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Networks are increasingly ubiquitous:

Networks:

Transportation
Networks/
Power grid
(distribution/
collection networks)

Biological networks
- protein interaction
- genetic regulation
- drug design

Computer
networks

Social networks
- Immunology
- Information
- Commerce

(Network: a collection of discrete nodes/vertices connected to others by edges)



The past decade, a “Science of Networks”:
(Physical, Biological, Social)

• Geometric versus virtual (Internet versus WWW).

• Natural /spontaneously arising versus engineered /built.

• Each network may optimize something unique.

• Fundamental similarities and differences
to guide design/understanding/control.

• Interplay of topology and function ?

• Up until now, studied largely
as individual networks in isolation .

NRC, 2005



Achievements of Single Network View
(Goal : Intuition, prediction, design, control)

• Power law (broad scale) degree distributions ubiquitous.

• Small world effect (small diameter and local clusters).

• Vulnerability to “hub” removal
resilience to random removal.

• Percolation, spreading and
epidemics (phase transitions)

• Cascades.

• Synchronization.

• Random walks / Page rank.

• Communities / modules.



In reality a collection of interacting networks:

Networks:

Transportation
Networks/
Power grid
(distribution/
collection networks)

Biological networks
- protein interaction
- genetic regulation
- drug design

Computer
networks

Social networks
- Immunology
- Information
- Commerce

• E-commerce→WWW→ Internet→ Power grid→ River networks.

• Biological virus → Social contact network → Transportation networks →
Communication networks→ Power grid→ River networks.



Modeling networks as random graphs

• Erdős and Rényi random graphs (1959, 1960).
Phase transition.

• Configuration models (Bollobás 1980, Molloy & Reed RSA 1995).

. . . 
Node degree is number of edges.

• Preferential attachment (Barbási-Albert 1999, etc.)

• Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar,
Tomkins, Upfal FOCS 2000), including duplication/mutation
(Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)

• Random graphs analysis considers the ensemble of all graphs
that can be constructed consistent with specified properties.



Configuration models

• (Bollobás 1980, Molloy & Reed RSA 1995).

• Enumerating over the ensemble of all networks with specified
degree distribution. {pk} is fraction of nodes with degree k.

• To generate an instance: Begin with isolated nodes with half-
edges and do a random matching. (Self-edges & multiple edges possible).

. . . 
Node degrees sampled from pk.

• Probability generating functions G(x) =
∑
k pkx

k, allow us
to calculate moments/properties of the ensemble.
c.f. Newman, Watts, Strogatz, “Random graphs with arbitrary degree distributions and

their applications” PRE 2001.



Does a random graph really model an individual engineered
or biological system?

• Ensemble (mean-field) not necessarily representative!
Doyle, et. al., PNAS 102 (4)2005.

All these have
same deg dist, pi:

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Neglects design principles: Redundancy, degree correlations, local
optimization (Although D’Souza, et. al. PNAS 2007), ...

• M. E. J. Newman PRL 103 (2009) – Augment degree by adding in small
motifs (i.e., triangles). See also work by J. Gleeson.



The “classic” random graph, G(n, p)

• P. Erdős and A. Rényi, “On random graphs”, Publ. Math. Debrecen. 1959.
• P. Erdős and A. Rényi, “On the evolution of random graphs”,

Publ. Math. Inst. Hungar. Acad. Sci. 1960.
• E. N. Gilbert, “Random graphs”, Annals of Mathematical Statistics, 1959.
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• Start with n isolated vertices.

• Consider each possible edge, and
add it with probability p.

What does the resulting graph look like?
(Typical member of the ensemble)



G(n=300,p)
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p = 1/400 = 0.0025 p = 1/200 = 0.005



Emergence of a unique “giant component”
Phase transition in connectivity

• pc = 1/n.

• p < pc, Cmax ∼ log(n)

• p = pc, Cmax ∼ n2/3

• p > pc, Cmax ∼ A · n

Expected # of edges per node

t = e/n = p(n− 1)/2

so tc = 1/2

A continuous transition at pc = 1/n or equivalently tc = 1/2.



Erdős-Rényi: unique “giant component”

• t < 1/2, Cmax ∼ O(lnn)

• t = 1/2, Cmax = n2/3

• t > 1/2, Cmax ∼ An, with A > 1

• The critical window
Bollobás, Trans. Amer. Math. Soc., 286 (1984).
Luczak, Random Structures and Algorithms, 1 (1990).

t = 1 + λn−1/3 (where t = 2e/n)

• Mean field critical exponents
e.g., Grimmett, Percolation. 2nd Edition. Springer-Verlag. 1999.

χ ∼ (tc − t)−γ, with γ = 1.
where χ is the expected size of the component to which an arbitrarily
chosen vertex belongs.



Is connectivity a good thing?
(Context dependence)

• Communications, Transportation, Synchronization, ... versus

• Spread of human or computer viruses



Can any limited perturbation change the phase transition?
[Bohman, Frieze, RSA 19, 2001]

[Achlioptas, D’Souza, Spencer, Science 323, 2009]

• Possible to Enhance or Delay the onset?

• The “Product Rule”
– Choose two edges at random each step.
– Add only the desirable edge and discard the other.

(Enhance) (Delay)

• The Power of Two Choices in randomized algorithms.
Azar; Broder; Mitzenmacher; Upfal; Karlin;



ProdRule: Explicit example
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(A) (B)

e1

e2

• Prod e1 = (7)× (2) = 14

• Prod e2 = (4)× (4) = 16

• To enhance choose e2. To delay choose e1.



Product Rule

• Enhance – similar to ER
but with earlier onset.

• Delay –
Extremely abrupt



The scaling window, ∆ from n1/2 to 0.5n

• Let e0 denote the last edge added for which Cmax < n1/2.
(Recall ER has n2/3 at tc.)

• Let e1 denote the first edge added for which Cmax > 0.5n.

• Let ∆ = e1 − e0.
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  Rel Err 
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o < 0.015
o < 0.01
o < 0.005

1x106 4x106 8x106 32x106

0.4 0.6

n n

#
$n

#
$n

2/
3

(A)

(D)(C)

(B)

ER (and BF) ∆ ∼ n PR ∆ ∼ n2/3.

PR From n1/2 to 0.5n in number of edges that is sublinear in n.



In terms of edge density or “time”, tc, where t = e/n

(Note, for ER, tc = 1/2)

• For t < tc, Cmax < n1/2.

• For t > tc, Cmax > 0.5n.
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+ e
1
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= 0.88809
+ 0.015n-0.24

t

Jumps “instantaneously” from Cmax = n1/2 to 0.5n.



Why this is surprising

Percolation theory on networks and lattices serves as a
theoretical underpinning for :

• Onset of epidemic spreading

• Flow through porous media / random transport

• Vulnerability and resilience of networks

– Many prior variants (bond, site, directed, ...) on many types of
networks and lattices; All continuous transitions.

– Continuous phase transitions are accompanied by critical
scaling which can provide warning signs.



“Explosive Percolation in Random Networks”
From nγ to greater than 0.6n “instantaneously”

(Compelling evidence that the transition is discontinuous)

Cmax jumps from sublinear nγ Nontrivial Scaling behaviors
to≥ 0.5n innβ edges, with β, γ < 1 . γ+ 1.2β = 1.3 for A ∈ [0.1, 0.6]
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Many more EP systems and mechanisms now discovered
(Condensed list here)

Lattice percolation, power law graphs, cluster aggregation:
• R. Ziff, Phys. Rev. Lett. 103, 045701 (2009).
• Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009).
• F. Radicchi, S. Fortunato, Phys. Rev. Lett. 103, 168701 (2009).
• E. J. Friedman, A. S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009).
• Y.S. Cho, B. Kahng, D. Kim, Phys. Rev. E (R), 2010.
• R. M. D’Souza, M. Mitzenmacher, Phys. Rev. Lett. 104, 195702 (2010).
• Araújo, Andrade Jr, Ziff, Herrmann, Phys. Rev. Lett. 106, 095703 (2011).
• Hooyberghs, Van Schaeybroeck, Phys. Rev. E 83, 032101 (2011).
• Gomez-Gardenes, Gomez, Arenas, Moreno, Phys. Rev. Lett. in press.

Observed in real world:
• Rozenfeld, Gallos, Makse; Eur. Phys. J. B, 75, 305-310, (2010). (PHN)
• Pan, Kivelä, Jari Saramäki, Kaski, Kertész, Phys. Rev. E 83, (2011). (Communities)
• Y. Kim, Y.-k. Yun, and S.-H. Yook, Phys. Rev. E 82, 061105 (2010). (Nanotubes)
• Growth of Wikipedias (Bounova, personal communication.)

Alternate mechanisms (with out competition):
• Araújo, Herrmann, Phys. Rev. Lett. 105, 035701 (2010).
• W. Chen, R. M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011).



Beyond “Product Rule”: Models with fixed choice

• “Achlioptas process”: examine fixed number of edges, add the one that
optimizes a pre-set criterion.
“Sum rule”, Adjacent edge, Triangle rule, k-clique rule, etc., all also work.

• Novel subcritical behavior : components are similar in size; many
almost linear size components

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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• Applications: Community detection, Minimizing interference in wireless
networks, Wikipedia growth....



“Explosive Percolation”: Some caveats

• “Weakly discontinuous” :

∆Cmax, the biggest change in C1 due to addition of a single edge, decays
with system size. (Nagler, et. al, Nature Physics, 2011).

• In limit n→∞, fixed choice rules are continuous!

– da Costa, Dorogovtsev, Goltsev, Mendes, Phys. Rev. Lett. 105, (2010).

– Riordan and Warnke, Science 333, (2011).

• Infinite choice : if number of choices k → ∞ as number of nodes n → ∞,
this is sufficient for discontinuous transition.
e.g. k = log(n).

• As n→∞, jump ∆Cmax → 0, but for n ∼ 1018, ∆Cmax can be of size 0.1n.

The n→∞ limit is not the regime of real-world networks.

e.g., social networks n ≤ 1010



Percolation as cluster aggregation models

• Excellent review on percolation as cluster aggregation:

D. J. Aldous, “Deterministic and stochastic models for coalescence
(aggregation and coagulation): A review of the mean-field theory for
probabilists”, Bernoulli, 5(1): 348, 1999.

(Scientific Modeling (SM) mathematics rather than Theorem-Proof (TP) mathematics.)

• Assume each edge merges two previously distinct components, with
probability of connecting a component of size x and one of size y,
proportional to kernel K(x, y).
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e1

e2

K(x, y) = 1 uniform attachment / size independent

K(x, y) = xy “gravitational attraction” / this is Erdős-Rényi.

(Fgravity = −M1M2/r
2
12)



Smoluchowski family of coagulation equations

• Given kernel K(x, y)

• Evolution of n(x, t), the expected number of clusters of size x at time t.

• Mean-field over all graphs (ensemble properties)

d

dt
n(x, t) =

1

2

x−1∑

y=1

K(y, x− y)n(y, t)n(x− y, t)− n(x, t)

∞∑

y=1

K(x, y)n(y, t)



Smoluchowski approach to “Explosive Percolation”

• Y.S. Cho, B. Kahng, D. Kim; Phys. Rev. E 81, 030103(R), 2010.
“Cluster aggregation model for discontinuous percolation transition”

• R.D. and M. Mitzenmacher, “Local cluster aggregation models of explosive
percolation”, Phys. Rev. Lett., 104, 2010.
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AEAdjacent edge: Let xi = in(i, t) (fraction of nodes)
dxi
dt = −ixi − i(2xiSi − x2i ) + i

∑
j+k=i xj(2xkSk − x2k)

• S. S. Manna and Arnab Chatterjee “A new route to Explosive Percolation”,
Physica A 390, 177182 (2011).

• R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, “‘Explosive
Percolation’ Transition is Actually Continuous”, Phys. Rev. Lett. 105,
255701 (2010).



da Costa, et al PRL 2010

• Define P (s, t) = sn(s, t)/ 〈s〉, distribution of finite component sizes to which
a randomly chosen vertex belongs.

• Use a (mean-field) Smoluchowski-type eqn:

∂P (s, t)

∂t
= s

∑

u+v=s

Q(u, t)Q(v, t)− 2sQ(s, t)

• Size of largest component, S(t) = 1−∑
iP (s, t) ∼= 1−∑106

i=1P (s, t).

• If assume P (s, tc) is distributed according to a power law, obtain
the main result: critical behavior, S(t) ∼ (t− tc)β, with β = 0.0555 ≈ 1/18.

• Jump: ∆S = S(t+c )− S(tc) = S(t+c )− o(n) ∼ (t+c − tc)β = (1/n)β

• If n = 1018, jump = 0.1 n ... ten percent of system!

Are any real social or technological networks of size n ∼ 1018 ?



Riordan and Warnke, Science 2011

• Rigorous proof: Any fixed choice process ultimately continuous!

• Proof by contradiction. (“The vanishing ‘powder keg’”)

• ∆, the scaling window from our PR simulations, will ultimately crossover to
linear in n, but no estimate of crossover length from these arguments.

• Moreover, AP’s can be nonconvergent (no scaling limit). (arXiv.1111.6177)

Typically assume limn→∞C1 = A(t)n once t > tc

(That there is a function A(t) that describes
the growth of C1 in the supercritical regime.)

2

containing vi. The first rule, the NG rule, proceeds as
follows. If all three component sizes ci are equal, add
v1v2. If exactly two component sizes ci are equal, con-
nect the corresponding vertices with an edge. Otherwise
(if all ci are different) join the vertices in the two small-
est components. This rule is named after Nagler and
Gutch, who suggested a slight variant in a different con-
text (personal communication). It can also be seen as a
modification of the ‘triangle rule’ introduced in [6, 9].

The second rule we consider can be viewed as a ‘mod-
ified’ ER process and thus we use the shorthand ‘mER’;
it is defined as as follows. If the two largest components
in the current graph have the same size (L1 = L2 holds),
add v1v2. Otherwise we have L1 > L2 and do the fol-
lowing. If at least two ci are equal to L1, connect two
corresponding vertices; else connect two vertices in com-
ponents of size smaller than L1.

Note that mER is, in contrast to NG, in some sense
not a ‘local’ rule, since it uses ‘global’ information about
the maximum component sizes (although the rule can in
principle ‘compute’ these values on its own, depending
on which information it receives in each round).

MATHEMATICAL PRELIMINARIES

Remark 9 in [16] implies that whp (i.e., with proba-
bility tending to 1 as n → ∞) the following two prop-
erties hold throughout the entire evolution of !-vertex
processes: (i) the sum of the sizes of the ! − 1 largest
components changes by at most o(n) in any o(n) steps,
and (ii) there exists a function s = s(n) such that the
!-th largest component always has size at most s = o(n).

Using (i) and (ii) we now deduce an additional prop-
erty of the !−1 largest components. The crucial observa-
tion is that vertices in components of size greater than s
must always be contained in the largest !−1 components
by (ii). So, by distinguishing between those components
with size ≤ s and > s, it is easy to see that (i) and (ii)
imply the following: (iii) the vertex set of the union of
the ! − 1 largest components changes by at most o(n)
vertices in any o(n) steps.

In particular, this shows that (whp) the size of the
largest component can ‘jump’, i.e., change by Θ(n) ver-
tices in o(n) steps, only if there is a step where two linear
size giants merge to form the new largest component. For
!-vertex rules this strengthens some of the main conclu-
sions in [20]. Indeed, this shows that the obvious suffi-
cient criterion used in [20], namely to look at the largest
one-step change of L1, is in fact the correct one for de-
tecting ‘jumps’ of !-vertex rules.

 0
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FIG. 1. (Color online). Simulation of L1(tn)/n as a function
of t = m/n for the NG rule: min, max, average (1000 runs)
and five sample runs (n = 1011).

MAIN RESULTS

We now turn to the main topic of this letter, namely
the question of whether certain rules have deterministic
scaling limits or not. We claim that for the NG and
mER rules the corresponding scaling limits ρNG(t) and
ρmER(t) do not exist. To put this into perspective, let
us remark that one can easily construct rules which are
not convergent. For example, using the rule suggested in
Section 3 of [16] we can first ‘grow’ !−1 giant components
of similar size, and then, after some random time, we
switch the rule (say we always add the first edge v1v2) in
order to join up all giants quickly. However, such rules
are clearly unnatural, specifically tailored to achieve the
nonconvergent behaviour. In contrast, the mER, and
in particular the NG rule, are natural examples which
nevertheless do not have deterministic scaling limits.

The key property of both rules (NG and mER) is
that they prevent the largest component from growing as
long as the two largest components have different sizes
(L1 > L2 holds). But, whenever we have two linear size
giants of the same size, they merge with constant prob-
ability (recall that by property (ii) we can have at most
two such giants as here ! = 3). If this happens then L1
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translated into physics terminology:

“Achlioptas processes are not always self-averaging”, to appear PRE



Beyond choice and competition:
Discontinuous percolation other mechanisms

• Control only of the largest cluster
– Araujo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster.
Phys. Rev. Lett. 105, 035701 (2010).

– Araujo, et. al. Tricritical point in explosive percolation. Phys. Rev. Lett. 106, (2011).
(‘tri-critical” points separate region of 1st order (discontinuous) from 2nd order (continuous)
transitions).

– W. Chen and R.D. Phys. Rev. Lett. 83 (2011).

• Cooperative phenomena
– Bhizani, Paczuski, Grassberger ”Discontinuous percolation transitions in epidemic
processes, surface deppining in random media and Hamiltonian graphs”. in press PRE

• Correlated percolation
– L. Cao, J. M. Schwarz, ”Correlated percolation and tricriticality”, arXiv:1206.1028

• Dressing up a simple structure (one-dim lattice with hierarchy of long-
range bonds) Boettcher, Singh, Ziff, Nature Communications, 3:787 (2012).

• Restricted Erdős-Rényi: Choose one node at random, one from restricted
set. Panagiotou, et. al. Elec. Notes. Disc. Math. 2011.



A deterministic model
Friedman, Landsberg PRL (2009); Rozenfeld, et. al. EPJB (2010);

Nagler, Levina, Timme, Nature Phys. (2011)

(a) (b)

(d)

(c)

(e)

FIG. 1: Deterministic model leading to explosive percolation. In (a) we start with N nodes without

links. In (b) we connect nodes in pairs. In (c) and (d) we iteratively connect each pair of clusters

with one link to form larger components. This mechanism continues recursively by joining smaller

clusters into larger ones, and the spanning component only emerges at the end of the process, when

the entire network is connected, as in (e).

half the number of components of step t − 1, and therefore nt = 2m−t, for 0 ≤ t < m.

Moreover, the number of nodes in each component is St = 2t (all components at a given

step t have the same number of nodes). The number of new links at step t is nt−1/2, and

therefore the total number of links in the network up to step t is

Mt = N
t∑

i=1

2−i = N(1 − 2−t). (1)

The resulting network is a tree, so that the total number of possible links in the network

is M ≡ N − 1. Consequently, the fraction of links added to the network up to time t is

p ≡ Mt/M = Mt/(N − 1) ≈ 1 − 2−t, for N >> 1. Therefore, the dependence of the largest

component size St on the fraction of added links p follows

St =
1

1 − p
, (2)

which exhibits a singular point at p = 1. This singularity is the hallmark of a discontinuous

or first-order percolation phase transition, similarly to the reported result of Ref. [9]. In

Fig. 2 we show the size of the largest component as a function of the fraction of links

added to the network, and we compare the PR process to the above presented deterministic

model for the same network size. Both cases exhibit explosive percolation, but obviously the

deterministic process leads to a much sharper transition, even for the small finite size that is

considered here (N = 32768 nodes). This model can be considered as an optimized (albeit

4

(From Rozenfeld, et. al.)

• (a) Phase k = 2, merge all
isolated nodes into pairs.

• (b) Phase k = 4, merge pairs
into size 4 components.

• (c) Phase k = 8, merge pairs
of 4’s into 8’s.

• etc.

• At edge e = n (time t = 1) one giant of size n emerges

(Giant emerges when only one component remains)



Re-visiting the Bohman Frieze Wormald model (BFW)
(Random Structures & Algorithms, 25(4):432-449, (2004))

• A stochastic model, which exams a single-edge at a time.

• Like deterministic, start with n isolated vertices, and stage k = 2.

• Sample edges uniformly at random from the complete graph on n nodes.

• Can reject edges provided the fraction of accepted remains greater than a
function decaying with phase k. Let:

u be number of edges sampled,
t be the number accepted:

Fraction of accepted edges,

t/u ≥ g(k) = 1/2 + (2k)−1/2

(Note: limk→∞ g(k)→ 1/2)

ER, g(k)=1

BFW



The BFW model
• Start with n isolated vertices, and cap on maximum component set to k = 2.

• Examine an edge selected uniformly at random from the complete graph:

1. If the resulting component size ≤ k, accept the edge.

2. Otherwise reject that edge if possible
(meaning the fraction of accepted
edges t/u ≥ g(k)).

3. Else augment k → k + 1, and repeat
(1) and (2), with (3) if necessary.

(Step 3 executes for “troubling edge”)

When troubling edge encountered, k → k + 1 until either:
– The edge can be rejected due to sufficient decrease of g(k)
– The edge can be accepted due to k large enough.



The BFW model stated formally

• Initially n isolated nodes with cap on maximum size set to k = 2.
• Let u denote the total number of edges sampled
• A the set of accepted edges (initially A = ∅)
• t = |A| the number of accepted edges.

At each step u, select edge eu uniformly at random from complete graph, and
apply the following loop:

Set l = maximum size component in A ∪ {eu}
if (l ≤ k) {

A← A ∪ {eu}
u← u+ 1 }

else if (t/u < g(k)) { k ← k + 1 }
else { u← u+ 1 }

• If the edge eu is troubling and t/u < g(k), augment k repeatedly until either:
(i) k increases sufficiently that eu is accepted or
(ii) g(k) decreases sufficiently that eu is rejected.



Simultaneous emergence of multiple stable giants
in a strongly discontinuous transition
(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

• Two stable giants!
(C1 = 0.570, C2 = 0.405.)

– Fraction of internal cluster edges > 1/2.

– (If restrict to sampling only edges that
span clusters, only one giant ultimately.)

“Strongly” discontinuous
(gap independent of n)

∆C1 ≈ 0.165



Tuning the number of stable giants
(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

• Now let g(k) = α+ (2k)−1/2. Smaller α more edges can be rejected.

α determines number of stable giants!

• Multiple stable giants, not anticipated.
(“uniqueness of the giant component” / gravitational coalescence of
Smoluchowski kernel K(x, y) = xy)

• Applications for multiple giants? (Communications, epidemiology, building
blocks for modular networks, polymerization (Krapivsky, Ben-Naim)...)



Evolution of component density for BFW
β = 0.5 β = 2.0

• For β = 0.5 no scaling. Separates into components of size O(n) and < log(n).

• For β = 0.5 and β = 2.0 no finite size effects in the location of the “hump” (inset), unlike
for PR where location depends on n. (c.f. Lee, Kim, Park: data collapse)

• No scaling, no “early warning signs” (Scheffer, et. al. Nature (2009).



Deriving the underlying mechanism:
Slow decay of g(k) leads to growth by overtaking

(Wei Chen and R.D, arXiv:1106.2088)

• Instead of g(k) = 1/2 + (2k)−1/2 now let g(k) = 1/2 + (2k)−β

• Procedure: analyze by how much k must grow before g(k) would decrease
sufficiently to reject troubling edge.



• For β ∈ (0.5, 1], an increase in k ∼ nβ is always sufficient to reject a
troubling edge. Slow increase in k means:
– Growth by overtaking∗: two smaller components merge becoming new C1.
– Multiple components of size O(n) before the largest jump.

• For β > 1, once stage k = n1/β, troubling edges must be accepted at times,
leading to large direct growth of C1, and a weakly discontinuous transition.

∗ Consistent with Nagler, et. al., Nature Phys (2011), for direct growth forbidden.



More generally, macroscopic jump means:
Multiple giants coexist in critical window

• Note, we define as the critical point
tc, the single edge who’s addition causes the biggest change, ∆C1.
(Recall C1 is the fraction of nodes in the largest component.)

• If ∆C1 > 0 there necessarily existed another macroscopic component. e.g.
If ∆C1 = 0.1 that means C1 merged with a component of size |Cj| = 0.1n.

• Let t′c denote emergence of giant.

• Let tc denote largest jump in C1

• Is tc = t′c ??



Is tc = t′c ?
2D lattice (Yes):

3D lattice (NO!):

(Schrenk, Felder, Deflorin, Araujo, D’Souza, Herrmann, PRE 2012)



“Explosive Percolation”
Conclusions & Future Directions:

• Delaying percolation leads to abrupt connectivity transition.

• Finite choice results in continuous transition for n → ∞. But large jumps
(e.g., 0.2n to 0.5n) for sizes of real-world networks (n=1010)
Can we develop a rigorous finite size scaling theory?

• Is tc = t′c ?

• Mechanisms:
– log(n) choices (i.e. infinite choice)
– evolving cap on largest component,
– cooperation / correlations
– specialized structures (e.g., hierarchical small world 1-D lattices,
restricted Erdős-Rényi)

• Applications based on keeping clusters distributed in space and of similar
size — community structure detection, wireless networks, going viral
through local community growth....



Tomorrow?

Methods

• Probability generating functions / configuration models

• Cluster aggregation evolution equations / Smoluchowski equations

• Multitype branching processes

Models

• Cascades on interconnected networks


