Estimates of Green function for some perturbations of subordinated Brownian motion

Hyunchul Park

Department of Mathematics, UIUC

July 22 2010

joint work with Kim and Song
Sharp estimates for the Green function $G_D^X(x,y)$ for the killed processes X^D.

1. Chen and Song (1998) Symmetric stable processes for $C^{1,1}$ domain.
5. Kim, Song and Vondraček (2010) Large class of subordinated Brownian motions for bounded $C^{1,1}$ open set.
We want to prove that the Green function $G_D^X(x, y)$ for the large class of SBM and the Green function of its perturbation $G_D^Y(x, y)$ are comparable for bounded connected κ fat open set D. That is,

$$c^{-1}G_D^X(x, y) \leq G_D^Y(x, y) \leq cG_D^X(x, y)$$
Definition. A Levy process is a stochastic processes

\(X = (X_t) \) in a probability space \((\Omega, \mathcal{F}, P)\) which satisfies,

1. \(X_0 = 0 \) \(P \)-a.s.
2. \(X_t \) has an independent increments.
3. \(X_t \) has a stationary increments.
4. \(X_t \) has a right continuous sample path with left limit \(P\)-a.s.
The Levy-Khintchine formula

\(\hat{\mu}(z) = \int e^{i(z,x)} \mu(dx) \).

\[
\hat{\mu}(z) = \exp \left(-\frac{1}{2} (z, Az) + i(\gamma, z) + \int_{\mathbb{R}^d \setminus \{0\}} \left(e^{i(z,x)} - 1 - i(z,x)1_D(x) \right) \nu(dx) \right)
\]

\(A \) is a symmetric nonnegative definite \(d \times d \) matrix, \(\gamma \in \mathbb{R}^d \),
\(D = \{|x| < 1\} \) and \(\nu \) is a measure in \(\mathbb{R}^d \) satisfying \(\nu(\{0\}) = 0 \),
\(\int_{\mathbb{R}^d} (1 \wedge |x|^2) \nu(dx) < \infty \).
Killed processes

D open set in \mathbb{R}^d.

$\tau_D = \inf\{ t > 0 | X_t \notin D \}$.

$$X_t^D := \begin{cases} X_t, & \text{if } t < \tau_D, \\ \partial, & \text{if } t \geq \tau_D. \end{cases}$$ (1)
Definition Let W_t be a Brownian motion and S_t a subordinator (increasing Levy process) which is independent to W_t.

$$X_t := W_{S_t}$$

is called a subordinated Brownian motion.
From now on, we will focus on a specific type of SBM. Let S_t be a subordinator whose Laplace transform is given by

$$\mathbb{E} \left[\exp(-\lambda S_t) \right] = \exp(-t\phi(\lambda))$$

where $\phi(\lambda)$ is a complete Bernstein function such that

$$\phi(\lambda) = \lambda^{\alpha/2} \ell(\lambda),$$

where ℓ is a slowly varying function at ∞. ($\ell(x)$ is a slowly varying function at ∞ if $\lim_{x \to \infty} \frac{\ell(ax)}{\ell(x)}$ for any $a > 0$.)

Then, $\mathbb{E} \left[\exp(i\langle \xi, X_t \rangle) \right] = \exp(-t\Phi(\xi))$, where

$$\Phi(\xi) = \phi(|\xi|^2) = |\xi|^\alpha \ell(|\xi|^2), \quad \xi \in \mathbb{R}^d.$$

In particular, $p^X(t, x, y)$ exists and C^∞.

Kim, Song and Vondraček (2009)
Under additional assumption on the slowly varying function ℓ,

$$G^X(x, y) \sim \frac{\alpha \Gamma((d - \alpha)/2)}{2^{\alpha+1} \pi^{d/2} \Gamma(1 + \alpha/2)} \frac{1}{|x - y|^{d-\alpha} \ell(|x - y|^{-2})}, |x - y| \to 0.$$

$$\nu^X(x) \sim \frac{\alpha \Gamma((d + \alpha)/2)}{2^{1-\alpha} \pi^{d/2} \Gamma(1 - \alpha/2)} \frac{\ell(|x|^{-2})}{|x|^{d+\alpha}}, |x| \to 0.$$
\(\kappa \) fat domain

\(\kappa \) fat domain \(\exists \kappa \in (0, 1/2] \) and \(\exists \ R > 0 \) such that each \(Q \in \partial D \) and \(r \in (0, R), \ B(A_r(Q), \kappa r) \subset D \cap B(Q, r) \).

\(C^{1,1} \) domain \(\subseteq \) Lipschitz domain \(\subseteq \) \(\kappa \) fat domain.
Suppose X is a subordinated Brownian motion. Suppose Y is a Levy process satisfying following conditions.

1. $\sigma(x) = \nu^X(x) - \nu^Y(x) \geq 0$,
2. σ is a finite measure,
3. $|\sigma(x)| \leq c|x|^{-d+\rho}, \quad \rho > 0, \quad |x| \leq 1$.

Decomposition $X = Y + T$, where T is a compound Poisson process, independent to Y.
Theorem

Let D be a bounded connected κ fat open set in \mathbb{R}^d, $d \geq 2$. Then there exists a constant $c = c(D, d, X, Y)$ such that,

$$c^{-1} G^X_D(x, y) \leq G^Y_D(x, y) \leq c G^X_D(x, y).$$
Let D be a bounded connected set in \mathbb{R}^d.

Property A There is a constant c such that,

$$\mathbb{E}_x \tau_D \mathbb{E}_y \tau_D \leq c G_D(x, y)$$

Property A holds if there is a $r > 0$ such that,

$$\inf_{x \in B(0, r)} \nu(x) > 0.$$

$\Rightarrow X, Y$ has property A.
Theorem (Grzywny, Ryznar 2007)

If either X or Y satisfies property A, then for all $x, y \in D$,

$$G_Y^D(x, y) \leq cG_X^D(x, y)$$

for some constant c.
Green function comparability \(\geq \) side

From now on, \(D \) is a bounded, connected, \(\kappa \) fat open set.

When \(|x - y| \geq \theta \), (\(\theta \) will be determined later.)

\[
x_0 \in \{ x \in D | \delta_D(x) \geq r_0/2 \}, \quad |x_1 - x_0| = r_0/4
\]

\[
\phi_D(x) := G_D^X(x, x_0) \land 1
\]

\[
r = r(x, y) := \delta_D(x) \lor \delta_D(y) \lor |x - y|
\]

\[
B(x, y) := \begin{cases}
\{ A \in D | B(A, \kappa r) \subset D \cap B(x, 3r) \cap B(y, 3r) \}, & \text{if } r \leq r_0/32, \\
\{ x_1 \}, & \text{if } r > r_0/32.
\end{cases}
\]

(2)
Green function comparibility ≥ side

Theorem (Kim, Song and Vondraček 2010)

There exists \(c = c(D, \alpha) \) such that for every \(x, y \in D \),
\[
c^{-1} \frac{\phi_D(x) \phi_D(y)}{\phi_D(A)^2 |x-y|^{d-\alpha} \ell(|x-y|^{-2})} \leq G_D^X(x, y) \leq c \frac{\phi_D(x) \phi_D(y)}{\phi_D(A)^2 |x-y|^{d-\alpha} \ell(|x-y|^{-2})},
\]
where \(A \in B(x, y) \).

Lemma

\[
\phi_D(x) \asymp \mathbb{E}_x[\tau_D^X]
\]

Lemma

When \(|x - y| \geq \theta \),
\[
\phi_D(A) \asymp \mathbb{E}_A[\tau_D] \geq \mathbb{E}_A[\tau_B(A, r_\theta)] \geq c \frac{r_\theta^\alpha}{\ell(r_\theta^{-2})}
\]
Green function comparability $\geq side, |x - y| \geq \theta$

Proposition ($|x - y| \geq \theta$)

When $|x - y| \geq \theta$,

$$G_D^X(x, y) \leq c_1 \mathbb{E}_x^X[\tau_D] \mathbb{E}_y^X[\tau_D]$$
$$\leq c_2 \mathbb{E}_x^Y[\tau_D] \mathbb{E}_y^Y[\tau_D]$$
$$\leq c_3 G_D^Y(x, y) \text{ since } Y \text{ satisfies property A.}$$
Green function comparibility $\geq \text{side, } |x - y| < \theta$

Theorem (Generalized 3G theorem for X)

Suppose that D is a bounded κ-fat open set. Then there exist positive constants $c = c(D, \alpha)$ and $\gamma < \alpha$ such that for every $x, y, z, w \in D$,

$$
\frac{G^X_D(x, y)G^X_D(z, w)}{G^X_D(x, w)} \leq c \left[\frac{\ell(|x - y|^{-2})}{|x - y|^{\gamma}} \left(\frac{|x - w|^{\gamma}}{\ell(|x - w|^{-2})} \wedge \frac{|y - z|^{\gamma}}{\ell(|y - z|^{-2})} \right) \vee 1 \right]
$$

$$
\times \left[\frac{\ell(|z - w|^{-2})}{|z - w|^{\gamma}} \left(\frac{|x - w|^{\gamma}}{\ell(|x - w|^{-2})} \wedge \frac{|y - z|^{\gamma}}{\ell(|y - z|^{-2})} \right) \vee 1 \right]
$$

$$
\times \frac{\ell(|x - w|^{-2})}{\ell(|x - y|^{-2})\ell(|z - w|^{-2})} \frac{|x - w|^{d-\alpha}}{|x - y|^{d-\alpha} |z - w|^{d-\alpha}}
$$
Proof when $|x - y| < \theta$

$$G_D^X(x, y) \leq G_D^Y(x, y) + \int_D \int_D G_D^X(x, z)\sigma(z - w)G_D^X(w, y)dzdw$$

Case 1

$$\frac{G_D^X(x, y)G_D^X(z, w)}{G_D^X(x, w)} \leq c \frac{\ell(|x - w|^2)}{\ell(|x - y|^{-2})\ell(|z - w|^2)} \frac{|x - w|^{d - \alpha}}{|x - y|^{d - \alpha} |z - w|^{d - \alpha}}$$

RHS

$$\leq c_1 \int_D \int_D G_D^X(x, y)\sigma(y - z)G_D^X(z, w)dydz$$

$$\leq c_1 \int_D \int_D \frac{|x - y|^{-d + \alpha}}{\ell(|x - y|^{-2})} \cdot |y - z|^{-d + \rho} \cdot \frac{|z - w|^{-d + \alpha}}{\ell(|z - w|^{-2})} dydz$$

$$\times |x - w|^{d - \alpha} \ell(|x - w|^{-2}) G_D^X(x, w)$$

$$\leq c_1 \int_D \int_D \frac{|x - y|^{-d + \alpha - \epsilon_1}}{|x - y|^{-\epsilon_1} \ell(|x - y|^{-2})} \cdot |y - z|^{-d + \rho} \cdot \frac{|z - w|^{-d + \alpha - \epsilon_1}}{|z - w|^{-\epsilon_1} \ell(|z - w|^{-2})}$$

$$\times |x - w|^{d - \alpha} \ell(|x - w|^{-2}) G_D^X(x, w).$$
Proof

Note that

\[
\sup_{y \in D} \frac{1}{|x - y|^{-\epsilon \ell (|x - y|^{-2})}} \leq \sup_{z \in 2D} \frac{1}{|z|^{-\epsilon \ell (|z|^{-2})}} \equiv c_2
\]

\[
RHS \leq c_1 c_2^2 |x - w|^{d - \alpha \ell (|x - w|^{-2})} G_D^X(x, w)
\times \int_D \int_D |x - y|^{-d + \alpha - \epsilon_1} |y - z|^{-d + \rho} |z - w|^{-d + \alpha - \epsilon_1} dydz
\leq c_1 c_2^2 |x - w|^{d - \alpha \ell (|x - w|^{-2})} G_D^X(x, w)
\times |x - w|^{-d + \rho + 2(\alpha - \epsilon_1)}, \quad \text{when} \ 2\alpha + \rho - d < 0, 2\epsilon_1 < \rho + \alpha
\leq c_3 \cdot |x - w|^{\zeta_1} D^{\zeta_2 \ell (|x - w|^{-2})} G_D^X(x, w), \quad \zeta_1 > 0, \quad \zeta_2 \geq 0,
\text{when} \ 2\alpha + \rho - d < 0, 2\epsilon_1 < \rho + \alpha.
For the bounded connected $C^{1,1}$ domain D, there is a constant $c = c(D, d, X, Y)$ such that the Green function $G^Y_D(x, y)$ satisfies the following estimates:

$$
\begin{align*}
&c^{-1} \left(1 \wedge \frac{\delta_D(x)^{\frac{\alpha}{2}} \delta_D(y)^{\frac{\alpha}{2}} \ell(|x-y|^{-2})}{(\ell(\delta_D(x)^{-2}))^{1/2} (\ell(\delta_D(y)^{-2}))^{1/2} |x-y|^\alpha} \right) \frac{1}{\ell(|x-y|^{-2}) |x-y|^{d-\alpha}} \leq \\
&G^Y_D(x, y) \leq \\
&c \left(1 \wedge \frac{\delta_D(x)^{\frac{\alpha}{2}} \delta_D(y)^{\frac{\alpha}{2}} \ell(|x-y|^{-2})}{(\ell(\delta_D(x)^{-2}))^{1/2} (\ell(\delta_D(y)^{-2}))^{1/2} |x-y|^\alpha} \right) \frac{1}{\ell(|x-y|^{-2}) |x-y|^{d-\alpha}}
\end{align*}
$$
References

P. Kim, R. Song, Z. Vondraček, Two-sided Green function estimates for killed subordinate Brownian motions *To be appeared*

Thank You!