“Explosive” percolation transitions

(tomorrow: cascades on interdependent networks)
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Networks are increasingly ubiquitous:
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Biological networks

- protein interaction Social networks

- genetic regulation - Immunology
- drug design - Information
- Commerce

(Network: a collection of discrete nodes/vertices connected to others by edges)



The past decade, a “Science of Networks™:
(Physical, Biological, Social)

e Geometric versus virtual (Internet versus WWW).
e Natural /spontaneously arising versus engineered /built.

e Each network may optimize something unique.

e Fundamental similarities and differences N%E‘IJ\ETID]({:IE
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e Interplay of topology and function ?

e Up until now, studied largely
as individual networks in isolation .

NRC, 2005



Achievements of Single Network View
(Goal : Intuition, prediction, design, control)
e Power law (broad scale) degree distributions ubiquitous.

e Small world effect (small diameter and local clusters).

e Vulnerability to “hub” removal
resilience to random removal.

e Percolation, spreading and
epidemics (phase transitions)

e Cascades.

e Synchronization.

e Random walks / Page rank.

¢ Communities / modules.



In reality a collection of interacting networks:
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Biological networks

- protein interaction Social networks

- genetic regulation - Immunology
- drug design - Information
- Commerce

e E-commerce - WWW — Internet — Power grid — River networks.

e Biological virus — Social contact network — Transportation networks —
Communication networks — Power grid — River networks.



Modeling networks as random graphs

e Erdos and Rényi random graphs (1959, 1960).
Phase transition.

e Configuration models (Bollobas 1980, Molloy & Reed RSA 1995).

@ ./ %/ o é Node degree is number of edges.

e Preferential attachment (Barbasi-Albert 1999, etc.)

e Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar,
Tomkins, Upfal FOCS 2000), including duplication/mutation
(Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)

e Random graphs analysis considers the ensemble of all graphs
that can be constructed consistent with specified properties.




Configuration models

e (Bollobas 1980, Molloy & Reed RSA 1995).

e Enumerating over the ensemble of all networks with specified
degree distribution. {p;} is fraction of nodes with degree k.

e To generate an instance: Begin with isolated nodes with half-
edges and do a random matching. (Self-edges & multiple edges possible).

O ./ # % e é Node degrees sampled from Dy

e Probability generating functions G(x) = >, piz”, allow us
to calculate moments/properties of the ensembile.

c.f. Newman, Watts, Strogatz, “Random graphs with arbitrary degree distributions and

their applications” PRE 2001.



Does a random graph really model an individual engineered
or biological system?

e Ensemble (mean-field) not necessarily representative!
Doyle, et. al., PNAS 102 (4)2005.
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same deg dist, p;:

e Neglects design principles: Redundancy, degree correlations, local
optimization (Although D’Souza, et. al. PNAS 2007), ...

e M. E. J. Newman PRL 103 (2009) — Augment degree by adding in small
motifs (i.e., triangles). See also work by J. Gleeson.



The “classic” random graph, G(n, p)

e P. Erdds and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.

e P. Erdds and A. Rényi, “On the evolution of random graphs”,
Publ. Math. Inst. Hungar. Acad. Sci. 1960.

e E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.
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What does the resulting graph look like?
(Typical member of the ensemble)
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p = 1/200 = 0.005

p = 1/400 = 0.0025
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Emergence of a unique “giant component”
Phase transition in connectivity

00 0.5

1.0

1.5
pN

2.0

2.5

3.0

e p.=1/n.

® D < Pe, Cmax ~ log(n)

® P = De

.p>p05

Omax ~ TL2/3

Chax ~ A -n

Expected # of edges per node

t=e/n=pn-—1)/2
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te=1/2




Erdos-Rényi: unique “giant component”
ot <1/2, Cpax~ O(Inn)
ot =1/2, Cpax =n?/>
ot >1/2, Chpax~ An, with A >1 2
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e [he critical window
Bollobas, Trans. Amer. Math. Soc., 286 (1984). s 1o s 2o 75
Luczak, Random Structures and Algorithms, 1 (1990). ‘

0.0

t=1+n"132 (wheret=2e/n)

e Mean field critical exponents
e.g., Grimmett, Percolation. 2nd Edition. Springer-Verlag. 1999.
X~ (te—t)77, with~v = 1.
where y is the expected size of the component to which an arbitrarily
chosen vertex belongs.



Is connectivity a good thing?
(Context dependence)

C/n

e Communications, Transportation, Synchronization, ... versus

e Spread of human or computer viruses



Can any limited perturbation change the phase transition?
[Bohman, Frieze, RSA 19, 2001]

[Achlioptas, D’Souza, Spencer, Science 323, 2009]

Possible to Enhance or Delay the onset?

The “Product Rule”

— Choose two edges at random each step.
— Add only the desirable edge and discard the other.

*\* */"'

(Enhance) (Delay)

The Power of Two Choices in randomized algorithms.
Azar; Broder; Mitzenmacher; Upfal; Karlin;



ProdRule: Explicit example
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e Prode; = (7) x (2) = 14
e Prode; = (4) x (4) = 16

e [0 enhance choose e;. To delay choose e;.



Product Rule

G -
e Enhance — similar to ER
but with earlier onset.
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e Delay —
Extremely abrupt
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The scaling window, A from »n'/2 to 0.5n

e Let ¢, denote the last edge added for which C,,,q. < n'/2.
(Recall ER has n?/3 at t..)

e Let e; denote the first edge added for which C,,,.. > 0.5n.
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In terms of edge density or “time”, t., where t = ¢/n
(Note, for ER, t. = 1/2)

e Fort <t,, Couw < ni/2

o Fort >t., Cpax > 0.5m.
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Jumps “instantaneously” from C,,,. = n'/? to 0.5n.



Why this is surprising

Percolation theory on networks and lattices serves as a
theoretical underpinning for :

e Onset of epidemic spreading
e Flow through porous media / random transport

e Vulnerability and resilience of networks

— Many prior variants (bond, site, directed, ...) on many types of
networks and lattices; All continuous transitions.

— Continuous phase transitions are accompanied by critical
scaling which can provide warning signs.



“Explosive Percolation in Random Networks”

From n” to greater than 0.6n “instantaneously”
(Compelling evidence that the transition is discontinuous)

C'hax jumps from sublinear 1/

to > 0.5nin nﬁ edges, with 5,v < 1.
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Achlioptas, D’Souza, Spencer, Science, 323 (5920), 2009




Many more EP systems and mechanisms now discovered
(Condensed list here)

Lattice percolation, power law graphs, cluster aggregation:

R. Ziff, Phys. Rev. Lett. 103, 045701 (2009).

Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009).
F. Radicchi, S. Fortunato, Phys. Rev. Lett. 103, 168701 (2009).

E. J. Friedman, A. S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009).

Y.S. Cho, B. Kahng, D. Kim, Phys. Rev. E (R), 2010.

R. M. D’'Souza, M. Mitzenmacher, Phys. Rev. Lett. 104, 195702 (2010).

Araujo, Andrade Jr, Ziff, Herrmann, Phys. Rev. Lett. 106, 095703 (2011).
Hooyberghs, Van Schaeybroeck, Phys. Rev. E 83, 032101 (2011).
Gomez-Gardenes, Gomez, Arenas, Moreno, Phys. Rev. Lett. in press.

Observed in real world:

Rozenfeld, Gallos, Makse; Eur. Phys. J. B, 75, 305-310, (2010). (PHN)

Pan, Kiveld, Jari Saramaki, Kaski, Kertész, Phys. Rev. E 83, (2011). (Communities)
Y. Kim, Y.-k. Yun, and S.-H. Yook, Phys. Rev. E 82, 061105 (2010). (Nanotubes)
Growth of Wikipedias (Bounova, personal communication.)

Alternate mechanisms (with out competition):

e Araujo, Herrmann, Phys. Rev. Lett. 105, 035701 (2010).

W. Chen, R. M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011).



Beyond “Product Rule”: Models with fixed choice

e “Achlioptas process”. examine fixed number of edges, add the one that
optimizes a pre-set criterion.

“Sum rule”, Adjacent edge, Triangle rule, k-clique rule, etc., all also work.

e Novel subcritical behavior : components are similar in size; many

almost linear size components
Rank-size top 1000 at t=t_c
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e Applications: Community detection, Minimizing interference in wireless

networks, Wikipedia growth....



“Explosive Percolation”: Some caveats

“Weakly discontinuous” :

AChmax, the biggest change in C; due to addition of a single edge, decays
with system size. (Nagler, et. al, Nature Physics, 2011).

In limit n — oo, fixed choice rules are continuous!

— da Costa, Dorogovtsev, Goltsev, Mendes, Phys. Rev. Lett. 105, (2010).
— Riordan and Warnke, Science 333, (2011).

Infinite choice : if number of choices £ — oo as number of nodes n — oo,
this is sufficient for discontinuous transition.

e.g. k =log(n).

As n — oo, jump ACnax — 0, but for n ~ 10*®, AC.x can be of size 0.1n.
The n — oo limit is not the regime of real-world networks.
e.g., social networks n < 101°



Percolation as cluster aggregation models

e Excellent review on percolation as cluster aggregation:

D. J. Aldous, “Deterministic and stochastic models for coalescence
(aggregation and coagulation): A review of the mean-field theory for
probabilists”, Bernoulli, 5(1): 348, 1999.

(Scientific Modeling (SM) mathematics rather than Theorem-Proof (TP) mathematics.)

e Assume each edge merges two previously distinct components, with
probability of connecting a component of size = and one of size y,
proportional to kernel K (z,y).

®
o o %%
K(z,y) =1 uniform attachment / size independent o e ®
o O ""—,__‘ O o
K(z,y) = vy “gravitational attraction”/ this is Erdés-Rényi. 0 o e®  © i 5
®
(Fgravity — —MlMg/’F%Q) C;*o O o eZOQ
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Smoluchowski family of coagulation equations

e Given kernel K(x,y)
e Evolution of n(z,t), the expected number of clusters of size = at time t¢.

e Mean-field over all graphs (ensemble properties)

d 151

%n(az,t):§;K(y,x—y)n(y,t)n(x—y, —’n,:r; t ;K



Smoluchowski approach to “Explosive Percolation”

e Y.S. Cho, B. Kahng, D. Kim; Phys. Rev. E 81, 030103(R), 2010.
“Cluster aggregation model for discontinuous percolation transition”

e R.D. and M. Mitzenmacher, “Local cluster aggregation models of explosive
percolation”, Phys. Rev. Lett., 104, 2010.

Adjacent edge: Let z; = in(¢,t) (fraction of nodes) QAE.
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e S. S. Manna and Arnab Chatterjee “A new route to Explosive Percolation”,
Physica A 390, 177182 (2011).

e R. A.daCosta, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, “Explosive

Percolation’ Transition is Actually Continuous”, Phys. Rev. Lett. 105,
255701 (2010).



da Costa, et al PRL 2010

Define P(s,t) = sn(s,t)/ (s), distribution of finite component sizes to which
a randomly chosen vertex belongs.

Use a (mean-field) Smoluchowski-type eqn:

8P —SZQUt (v,t) — 2sQ(s, 1)

Size of largest component, S(t) =1 — 3, P(s,t) 2 1 — 1% p(s, #).

If assume P(s,t.) is distributed according to a power law, obtain
the main result: critical behavior, S(t) ~ (t — t.)”, with 3 = 0.0555 ~ 1/18.

Jump: AS = S(t(J:r) - S(tc) — S(t+) - O(n) ~ (tj:_ - tc)ﬁ — (1/72)6
If n =108, jump = 0.1 n ... ten percent of system!

Are any real social or technological networks of size n ~ 10'® ?



Riordan and Warnke, Science 2011

Rigorous proof: Any fixed choice process ultimately continuous!
Proof by contradiction. (“The vanishing ‘powder keg™)

A, the scaling window from our PR simulations, will ultimately crossover to
linear in n, but no estimate of crossover length from these arguments.

Moreover, AP’s can be nonconvergent (no scaling limit). (arXiv.1111.6177)

Typically assume lim,, .., C; = A(t)n once t > t.

L1(max)

(That there is a function A(t) that describes O e —
the growth of C'; in the supercritical regime.)

04

0.2

0.8 0.81 0.82

translated into physics terminology:

“Achlioptas processes are not always self-averaging”, to appear PRE



Beyond choice and competition:
Discontinuous percolation other mechanisms

Control only of the largest cluster

— Araujo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster.
Phys. Rev. Lett. 105, 035701 (2010).

— Araujo, et. al. Tricritical point in explosive percolation. Phys. Rev. Lett. 106, (2011).
(‘tri-critical” points separate region of 1st order (discontinuous) from 2nd order (continuous)
transitions).

— W. Chen and R.D. Phys. Rev. Lett. 83 (2011).
Cooperative phenomena

— Bhizani, Paczuski, Grassberger “Discontinuous percolation transitions in epidemic
processes, surface deppining in random media and Hamiltonian graphs”. in press PRE

Correlated percolation
— L. Cao, J. M. Schwarz, "Correlated percolation and tricriticality”, arXiv:1206.1028

Dressing up a simple structure (one-dim lattice with hierarchy of long-
range bonds) Boettcher, Singh, Ziff, Nature Communications, 3:787 (2012).

Restricted Erdos-Rényi: Choose one node at random, one from restricted
set. Panagiotou, et. al. Elec. Notes. Disc. Math. 2011.



A deterministic model

Friedman, Landsberg PRL (2009); Rozenfeld, et. al. EPJB (2010);
Nagler, Levina, Timme, Nature Phys. (2011)

e (a) Phase k£ = 2, merge all (a) b)
isolated nodes into pairs. !

e (b) Phase k£ = 4, merge pairs © o e o 1t

into size 4 components. c o o o & 4
. (d)
e (c) Phase k = 8, merge pairs —t 7
of 4’s into 8’s. | Y G SR
. etC ® ——o ®

® O

(From Rozenfeld, et. al.)

e At edge e = n (time t = 1) one giant of size n emerges

(Giant emerges when only one ¢

omponent remains)



Re-visiting the Bohman Frieze Wormald model (BFW)
(Random Structures & Algorithms, 25(4):432-449, (2004))

A stochastic model, which exams a single-edge at a time.
Like deterministic, start with n isolated vertices, and stage k = 2.
Sample edges uniformly at random from the complete graph on n nodes.

Can reject edges provided the fraction of accepted remains greater than a
function decaying with phase k. Let:

sl

u be number of edges sampled, 1 ER, g(k)=1
t be the number accepted: (@) =
0.9} B
—B=0.5
Fraction of accepted edges, 0.8} B=1.0
® o7l | BFW _E:io

t/u>g(k) =1/2 + (2k)~1/2

0.6

0.5

(Note: limy_, o g(k) — 1/2)

0.4 ; :
2 100 10000 100000

k



The BFW model
e Start with n isolated vertices, and cap on maximum component setto £ = 2.

e Examine an edge selected uniformly at random from the complete graph:

1. If the resulting component size < k, accept the edge.

1.00 p=

2. Otherwise reject that edge if possible
(meaning the fraction of accepted 10
edges t/u > g(k)). 0.8

3. Else augment £ — k£ + 1, and repeat e

(1) and (2), with (3) if necessary. 0.4
(Step 3 executes for “troubling edge”) 0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

When troubling edge encountered, £k — k + 1 until either: i

— The edge can be rejected due to sufficient decrease of g(k)
— The edge can be accepted due to k large enough.



The BFW model stated formally

Initially » isolated nodes with cap on maximum size set to k = 2.
Let u denote the total number of edges sampled

A the set of accepted edges (initially A = ()

t = |A| the number of accepted edges.

At each step u, select edge e,, uniformly at random from complete graph, and
apply the following loop:

Set [ = maximum size component in AU {e,}
if (1<k){
A+ AU{e,}
u—u+1 }
else if (t/u<g(k)){ k< k+1 }
else { u<u+1 }

e If the edge ¢, is troubling and ¢/u < g(k), augment k repeatedly until either:

(1)  k increases sufficiently that e, is accepted or
(7¢) g(k) decreases sufficiently that e, is rejected.



Simultaneous emergence of multiple stable giants

in a strongly discontinuous transition
(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

e [wo stable giants!

— Fraction of internal cluster edges > 1/2.

(C; = 0.570, Cy = 0.405.)

— (If restrict to sampling only edges that

span clusters, only one giant ultimately.)
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Tuning the number of stable giants
(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

e Now let g(k) = a + (2k)~'/2. Smaller o more edges can be rejected.
« determines number of stable giants!

05
@l .,
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0.2t Cs
\ 0.1
08 10 % 05
- méq n . t/n

e Multiple stable giants, not anticipated.
(“uniqueness of the giant component” / gravitational coalescence of

Smoluchowski kernel K (z,y) = xy)

e Applications for multiple giants? (Communications, epidemiology, building
blocks for modular networks, polymerization (Krapivsky, Ben-Naim)...)



Evolution of component density for BFW

5 =0.5 B =2.0
107" :
N=10: Tt
5 t/n=0.96 = NG 4 ¥n=093 | —o— Na10°
2N "\ —&— N=10° | - —o— N=10°
2 \ﬁ\ gy N=10
107} S é}
0 0
€ =4 10° 10*
107"} °
—e—1/n=0.95 t/n=0.92
= —e—{/n=0.96 t/n=0.93
10 7 —e—1/n=0.97 t/n=0.94
—e— critical point critical point
-6 IO D O q
, 105 2 Y o 4 6
10 10 10 10 10 10
S S

e For 3 = 0.5 no scaling. Separates into components of size O(n) and < log(n).

e For 5 = 0.5 and 8 = 2.0 no finite size effects in the location of the “hump” (inset), unlike
for PR where location depends on n. (c.f. Lee, Kim, Park: data collapse)

e No scaling, no “early warning signs” (Scheffer, et. al. Nature (2009).



Deriving the underlying mechanism:
Slow decay of g(k) leads to growth by overtaking
(Wei Chen and R.D, arXiv:1106.2088)

o Instead of g(k) = 1/2 + (2k)~%? nowlet g(k) =1/2+ (2k)~"

e Procedure: analyze by how much k£ must grow before ¢(k) would decrease
sufficiently to reject troubling edge.

5 100 10000 1000001
K



e For 3 € (0.5,1], an increase in k ~ nP is always sufficient to reject a
troubling edge. Slow increase in kK means:

— Growth by overtaking*: two smaller components merge becoming new C;.
— Multiple components of size O(n) before the largest jump.

0.7 - ' 1
C
0.6/ %j; : ° (c)
——C, | (b) 0.8} C,
0.5¢
0.7 1 ]
04l 06 06/ 08
0.5
03l 04 0.6
0.3 0.4 0.4
0.2
0.2r 0.1 0.2
0.1t 0976 0.978  0.98§% 0.95 0.9505 0.951 0.9515
t/h t/n

00 05 1 1.5 0 0.5 1 1.5
t/n t/n

e For 3 > 1, once stage k = n'/#, troubling edges must be accepted at times,
leading to large direct growth of C';, and a weakly discontinuous transition.

* Consistent with Nagler, et. al., Nature Phys (2011), for direct growth forbidden.



More generally, macroscopic jump means:
Multiple giants coexist in critical window

e Note, we define as the critical point
t., the single edge who’s addition causes the biggest change, AC,.
(Recall C is the fraction of nodes in the largest component.)

e If AC, > 0 there necessarily existed another macroscopic component. e.g.
If AC, = 0.1 that means C; merged with a component of size |C;| = 0.1n.

e Let ¢/ denote emergence of giant.

1.0

e Let . denote largest jump in C4
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“Explosive Percolation™
Conclusions & Future Directions:

e Delaying percolation leads to abrupt connectivity transition.

e Finite choice results in continuous transition for n — oo. But large jumps
(e.g., 0.2n to 0.5n) for sizes of real-world networks (n=101°)
Can we develop a rigorous finite size scaling theory?

o Ist. =17

e Mechanisms:
— log(n) choices (i.e. infinite choice)
— evolving cap on largest component,
— cooperation / correlations
— specialized structures (e.g., hierarchical small world 1-D lattices,
restricted Erdos-Rényi)

e Applications based on keeping clusters distributed in space and of similar
size — community structure detection, wireless networks, going viral
through local community growth....



Tomorrow?

Methods

Probability generating functions / configuration models
Cluster aggregation evolution equations / Smoluchowski equations

Multitype branching processes

Models

Cascades on interconnected networks



