
NEEDLES IN EXPONENTIAL HAYSTACKS II
Notes of Joel Spencer

Cornell Probability School 2012

1 The Lovász Local Lemma

We here describe the LLL in somewhat different, and somewhat more lim-
ited, format that done in other work, including our own. Still, this is a quite
natural format and pretty much all applications of LLL fit it.

There is a finite universe Ω and for each j ∈ Ω there is a random variable
COLOR[j]. These could be any variables but in practice, and the examples
below, they are binary “coin flips,” either {Red,Blue} or {True, False}.
The distributions can be different for different j ∈ Ω but – and this is
critical for the entire result – we must assume that the values COLOR[j]
are mutually independent over j ∈ Ω. That is, the j ∈ Ω may have different
coins (or die, or whatever) but each one is “flipped” independently. In
our algorithmic analysis we assume that any COLOR[j] may be generated
randomly in unit time. There is an index set I and for each α ∈ I a set
Ξα ⊂ Ω 1 and an event BADα which depends only on the COLOR[j],
j ∈ Ξα. Let Σ denote the family of Ξi. Jumping to the end, the desired
conclusion is

[SIEVE] : ∧α∈I BADα 6= ∅ (1)

Of course, we don’t always obtain [SIEVE]. Our object will be to find
conditions that are relatively easy to check that can imply [SIEVE]. We
shall say α, β ∈ I overlap if Ξα ∩ Ξβ 6= ∅ and in this case we write α ∼ β.
(In this presentation, unlike elsewhere, we write α ∼ α.

The most used form of the LLL is when there is a symmetry in the
bad events. Then we have the following result. (Note that because we are
counting α ∼ α the value d is one off from other presentations.)

Theorem 1.1 LLL - Symmetric Form Under the above circumstance sup-
pose

1. All Pr[BADα] ≤ p.

2. Each α ∈ I has α ∼ β for at most d indices β ∈ I

1Technically, there could be several α ∈ I on the same set Ξα

1

3.

p ≤
(d − 1)d−1

dd
(2)

Then [SIEVE].

This will come out as a calculation from the basic approach.

2 Applications

Suppose we have n Boolean variables x1, . . . , xn and we consider an instance
of k − SAT . Each clause is the disjunction of k variables, some possibly
with negations. For example, x13 ∨ x67 ∨ x123 could be such a clause for
3 − SAT . Set Ω = {x1, . . . , xn}. Let I index the clauses and for clause
Cα let Ξα denote the underlying set of variables (without negations), here
Ξ = {x13, x67, x123}. As the underlying probability space we assign truth
values t, f to the variables independently and unformly. The events BADα

are that Cα is not satified. Clearly Pr[BADα] = 2−k for any such clause.
Now [SIEVE] is precisely the event that

∧αCα is satisfiable (3)

So in this case Theorem 1.1 states: An instance of k − SAT in which every
clause has a common variable (neglecting negation symbols) with at most d

clauses (counting itself) will be satisfiable when

2−k ≤
(d − 1)d−1

dd
(4)

It is usually more convenient (especially for d large) to estimate the RHS
and use the criterion

e2−kd ≤ 1 (5)

A quite similar application comes when we are given a family of subsets Sα,
α ∈ I, of a universe Ω and we want a 2-coloring of Ω such that no Sα. Here
we assign COLOR[j] to Red or Blue uniformly and randomly. The bad
events BADα that Sα is monochromatic have Pr[BADα] = 21−k. Thus if
each Sα overlaps at most d sets Sβ and

e21−kd ≤ 1 (6)

there exists such a 2-coloring.
These examples indicate the algorithmic problem. Suppose we fix k = 5,

d = 10 so that (5) holds and consider instances of 5 − SAT with no clause
having common variable with more than 10 clauses. How do we find the
assignment that satisfies ∧Cα. There are 2n assignments and one can give
examples (remember that k, d are fixed here and n → ∞) where a random
assignment would only have an exponentially small probability of working.
The method we give here, originating with the breakthrough results of Robin
Moser, then a graduate student (!) at ETH (Zurich), will actually find one
such assignment in polynomial (indeed, linear!!) time.

2

3 Moser’s Fix-It Algorithm

3.1 FIXIT!

We write the Moser algorithm FIXIT as follows:

1. [FIXIT1] Set COLOR[j], all j ∈ Ω

2. [FIXIT2] WHILE some BADα

3. [FIXIT2a] Select a particular α with BADα

4. [FIXIT3] Reset COLOR[j] for j ∈ Ξα

Step [FIXIT2a] is a wild card. If there are several α which to we choose.
Our analysis of the algorithm will, for the most part, assume any particular
selection choice (e.g., Order I and take the first such α) but we shall return
to this point later.

3.2 Time and Log

When we run FIXIT let X1,X2, . . . ,, Xi ∈ Σ, denote the Ξα, in order,
called by FIXIT3 and define the LOG 2 to be the ordered sequence

LOG = (T1, T2, . . . , Tu, . . .) (7)

A priori the LOG could be empty (we got lucky with the first flipping at
FIXIT1 or it could be infinite, and TLOG denotes its length. (Bear in
mind that these values all have distributions as they depend on the various
choices of COLOR[j].) We will define the time, denoted TLOG, of the
FIXIT algorithm to be the number of times step [FIXIT3] was employed,
the length (possibly infinite) of the LOG. The relationship between TLOG

and the actual running time will be discussed later.
In our analysis we shall deal with finite initial strings T1 · · · Tu of LOG.

(We call these prefixes of LOG. These are strings from the alphabet Σ. We
let, following standard usage, Σ∗ denote the family of finite strings from the
alphabet Σ.)

The FIXIT algorithm is simplicity itself and those of us that struggled
for decades to find algorithmic implementations of LLL were certainly sur-
prised. The subtlety is in the analysis of the algorithm. Observe that the
WHILE loop can end only ∧BADα 6= ∅. Thus: If TLOG is ever finite then,
via Erdős Magic, [SIEVE]. We actually will deal with something more:

[ENDTIME] E[TLOG] < ∞ (8)

If ENDTIME then certainly the FIXIT algorithm can end, indeed more more.
And if the FIXIT algorithm can end then SIEVE. We shall find criteria that
imply ENDTIME.

2as in ship’s log, a record of what happened

3

4 Preprocessing Randomness

The preprocessing of randomness is a powerful conceptual tool for analyzing
randomized algorithms. Here, for each j ∈ Ω, we create i.i.d. COLOR[j, t]
for t = 0, 1, 2, Now [FIXIT1] uses COLOR[j, 0] and [FIXIT3] uses
COLOR[j, t + 1] where COLOR[j, t] was the last value “used.” Once all
the COLOR[j, t] have been determined FIXIT then run deterministically.
(This is assumming some selection procedure for [FIXIT2a] has been set-
tled on.) We will consider the countable number of choices of the COLOR[j, t]
to be our underlying probability space in analyzing FIXIT. Sometimes the
phrase “fictional continuation” is used here. For each j there are a countable
number of “coin flips” COLOR[j, t] made even though, a priori, we might
only need the COLOR[j, 0].

5 Lets Play Tetris!

5.1 Creating the Tetris Picture

As an illustrative example let us take Ω = {1, 2, 3, 4, 5, 6, 7, 8} and let Σ =
{A,B,C,D,E, F} with A = {1, 2, 3}, B = {2, 3, 4}, C = {3, 4, 5}, D =
{4, 5, 6}, E = {5, 6, 7}, F = {6, 7, 8}. In the general situation there is no
need for the Ξα ⊂ Ω to be made up of consecutive values but this will
yield prettier pictures. Lets consider a nonempty string in Σ∗, say s =
ADCFECBF . Drop down the tetris pieces in that order.

FFFFFFFFFFFF

BBBBBBBBBBBBBB

CCCCCCCCCCCCC

EEEEEEEEEEEEEE

CCCCCCCCCCCCC FFFFFFFFFFFFF

AAAAAAAAAAAAA DDDDDDDDDDDDD

1 2 3 4 5 6 7 8

From s we create a substring, called PY R(s) (for pyramid) by taking
the last tetris piece and all other pieces that are supporting it. In this case
we get PY R(s) = ADCFEF .

FFFFFFFFFFFF

EEEEEEEEEEEEEE

CCCCCCCCCCCCC FFFFFFFFFFFFF

AAAAAAAAAAAAA DDDDDDDDDDDDD

1 2 3 4 5 6 7 8

More precisely, we can describe PY R(s) algorithmically by working
backwards on string s and deciding which terms to accept. We accept the
last term and then we accept a term if and only if it overlaps with a term
already accepted.

We call a nonempty string s ∈ Σ∗ a pyramid if PY R(s) = s, that is, all
the tetris pieces are supporting the last one. Equivalently, s = X1 · · ·Xu is

4

a pyramid if for all 1 ≤ v < u there exists v ≤ w ≤ u with Xv ∩ Xw 6= ∅.
Let PY R denote the family of all pyramids s.

5.2 Getting the Same Tetris Picture

Observe in our example that if we flip the first AD and/or the following CF

in our string (for example, from s = ADCFEF . to s′ = DAFCEF), we
get the same tetris picture. Can we say, in general, when two s, s′ ∈ PY R

give the same tetris picture. Yes we can!
Let us define a semigroup on alphabet Σ in which Ξα,Ξβ commute if and

only if Ξα ∩Ξβ = ∅. (Such semigroups have been studied by Foata, Viennot
and others decades ago and are interesting for their own sake, though here
we use only elementary properties.) We can write s ∼ s′ if one can get
from s to s′ via a sequence of these allowable transpositions. This is an
equivalence relation and we let s denote the equivalence class containing s.
Strings equivalent to pyramids are necessarily pyramids so we can think of
the set of pyramid equivalence classes, denoted PY R.

Let s = X1 · · ·Xr ∈ PY R. For any 1 ≤ t ≤ r and any j ∈ Xt define
the flip number flip(t, j) to be the number of s, 1 ≤ s ≤ t, with j ∈ Xs.
(This includes s = t so the flip number is at least one.) For example, with
s = X1X2X3X4X5X6 = ADCFEF , flip(5, 3) = 3 as 3 appears in A,C,E.
If we interchange XY to Y X (with, recall, X ∩ Y 6= ∅, we do not change
the flip numbers of the X and Y .

Theorem 5.1 Let s, s′ ∈ PY R. Then the following are equivalent:

1. s ∼ s′

2. Write s = X1 · · ·Xr and s′ = Y1 · · · Yl. Then each Ξ ∈ Σ appears the
same number of times in s, s′. (So r = l). When Xt, Yt′ are both the
r-th appearance of the same letter Ξ in their respective sequences then
the flip numbers flip(t, j) for s and flip(t′, j) for s′ are the same.

Proof: There are two parts.
(1 implies 2): Suppose s′ is reached from s by a single transpostion. That
is, s = aΞΓb and s′ = aΓΞb with a, b ∈ Σ∗ and Γ ∩ Ξ = ∅. Transposing Γ,Ξ
does not change the respective flip numbers as they do not overlap. Then
any sequences of transpositions of this form preserves the flip numbers.
(2 implies 1): Suppose the first letter of s is A and the first appearance of A

is s′ is as Yj. The flip numbers for all j ∈ A are one in s and therefore must
be one for Yj. This means that Yj cannot overlap any of the earlier sets
Y1, . . . , Yj−1. Thus in s′ we can use commutativity to move Yj to the front,
to start YjY1, . . . , Yj−1. Now s, s′ both start with A. Removing A from both
keeps all the flip numbers the same so we can continue the process (or, more
formally, use induction on the length) until s′ is transposed to s.

6 Reaching a Pyramid

Let s = X1 · · ·Xt be a pyramid. For each 1 ≤ l ≤ t and each j ∈ Xl we
have a flip number flip(j, l). Let BAD[l] denote that, writing Xl = Ξα,

5

BADα occurs with COLOR[j] = flip(j, l) for all j ∈ Ξα. Let REACH[s]
denote that all BAD[l], 1 ≤ l ≤ t, occur. As the flip numbers are preserved
in the equivalence class we consider this event as REACH[s], defined for
s ∈ PY R.

The connection between REACH[s] and our FIXIT algorithm is a bit
subtle, depending on the ambiguities inherent in FIXIT2a, our selection
of which BADα to fix. First suppose FIXIT2a is trying to start the LOG

with some particular representative s of the class s. By that I mean that at
the i-th application, 1 ≤ i ≤ t, of FIXIT2a Xi is chosen if it can be, that
is, if its corresponding bad event is occuring at that moment. Employing
that FIXIT2a, REACH[s] is precisely the event that LOG starts with s.

For a partial converse consider the event we call PREFIX[s]. This event
is that for some prefix X1 · · ·Xu of LOG, PY R[X1 · · ·Xu] ∼ s.

We have to be careful here. PREFIX[s] is not an event in our probability
space, which we defined as the choices COLOR[j, t]. PREFIX[s] can depend
on the choice mechanism FIXIT2a. But a necessary condition for PREFIX[s]
to hold is that REACH[s] holds. For if s = PY R[X1 · · ·Xu] then the
remaining elements of X1 · · ·Xu would not affect the flip numbers (otherwise
they would be in the pyramid!) and so the various BAD events would have
to occur with the given flip numbers.

Example: Continuing our Tetris example above we look at the event
that, say CD = PY R[X1 · · ·Xu] for some prefix of LOG. (As C,D overlap,
CD = CD.) Let BADC , BADD denote the bad events corresponding to
C,D. For all we know, C = X57, the algorithm FIXIT was busy fixing up
other stuff. But in that case we would know that none of X1, . . . ,X56 would
have overlapped C, as had they done so they would have been put in the
pyramid. Thus BADC must have occured with COLOR[3, 0], COLOR[4, 0],
COLOR[5, 0]. Now say D = X83. Then of X1, . . . ,X82 only C = X57 over-
laps D. Thus BADD must have occured with COLOR[4, 1], COLOR[5, 1],
COLOR[6, 0].

6.1 A Surprising Independence

Let s = X1 · · ·Xt ∈ PY R and let BADi, 1 ≤ i ≤ t denote the bad event
corresponding to Xi ∈ Σ.

Theorem 6.1
Pr[REACH[s]] = Πt

i=1 Pr[BADi] (9)

The example above indicates what is happening. Let BADC , BADD denote
the bad events corresponding to C,D. In our original probability space these
events are dependent as they both use COLOR[4] and COLOR[5]. But
for REACH[CD] we need precisely that BADC occurs with COLOR[3, 0],
COLOR[4, 0], COLOR[5, 0] and that BADD occurs with COLOR[4, 1],
COLOR[5, 1], COLOR[6, 0]. No COLOR[j, t] is in common and so these
are now independent events.

The argument works in general. The event REACH[s] is that for 1 ≤
i ≤ t, BADi occurs with the appropriate flip numbers. When a value j ∈ Ω
occurs a second time it has a different flip number. So the events BADi are
mutually independent.

6

7 Analyzing FIXIT

Given a running LOG of FIXIT the various prefixes generate various pyra-
mids. These pyramids cannot be equivalent.

Theorem 7.1 Let t < s and X1, . . . ,Xs ∈ Σ. Then PY R(X1 · · ·Xt) and
PY R(X1 · · ·Xs) cannot be equivalent.

Proof: As PY R(X1 · · ·Xt) ends with Xt and PY R(X1 · · ·Xs) ends with
Xs and the final term in a pyramid can’t be moved under ∼ we would
need Xt = Xs. Then Xt would be part of PY R(X1 · · ·Xs) and thus all of
PY R(X1 · · ·Xt) would be part of PY R(X1 · · ·Xs) and so PY R(X1 · · ·Xs)
would be strictly longer than PY R(X1 · · ·Xt).

For each s ∈ PY R let χ(s) be the indicator random variable for some
s′ ∼ s being some PY R(X1 · · ·Xt). From Theorem 7.1

TLOG =
∑

s∈PY R

χ(s) (10)

Again we need to caution that χ(s) depends on the particular implementa-
tion of FIXIT2a. But we know that REACH[s] is necessary for χ(s) = 1.
This yields the central result:

E[TLOG] ≤
∑

s∈PY R

Pr[REACH[s]] (11)

where Pr[REACH[s]] is given by Theorem 9.
We define a statement [KNUTH] by

[KNUTH]
∑

s∈PYR

Pr[REACH[s]] < ∞ (12)

Theorem 7.2 If [KNUTH] then [SIEVE]. Moreover the expected number of
times that FIXIT algorithm will call [FIXIT3] is at most

∑

s∈PY R

Pr[REACH[s]]

8 Pyramids to Trees

OK, say we are given Σ and for each Ξα ∈ Σ the value pα = Pr[BADα].
Property [KNUTH] is now an analytic statement. There is a lot of beautiful
analysis of [KNUTH] using algebraic combinatorics and some great generating
functions, but here we’ll just show the symmetric result Theorem 1.1.

We will associate to each s = X1 · · ·Xt ∈ PY R a rooted tree T =
TREE(s). For definiteness we fix some ordering of Σ. We place Xt as the
root of the tree. Then for u = t−1 down to 1 we shall determine the parent
of Xu. Suppose this has been done down to Xu+1 and consider Xu. As s is
a pyramid there will be r, u < r ≤ t, with Xu ∩Xr 6= ∅. If there is only one
such r we make Xu the child of Xr. But a critical step occurs when there is
more than one such r. We select that r with Xu ∩ Xr 6= ∅. which is lowest

7

on the rooted tree (that is, furthest from the root) as constructed thus far.
For definiteness (the less important part) if there are still ties we select that
Xr that is earliest in the ordering of Σ.

Suppose a letter Ξ appears twice (or more) in s. The appearances of Ξ
in the tree must then appear in different levels. For if Ξ = Xa = Xb with
a < b then the first criteria means that Xa will be placed at least as low as
a child of Xb. We also deduce that the tiebreaker does break ties, we can’t
have Xu overlapping two copies of Ξ, both at the same level.

Example: With s = ADCFEF as in our previous examples we have
F as the root and define a parent function π working backwards. (We
abuse notation slightly and write π(Ξ) = Ξ′, though Ξ,Ξ′ refer to particular
appearances in the string.) We set π(E) = F . Then π(F) = E (since E is
lower than F). Then π(C) = E, only choice. Then π(D) = C, at the same
level as F = X4 but we use our tiebreaker. Finally π(A) = C, only choice.

Theorem 8.1 If s ∼ s′ then TREE[s] = TREE[s′] Conversely, if s, s′ ∈
PY R and TREE[s] = TREE[s′] then s ∼ s′.

Proof: Suppose s ∼ s′. We can reach s′ from s by transposing noninter-
secting letters so it suffices to consider the case where s = aΞΓb, s′ = aΓΞb

(a, b ∈ Σ∗) and Ξ,Γ not overlapping. But then the choices of the parents of
Ξ and Γ do not interfere with each other.

Conversely, suppose TREE[s] = TREE[s′]. For each j ∈ Ω consider
the positions Xi1 , . . . ,Xir where j appears in s, in the order that they ap-
pear in s. The earlier X’s must appear lower in the tree. So the tree
TREE[s] determines the flip number for j for each of the Xi1 , . . . ,Xir .
When TREE[s] = TREE[s′] the corresponding flip numbers are equal and
so s ∼ s′ by Theorem 5.1.

From Theorem 8.1 we can refer to TREE[s] for s ∈ PY R. Let TR

denote the the family of finite rooted trees T with vertices labelled from Σ
such that if Ξ is the child of Ξ′ then Ξ∩Ξ′ = ∅. For Ξ ∈ Sig, let TRΞ denote
thos T ∈ TR with root Ξ.

For a tree T with nodes labelled X1 · · ·Xt we define its weight w(T) as the
product of the values Pr[BADi], where BADi is the bad event corresponding
to Xi. Thus when T = TREE[s], w(T) = Pr[REACH[s]. We define a
statement [KNUTHWEAK] by

[KNUTHWEAK]
∑

T∈TR

w(T) < ∞ (13)

Theorem 8.2 If [WEAKKNUTH] then [SIEVE].

This is immediate as the sum in (13) is at most the sum in (12). We have
given ground here as not all trees T ∈ TR are possible values of TREE[s].

Example: Continuing our example, assumme lexicographical order on Σ.
the pyramid CAEC would generate a tree with root C having two children
A,E and then the initial C being a child of A, assumming lexicographical
order on Σ. Because of the tiebreaking the tree with root C having two
children A,E and then C being a child of E would not appear as TREE[s]
for any string s.

8

9 The Symmetric Case

We now analyze [KNUTHWEAK] in the symmetric case. For any Ξ ∈ Σ we
define

yΞ =
∑

T

w(T) (14)

where the sum is over all T ∈ TR with Ξ as a root. As Σ is finite it is
necessary and sufficient that all yΞ be finite.

For convenience of exposition we will replace the first two assumptions
of Theorem 1.1 with

1. All Pr[BADα] = p.

2. Each α ∈ I has α ∼ β for precisely d indices β ∈ I

Now we claim that if all the yΞ are finite

yΞ = p
∏

Γ∼Ξ

(1 + yΓ) (15)

This follows from the recursive nature of trees. Every tree with root Ξ has
a factor p corresponding to the root. For each Γ ∼ Ξ there is a factor of
1+yΓ. If Γ is not a child of the root Ξ make the factor one. But when Γ is a
child of the root Ξ we can have any tree with root Γ as the tree “beginning”
from Γ and this would give yΓ.

The existence of a finite system yΞ ≥ p satisfying (15) is thus a necessary
condition for [KNUTHWEAK] but it turns out also to be sufficient. Suppose
y = y(p) satisfies

y = p(1 + y)d and y ≥ p (16)

We claim all yΞ ≤ p. For any i ≥ 0 let yΞ,i denote the sum of w(T) over
T ∈ TR with root Ξ and depth at most i. Then yΞ,0 = p tautologically.
Assume by induction that all yΞ,i−1 ≤ y. Then (15) is modified to

yΞ,i = p
∏

Γ∼Ξ

(1 + yΓ,i−1) ≤ p(1 + y)d = y (17)

Finally, we are left with the Calculus problem, for which p, d is there a
y satisfying (16). We reexpress it as p = y(1 + y)−d. This function of y has
a maximum at y = 1

d−1
, with p = (d − 1)d−1d−d. For this or any smaller p

there is a y by the Intermediate Value Theorem and therefore FIXIT works
and so we have proven Theorem 1.1.

10 Potpourri

10.1 Algorithmic Considerations

If you aren’t familiar with Depth First Search, skip this part!
A stumbling block in a naive application of FIXIT is at step FIXIT2.

Checking all α ∈ I for BADα can be very inefficient. Lets suppose (other
assumptions are interesting as well) that all |Ξ| ≤ a, Ξ ∈ Σ, and that for
each α ∈ I there are at most d β ∈ I with α ∼ β, but that |Σ| = n

9

and consider the asymptotics with a, b fixed and n → ∞. Suppose each
BADα can be checked in time O(1) and each reset FIXIT3 takes time
O(1). Suppose, as is frequently the case, that the parameters are such that
E[TLOG] = O(n). Suppose further we are given a data structure consisting
of the α ∈ I, together with their Ξα, in some order and further for every
α ∈ I a listing of those β ∈ I with β ∼ α.

An efficient approach for FIXIT is then to use a Depth First Search for
FIXIT2. In the outer loop we run through all α ∈ I. The critical part is
that starting at a given α we run Depth First Search. If BADα (elsewise
we are done for that α) we reset Ξα and make a tree consisting of α and all
its ≤ d children β. Now we go to the first such β and see if BADβ. If not
we delete β and move on. If yes we reset Ξβ and add all γ ∼ β as children
of β on the depth first search tree. At the end of the inner loop on α there
would be no BADβ with β coming before α in the ordering. Thus at the
end of the entire procedure there would be no BADα whatsoever.

Suppose that during this inner loop or α there were T1 calls to FIXIT3.
The depth first search tree would have at most d · T1 vertices and so the
actual time for this inner loop (thinking of d fixed) would only be O(T1).
Amortizing, the entire time for the procedure would be O(TLOG) plus O(n)
times BADα was examined in the outer loop and it did not occur.

The end result: Under these moderate assumptions the actual time for
FIXIT is linear in |Σ| – linear in the data size!

10.2 A probabilty musing

LLL is a probability result and the original argument for it is a pure prob-
ability theorem. Here we have found what seems to be a very different
approach. We prove a probability theorem by analyzing an algorithm. One
has to wonder whether the various approaches now known for LLL are really
all the same at some deeper level that has yet to be discovered.

10.3 A Prescient Adversary

The condition (12) implies that FIXIT has bounded E[TLOG] for any im-
plementation of the selection [FIXIT2a]. We can think of the selection
[FIXIT2a] being made adversarially, it can even have randomized choice,
but E[TLOG] remains bounded. But we can say something even stronger.
FIXIT wins against a prescient adversary. That is: suppose that the count-
able number of choices COLOR[j, t] are preprocessed. Now suppose that
our wily adversary sees all of the COLOR[j, t] so that the adversary “knows
the future,” knows what the recolorings are going to be. Even under this
assumption the number of s with REACHs has bounded expected value
and regardless of the choices of the prescient adversary TLOG cannot be
greater than this number!

10

11 References

The original proof of LLL was in 1975 and arguments can be found in many
books, including mine:

Noga Alon, Joel Spencer, The Probabilistic Method (Wiley)

The original result of Robin Moser, modified (and much improved!) by
Gábor Tardos, is at

R. Moser, G. Tardos
A constructive proof of the general Lovász Local Lemma,

Journal of the ACM 57 (2010) (2) Art. 11, 15pp.
Available at arXiv:0903.0544.

The approach taken here is based on

K. Kolipaka, M. Szegedy
Moser and Tardos meet Lovász. STOC 2011: 235-244

enhanced by a work in progress of Donald Knuth.

11

