13



forbidden minors for partial 4-trees [Sa93]. There is an algorithm in [Sa96]
that determines whether a graph is a partial 4-tree in linear time.

Given a graph G and a dimension d, it should be possible to use techniques
of algebraic geometry to determine whether G is d-realizable. Let e = |E(G)|
and v = |V(G)|, and suppose that we know that G is N-realizable (for
example, N could be v). There is a polynomial function from R to R® which
takes a realization in EN and returns the length of each edge. The image of
this polynomial function is a semi-algebraic set (a set defined by a finite list
of polynomial inequalities). There is a similar polynomial function from R
to R°. The question of whether G is d-realizable is then equivalent to the
question of whether the two semi-algebraic sets are equal. This question can
be solved, but the algorithm is exponential. One bound on the complexity
is (4€)?(Nd¥*)  See [BPRO3] for more information on real algebraic geometry.

Another question to ask is how fast does the number of forbidden minors
for d-realizability grow. What is an upper and lower bound for the number of
forbidden minors? We know that K49 i1s a forbidden minor for all d. Also,
there is an analogue of the octahedron construction for all d > 3, so there
are at least two forbidden minors for all d, and probably a lot more than
two. It seems reasonable to conjecture that the number of forbidden minors
for d-realizability grows at a similar rate to the number of forbidden minors
for partial d-trees.

Once we know which graphs are d-realizable, we would like a reasonable
algorithm to realize a given weighted graph (a graph with specified edge
lengths) in E?. The algorithm should take a weighted d-realizable graph and
either return that the weighted graph cannot be realized in any dimension
or return a realization in E¢. For d = 3, Jifi Matousek and Robin Thomas
showed that given a graph, a 3-tree decomposition can be determined in
linear time (see [MT91]). A correction to their algorithm appears in [Sa96].
Their algorithm takes a graph and either returns that the graph is not a
partial 3-tree or returns a 3-tree which has the original graph as a subgraph.
This algorithm could be modified to find a decomposition containing Vg’s or
Cs x Cy’s.

For realizing partial 3-trees, the remaining question is how to assign edge
lengths to the new edges (the edges that are part of the 3-tree but not
part of the original partial 3-tree). Note that it does not matter which tree
decomposition we use. There may be multiple ways to make a partial 3-tree
into a 3-tree. If the partial 3-tree (with given edge lengths) has a realization in
some dimension, then any 3-tree decomposition also has a realization in that

14



dimension (assign the edge lengths based on the partial 3-tree realization).
Thus, if we determine that one 3-tree with the required edge lengths on the
subgraph cannot be realized in dimension 3, then the original weighted graph
could not be realized in dimension 3. For realizing graphs containing Vg’s
and C5 x Cy’s, we would need a way to assign edge lengths to new edges
and we would need a way to realize V3’s and C5 x Cy’s with specified edge
lengths.

The analogous question for d = 2 has been fully answered by Jack
Snoeyink. He has given an algorithm running in linear time and space as
a function of n, the number of vertices of the graph G, to determine a partial
2-tree realization.

One of the motivations for this paper is a result of Barvinok in [Ba95].
See also [DLI7] for another proof of the first statement below. The following
is a special case of a more general situation considered by Barvinok for the
solution of quadratic polynomial equations, but this is most relevant for us.

Theorem 10. Any graph G with e edges is d-realizable if e < (d+1)(d+2)/2.
Furthermore, G is still d-realizable if e = (d 4+ 1)(d + 2)/2, and G is not the
complete graph Ky, .

This last extension is in [Ba01]. This leads to the following conjecture:

Conjecture 1. If a graph G has e edges and e < (d + 1)(d + 2)/2, then G
is a partial d-tree. Furthermore, if G has e = (d+1)(d +2)/2, and G is not
the complete graph Kayq, then G is still a d-tree.

In addition to Monique Laurent and Robin Thomas, we thank A. Barvi-
nok, James Belk, Branko Grunbaum, Jifi Matousek, Igor Pak, and James
Renegar for several useful comments and suggestions.
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