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1 The Goal, and Discussion

Theorem 1.1 Let ~ri ∈ Rn, 1 ≤ i ≤ n with all |~ri|∞ ≤ 1. Then there exists
~x = (x1, . . . , xn) ∈ Rn with all xj ∈ {−1,+1} such that

|~ri · ~x| ≤ K
√

n for all 1 ≤ i ≤ n (1)

Here K is an absolute constant, not dependent on n.

Remarks: This problem originated with a question of Paul Erdős. What
is the smallest f(n) such that: Given n sets S1 . . . , Sn ⊆ {1, . . . , n} there
exists a “two coloring” χ : {1, . . . , n} → {−1,+1} such that for every set Si,

|
∑

j∈Si

χ(j)| ≤ f(n) (2)

(The standard notation, which will not be needed here, is that the family
F = {S1, . . . , Sn} has discrepency at most f(n).) The result f(n) ≤ K1

√
n

(plus the more general Theorem 1.1) was first proven by this writer many
years ago. To make this a special case of Theorem 1.1 simply let A be the
n × n incidence matrix of points and sets, aij = 1 if j ∈ Si, else aij = 0.
Then ~ri is the i-th row vector. A coloring χ corresponds to the vector
~x = (x1, . . . , xn) with xj = χ(j). In these notes, however, we will look at
the more general setting.

2 Algorithms

In my original proof no algorithm was given. That is, given the ~r1 . . . , ~rn

how do you find in polynomial time the ~x. Indeed, I long conjectured that
no such algorithm existed, that it would be equivalent to some other “hard”
problems. However, a few years ago Nikhil Bansal gave an algorithmic proof
using semidefinite programming. I will present here yet another approach,
due to Shachar Lovett and Raghu Meka, both postdocs at IAS. Their ap-
proach uses a restricted Brownian motion, though to make it algorithmic
one replaces the continuous process with a discrete walk.
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3 Sets and Points

In this presentation the number of vectors and the number of dimensions
is the same. However, this is only to facilitate the discussion. There are
results for any number m of vectors in any dimensional space n. Indeed,
as we go through the proof we find that we will be including more general
results.

4 Erdos Magic

What about a randomly chosen ~x? Let rij denote the j-th coordinate of ~ri

so that

~x · ~ri =
n∑

j=1

xjrij (3)

Let the xj be i.i.d. random variables, each xj = ±1 uniformly. As all
|rij | ≤ 1 one can show (for any particular i)

Pr[|
n∑

j=1

xjrij| > K
√

n] < 2e−K2/2 (4)

(That is, the variable X =
∑n

j=1 xjrij has a tail bounded by a Gaussian.)
Now select

K = [2 ln(2n)]1/2 (5)

This makes the probability in (4) less than n−1. For 1 ≤ i ≤ n let BADi

denote the event that |~x · ~ri| > K
√

n. All the BADi have probability less
than n−1 so the probability of ∨iBADi is less than one. That means that
with positive probability none of the BADi hold. Now comes the Erdős
Magic – an event with positive probability must have an existence, there
must (not maybe!) exist a ~x so that none of the BADi hold. This shows

Theorem 4.1 Let ~ri ∈ Rn, 1 ≤ i ≤ n with all |~ri|∞ ≤ 1. Then there exists
~x = (x1, . . . , xn) ∈ Rn with all xj ∈ {−1,+1} such that

|~ri · ~x| ≤ K
√

n for all 1 ≤ i ≤ n (6)

Here K is given by (5).

Of course, this does not imply Theorem 1.1 as K here is not an absolute
constant. Indeed, it yields a viewpoint for the stronger Theorem 1.1. Pick
K some large constant, say K = 10. Then with a random ~x the probability
that |~ri · ~x| > K

√
n is very small. But there are n different ~ri so there are

very likely to be some outliers, some i with |~ri · ~x| bigger than 10
√

n. The
Lovett Meka approach will be randomized but in a way that removes the
outliers.
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5 Floating Colors

This idea goes way back but I like to feel that it originated with Jozsef Beck,
at Rutgers. To each vertex j we attach a real variable xj and we set ~x =
(x1, . . . , xn). We initialize by setting ~x← ~0, that is, all xj ← 0. Throughout
the procedure we will always require that all xj ∈ [−1,+1]. At the very very
end all xj ∈ {−1,+1} and this will be our desired ~x for Theorem 1.1. We
may conceptually think of moving ~x around continuously in [−1,+1]n until
the coordinates reach the boundary. In the actual algorithm this is done in
discrete steps.

There turns out to be nothing special with starting at ~x← ~0. We shall
actually show the stronger result:

Theorem 5.1 Let ~ri ∈ Rn, 1 ≤ i ≤ n with all |~ri|∞ ≤ 1. Let ~z =
(z1, . . . , zn) ∈ Rn with all zj ∈ [−1,+1]. Then there exists ~x = (x1, . . . , xn) ∈
Rn with all xj ∈ {−1,+1} such that

|~ri · (~x− ~z)| ≤ K
√

n for all 1 ≤ i ≤ n (7)

Here K is an absolute constant, not dependent on n, nor on the initial ~z.

6 Mopping Up

Note to the Reader: You may well skip Mopping Up I,II,III at first
reading and jump to the main parts.

6.1 Mopping Up I

In our actual process we will freeze xj when |xj | > 1 − ǫ. Taking ǫ bigger
doesn’t affect the existence proof but it does quite greatly affect the speed
of the algorithm. We shall set (constants not concerning us)

ǫ =
1

10 ln n
(8)

We use a probability result:

Theorem 6.1 Let xj, 1 ≤ j ≤ n, satisfy 1−ǫ < |xj | < 1. Let xj, 1 ≤ j ≤ n
be independent random variables with Pr[xj = 1] = (1+xj)/2, Pr[xj = −1] =
(1− xj)/2. Let |rj | ≤ 1 for 1 ≤ j ≤ n. Then

Pr[|
n∑

j=1

rj(xj − xj)| ≥ 4
√

n] = o(n−1) (9)

We omit the proof of this large deviation result (don’t worry about the 4, it
is just some suitably large constant), but the idea is that xj − xj has mean
zero and variance O(ǫ) so that

∑n
j=1(xj − xj) has mean zero and variance

O(nǫ) and so, if it were Gaussian, we would be looking at the probability of
it being Ω(ǫ−1/2) standard deviation off the mean.

From this immediately follows:

3



Theorem 6.2 Let ~ri ∈ Rn, 1 ≤ i ≤ n with all |~ri|∞ ≤ 1. Let xj, 1 ≤ j ≤ n,
satisfy 1 − ǫ < |xj | < 1 and let ~x = (x1, . . . , xn). Then there exists ~y =
(y1, . . . , yn) with all yj ∈ {−1,+1} such that

|~ri · (~y − ~x)| ≤ 4
√

n for all 1 ≤ i ≤ n (10)

Proof: We randomly select yj with distribution xj . From Theorem 6.1
the probability that (refh) fails for any pariticular i is o(n−1) and so with
probability 1− o(1) the yj will satisfy Theorem 6.2. From Erdős Magic this
implies the existence of the yj . It also gives a randomized algorithm to find
them.

6.2 Mopping Up II

As the process continues more and more of the xj will become frozen. This
part allows the algorithm to stop when the number of unfrozen variables
becomes sufficiently small. Here we shall set (the 100 being a suitable large
constant)

m =
n

100 ln n
(11)

Again we have a large deviation result:

Theorem 6.3 Let xj ∈ [−1,+1], 1 ≤ j ≤ m. Let xj, 1 ≤ j ≤ n be
independent random variables with Pr[xj = 1] = (1 + xj)/2, Pr[xj = −1] =
(1− xj)/2. Let |rj | ≤ 1 for 1 ≤ j ≤ n. Then

Pr[|
m∑

j=1

rj(xj − xj)| ≥
√

n] = o(n−1) (12)

As before, we outline the large deviation result. Now each rj(xj − xj) has
mean zero and variance at most one so that

∑m
j=1 rj(xj −xj) has mean zero

and variance at most m. If it were Gaussian then (12) would represent the
probability of being at least (n/m)1/2 standard deviations off the mean. As
with Theorem 6.2 we continue with:

Theorem 6.4 Let ~ri ∈ Rm, 1 ≤ i ≤ n with all |~ri|∞ ≤ 1. Let ~x =
(x1, . . . , xm) ∈ [−1,+1]m Then there exists ~y = (y1, . . . , ym) ∈ Rm with
all yj ∈ {−1,+1} such that

|~ri · (~x− ~y)| ≤
√

n for all 1 ≤ i ≤ n (13)

Proof: We randomly select yj with distribution xj . From Theorem 6.3
the probability that (refh) fails for any pariticular i is o(n−1) and so with
probability 1− o(1) the yj will satisfy Theorem 6.2. From Erdős Magic this
implies the existence of the yj . It also gives a randomized algorithm to find
them.
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6.3 Mopping Up III:

We shall in the main part of the argument find a ~x ∈ [−1,+1] with |xj | > 1−ǫ
for all but at most m coordinates j. From Theorems 6.2, 6.4 we’ll then be
able to use standard randomized rounding to find ~y ∈ {−1,+1} such that
all

|~ri · (~x− ~y)| ≤ 5
√

n (14)

This will only add 5 to the constant K in Theorem 1.1, so it would remain
an absolute constant.

7 Phase I

In Phase I the algorithm starts with ~x← ~z. At any stage we define

Li = n−1/2~ri · (~x− ~z) (15)

so that Li ← 0 initially. We say that coordinate j is frozen if |xj | > 1 − ǫ.
The other coordinates j are called floating. At each step there will be a
(small) movement of ~x and a corresponding movement of the Li. Once a
coordinate is frozen it doesn’t move. Phase I is concluded when the number
of floating coordinates becomes at most n

2 . It will be done in such a way
that the final values of |Li| are all within a bounded range. All the main
arguments appear in Phase I. For convenience we state the result:

Theorem 7.1 Let ~ri ∈ Rn, 1 ≤ i ≤ n with all |~ri|2 ≤ n. Let ~z ∈ [−1,+1]n.
Then there exists ~x = (x1, . . . , xn) ∈ Rn with

1. All xj ∈ [−1,+1].

2. |xj | < 1− ǫ for at most n
2 values 1 ≤ j ≤ n

such that
|~ri · (~x− ~z)| ≤ 11

√
n for all 1 ≤ i ≤ n (16)

7.1 The Random Step

At the core of the argument, we now define a random step. We have a ~x and
corresponding Li. Let BIG denote those n

4 coordinates i with the biggest
|Li|. Let SMALL denote the other i, 1 ≤ i ≤ n. (In case of ties we could
arbitrarily so that BIG is of this size. Actually, since we’ll have variables
with continuous distributions, ties will only occur at zero.) Now we define a
vector space V ⊂ Rn. It consists of those ~y = (y1, . . . , yn) with the following
properties:

1. When xj is frozen yj = 0.

2. Critical!! When i ∈ BIG, ~ri · ~y = 0.

3. (A convenience) ~y · ~x = 0
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Let d denote the dimension of V so that d ≥ n− n
2 −

n
4 − 1. For simplicity

we’ll say d ≥ n
4 , the constants not mattering much. Let ~g be a Standard

Gaussian on V , as defined below. Let δ be very small, as discussed later.
The basic step is then

~x← ~x + δ~g (17)

7.2 Standard Gaussian

Let V ⊂ Rn be a subspace of dimension d. Let ~b1, . . . ,~bd be an orthonormal
basis. Then by Standard Gaussian we mean

~g =
1√
d
[n1

~b1 + . . . nd
~bd] (18)

where the n1, . . . , nd are independent standard Gaussians. This distribution
does not depend on the choice of orthonormal basis. The normalization
gives that E[|~g|2] = 1. The distribution is directionless. For any ~v ∈ V , ~v ·~g
has a Gaussian distribution with mean zero and standard deviation d−1/2|~v|.
For any ~w ∈ Rn let ~v be its projection onto V . (That is, write ~w = ~v + ~z
with ~v ∈ V , ~z ∈ V ⊥.) Then ~w · ~g has the same distribution as ~v · ~g and so
is Gaussian with mean zero and standard deviation at most d−1/2|~w|.

7.3 Progress

Property (3) and Pythagorus gives that |~x|2 increases at each step by δ2|~g|2.
The chi-square distribution of |~g|2 is tightly concentrated about 1 so we
will hand wave and think of |~x|2 as increasing by δ2 each step. The initial
|~x|2 = |~z|2 ≥ 0 and at the end of Phase I we must have |~x|2 ≤ n so the
number of steps will be bounded (with very high probability) by

Tmax ∼ 1.01nδ−2 (19)

7.4 Brownian Motion

If we think of δ → 0 we find ~x moving with a Brownian Motion, movements
restricted to V . Simultaneously, the Li will be making a 1-dimensional
Brownian Motion. At various times a coordinate will become frozen or the
order of the |Li| will change so that BIG changes and V changes so ~x moves
with a shifting Brownian motion.

7.5 Making Small Steps Big

(If you don’t care about the speed of the algorithm simply take δ = n−50 or
some such and skip this section.) The movement (17) depends on the choice
of δ. The bigger δ is the bigger the steps and so the faster the algorithm will
run. The limiting factor is the possibility that some xj will jump over the
barrier at ±1. Let ~wj be the unit vector with one in the j-th position and
~vj its projection onto V so that the change in xj is δ · |~vj |d−1/2N where N
is standard normal. The total number of steps (indeed, through the entire
process) is going to be at least Ω(n) (just in one step) and will be O(n10) even
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by the roughest estimates so lets set δ so that the chance of jumping over
the barrier is o(n−10). (As is usually the case, large deviation bounds are
exponential so the difference between making it o(n−1) and o(n−10) is only a
constant factor which, at least here, we don’t care about.) To jump over the
boundary we would need |δd−1/2N | ≥ ǫ which would require |N | ≥ d1/2ǫδ−1.
By making the right hand side at least, say, 10

√
ln n the probability becomes

O(n−50). As d ≥ n
4 we then just need 1

2

√
n 1

100 lnnδ−1 ≥ 10
√

ln n so we can

take δ = K
√

n ln−3/2 n. Then (19) becomes that the number of steps is
O(ln3 n), only polylog! Indeed, the time for the entire algorithm (assuming
unit time for generating random standard normals) is only n times a polylog
factor.

7.6 The Dot Products Take a Walk

Now lets fix i, 1 ≤ i ≤ n, and look at the progress of Li := n−1/2~x ·~ri during
the first phase. We use only that the Euclidean Norm |~ri| ≤

√
n. Setting

~u = n−1/2~ri for convenience we now have |~u| ≤ 1 and Li = ~x · ~u. OK, so
when ~x← ~x + δ~g we get

Li ← Li + δ~g · ~u (20)

We know that the change in Li will have a Gaussian Distribution with mean
zero. We don’t know the standard deviation as it depends on the size of the
projection of ~u onto V and V depends on all sorts of history. But it won’t
matter – we have a martingale! That is, let Li(s), 0 ≤ s ≤ Tmax be the
value of Li at the end of step s. Here we define Li(0) = 0. Further, if phase
I ends before step Tmax we simply keep Li(s) constant (a nice artifact when
you don’t know a priori how long the martingale will go) until s = Tmax. At
each stage Li(s+1)−L(s), conditional on the state of the system at time s,
is Gaussian with mean zero and standard deviation δτ with τ ≤ d−1/2. (This
includes τ = 0 when Phase I has actually ended.) Since we define Phase I
to end when d slips below n

4 we have τ ≤ 2n−1/2. (Remark: The factor 2
reflects the additional conditions placed on the walk. The more conditions
placed the more variance (at least, as an upper bound) in the walk. There
is a tradeoff here which comes from selecting the size of BIG and also in
determining when Phase I is to end. In this presentation however, we do
not attempt to optimize that tradeoff.) We have a general large deviation
martingale result:

Theorem 7.2 Let 0 = Z0, Z1, . . . , ZT = Z be a martingale. Set ∆s =
Zs−Zs−1. Assume every ∆s is a Gaussian with zero mean and variance at
most σ2. Let a > 0.

Pr[Z > a(Tσ2)1/2] < e−a2/2 (21)

and
Pr[|Z| > a(Tσ2)1/2] < 2e−a2/2 (22)

Further, let MAXZ denote the maximum |Zs|, 0 ≤ s ≤ T . Then

Pr[MAXZ > a(Tσ2)1/2] < 2e−a2/2 (23)
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(Remark: This is quite natural if you think of Z in the worst case as being
Gaussian with variance Tσ2.) By symmetry the bound on the upper tail of
ZT can be applied to the lower bound, so (22) will follow directly from (21).
Now (23) follows by a standard trick. Define a new walk Z∗

s which is the
same as Zs except that if some first |Zs| > a(Tσ2)1/2 the walk Z∗

s stays where
it is. This is still a martingale with the same properties and so (22) applies
to it. But then MAXZ > a(Tσ2)1/2 if and only if |Z∗

T | > a(Tσ2)1/2. Now
we attack (21) via Chernoff bounds. The conditional E[eλ∆s ] is exp[λ2τ2/2]
where τ2 is the variance of ∆s and so is at most exp[λ2σ2/2]. Thus E[eλZ ] ≤
exp[λ2(Tσ2)/2] and

Pr[Z > a(Tσ2)1/2] = Pr[eλZ > eλa(Tσ2)1/2

] < eλ2(Tσ2)/2−aλ(Tσ2)1/2

(24)

from which Theorem 7.2 follows by setting λ = a(Tσ2)−1/2.
In our case T is given by (19) and we take σ2 = 4n−1δ2. Thus in

calculating Tσ2 the factors of δ cancel out, which is natural as we were
thinking of a discrete approximation to Brownian motion. Also the factors
of n cancel out, which reflects our (well, Lovett and Meka’s!) perspecacious
scaling in defining the Li. So Tσ2 = 4.04. The probability that the walk
ever reaches, say, 10 is pretty small. Theorem 7.2 gives

Pr[|Li| > 10 at any time during Phase I ] < 0.1 (25)

Actually, this doesn’t look so great. After all, the whole point was to elim-
inate the outliers and here we may have outliers. But we are ready for the
brilliancy.

7.7 The Brilliancy

We cannot (perhaps more accurately, we do not) say anything about the
dependency amongst the Li. By linearity of Expectation

E[|{i : 1 ≤ i ≤ n, |Li| > 10 at any time during Phase I }|] < 0.1n (26)

This number is nonnegative. Thus it is less than 0.2n at least half the time.
Our randomized algorithm (for Phase I) is to run as described. It a failure
if more than 0.2n of the |Li| every reach 10. It is also a failure if the process
doesn’t stop in at most Tmax steps or if at some time the barrier at [−1,+1]
is jumped over, or if some Li moves by more than one in one step, all of
which have o(1) probability. Otherwise it is a success. So we have positive
(bounded from zero, independent of n) chance of success. But, you still say,
so what???

We go back to (2) in the definition of V , the conditions on the walk.
When i ∈ BIG, V is perpendicular to ~ri and therefore the value Li does not
change. Suppose we had success in Phase I as defined above. At most n

5 of
the |Li| ever reached 10. But at every step we are freezing BIG, the top n

4
values. That means that every Li for which |Li| ever reached 10 was frozen
for the remainder of Phase I. But a single step is at most one, indeed o(1).
So when |Li| reached 10 it didn’t go past 11 in that one step and then it
was frozen. From which we conclude: None of the |Li| ever reach 11!! This
concludes Theorem 7.1, the heart of the result.
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8 The General Argument

We work the algorithm in Phases. The ~ri ∈ Rn, 1 ≤ i ≤ n are fixed through-
out. In Phase s we begin with a ~z ∈ Rn with at most n21−s coordinates j
floating and end with a ~x ∈ Rn with at most n2−s coordinates j floating.
Each Li has then moved n−1/2~ri · (~x− ~z). From our discussions in section 6
we can restrict attention to 1 ≤ s ≤ K ln lnn. Further, we can set m = 21−s

and consider only m coordinates (the floating ones and, for convenience, per-
haps some others), the other coordinates not moving. Restricting to these
m coordinates the ~ri now have |~ri|2 ≤ m. (Interestingly, this is the only
point in the proof where |~ri|∞ ≤ 1 is used.) We now generalize Theorem
(7.1) as follows.

Theorem 8.1 Let m = 21−s with 1 ≤ s ≤ 10 ln ln n. Let ~ri ∈ Rm, 1 ≤ i ≤ n
with all |~ri|2 ≤ m. Let ~z = (z1, . . . , zm) with all zj ∈ [−1,+1]. Then there
exists ~x = (x1, . . . , xm) ∈ Rm with

1. All xj ∈ [−1,+1].

2. |xj | < 1− ǫ for at most m
2 values 1 ≤ j ≤ m

such that
|~ri · (~z − ~x)| ≤ Ks

√
m for all 1 ≤ i ≤ n (27)

where Ks satisfies (30) below.

We outline the argument, emphasizing the distinctions with Theorem
7.1. We start with ~x = ~z and we move it in steps until at most m

2 coordinates
are floating. For convenience we redefine

Li = m−1/2~ri · (~z − ~x) (28)

Thus Li starts at 0 and we want |Li| ≤ Ks at the termination of Phase
s. Observe the Theorem 8.1 is now Theorem 7.1 with an arbitrary starting
point and n replaced by m except that the number of vectors ~ri is not m
by m2s−1. Again, we give a single step, moving a small distance from ~x.
We let BIG denote those m

4 coordinates i with the largest |Li|. We define
a vector space V ⊂ Rm. It consists of those ~y = (y1, . . . , ym) with the
same Properties (1,2,3) as before. Let d denote the dimension of V so that
d ≥ m − m

2 −
n
4 − 1. For simplicity we’ll say d ≥ m

4 , the constants not
mattering much. The walk for any single Li follows the identical argument,
with n replaced by m. The distinction comes at (25) where now we select
Ks so that

Pr[|Li| > Ks at any time during Phase s ] < 0.1
m

n
(29)

Now the expected number of i such that |Li| > Ks at any time during Phase
s is less than 0.1m. This is less than 0.2m at least half the time. When this
occurs, and the o(1) probability failures do not occur, the algorithm ends
with |Li| ≤ Ks + 1 for all i.
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It remains to check what the cost of replacing (25) by the more stringent
(29) is. As in the earlier calculation we have Tσ2 = 4.04. So for Theorem
7.2 to yield (29) we need

2e−K2
s /2(4.04) ≤ 0.1 · 21−s (30)

For such Ks we then have Theorem 8.1.
Indeed, this is a cost, as Ks = Θ(

√
s). However, it is dwarfed by the

gain we have achieved by replacing
√

n with
√

m =
√

n2(1−s)/2. When we
reexpress Theorem 8.1 is terms of

√
n, and consider the movement of the

original Li = n−1/2~ri · (~x− ~z), we see that in Phase s all of the Li move by
at most Ks2

(1−s)/2 = Θ(
√

s2−s/2.
Now the Phases mesh, the final ~x from Phase s − 1 becomes the initial

~x in Phase s. For each 1 ≤ i ≤ n, consider the movement of Li during
the phases. The final |Li| is at most the sum of the absolute values of its
movements during the phases. This sum is bounded by

∑
s Ks2

(1−s)/2 which
is a convergent sum, approaching some absolute constant K. It is for this
K that our goal Theorem 5.1 applies.
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