"Explosive" percolation transitions

(tomorrow: cascades on interdependent networks)

Raissa D'Souza University of California, Davis

Dept of Mech. and Aero. Eng., Dept of CS
Complexity Sciences Center
External Professor, Santa Fe Institute

Networks are increasingly ubiquitous:

Networks:

Transportation
Networks/
Power grid
(distribution/
collection networks)

Biological networks

- protein interaction
- genetic regulation
- drug design

Social networks

- Immunology
- Information
- Commerce

(**Network**: a collection of discrete nodes/vertices connected to others by edges)

The past decade, a "Science of Networks": (Physical, Biological, Social)

- Geometric versus virtual (Internet versus WWW).
- Natural /spontaneously arising versus engineered /built.
- Each network may optimize something unique.
- Fundamental similarities and differences to guide design/understanding/control.
- Interplay of topology and function?
- Up until now, studied largely as individual networks in isolation.

Achievements of Single Network View

(Goal: Intuition, prediction, design, control)

- Power law (broad scale) degree distributions ubiquitous.
- Small world effect (small diameter and local clusters).
- Vulnerability to "hub" removal resilience to random removal.
- Percolation, spreading and epidemics (phase transitions)
- Cascades.
- Synchronization.
- Random walks / Page rank.
- Communities / modules.

In reality a collection of interacting networks:

- ullet E-commerce o WWW o Internet o Power grid o River networks.
- Biological virus \rightarrow Social contact network \rightarrow Transportation networks \rightarrow Communication networks \rightarrow Power grid \rightarrow River networks.

Modeling networks as random graphs

- Erdős and Rényi random graphs (1959, 1960).
 Phase transition.
- Configuration models (Bollobás 1980, Molloy & Reed RSA 1995).

Node degree is number of edges.

- Preferential attachment (Barbási-Albert 1999, etc.)
- Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal FOCS 2000), including duplication/mutation (Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)
- Random graphs analysis considers the <u>ensemble</u> of all graphs that can be constructed consistent with specified properties.

Configuration models

- (Bollobás 1980, Molloy & Reed RSA 1995).
- Enumerating over the **ensemble** of all networks with specified degree distribution. $\{p_k\}$ is fraction of nodes with degree k.
- To generate an instance: Begin with isolated nodes with half-edges and do a random matching. (Self-edges & multiple edges possible).

Node degrees sampled from p_k .

- Probability generating functions $G(x) = \sum_k p_k x^k$, allow us to calculate moments/properties of the ensemble.
 - c.f. Newman, Watts, Strogatz, "Random graphs with arbitrary degree distributions and their applications" *PRE* 2001.

Does a random graph really model an individual engineered or biological system?

• Ensemble (mean-field) not necessarily representative! Doyle, et. al., PNAS 102 (4)2005.

All these have same deg dist, p_i :

- Neglects design principles: Redundancy, degree correlations, local optimization (Although D'Souza, et. al. PNAS 2007), ...
- M. E. J. Newman PRL 103 (2009) Augment degree by adding in small motifs (i.e., triangles). See also work by J. Gleeson.

The "classic" random graph, G(n, p)

- P. Erdős and A. Rényi, "On random graphs", Publ. Math. Debrecen. 1959.
- P. Erdős and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hungar. Acad. Sci. 1960.
- E. N. Gilbert, "Random graphs", *Annals of Mathematical Statistics*, 1959.

- Start with n isolated vertices.
- Consider each possible edge, and add it with probability p.

What does the resulting graph look like?

(Typical member of the ensemble)

G(n=300,p)

$$p = 1/400 = 0.0025$$

$$p = 1/200 = 0.005$$

Emergence of a <u>unique</u> "giant component" Phase transition in connectivity

•
$$p_c = 1/n$$
.

•
$$p < p_c$$
, $C_{\max} \sim \log(n)$

•
$$p = p_c$$
, $C_{\rm max} \sim n^{2/3}$

•
$$p > p_c$$
, $C_{\text{max}} \sim A \cdot n$

Expected # of edges per node

$$t = e/n = p(n-1)/2$$

so
$$t_c = 1/2$$

Erdős-Rényi: unique "giant component"

- t < 1/2, $C_{\text{max}} \sim O(\ln n)$
- t = 1/2, $C_{\text{max}} = n^{2/3}$
- t > 1/2, $C_{\text{max}} \sim An$, with A > 1

The critical window

Bollobás, Trans. Amer. Math. Soc., 286 (1984).

Luczak, Random Structures and Algorithms, 1 (1990).

$$t = 1 + \lambda n^{-1/3}$$
 (where $t = 2e/n$)

Mean field critical exponents

e.g., Grimmett, Percolation. 2nd Edition. Springer-Verlag. 1999.

$$\chi \sim (t_c - t)^{-\gamma}$$
, with $\gamma = 1$.

where χ is the expected size of the component to which an arbitrarily chosen vertex belongs.

Is connectivity a good thing? (Context dependence)

- Communications, Transportation, Synchronization, ... versus
- Spread of human or computer viruses

Can any limited perturbation change the phase transition?

[Bohman, Frieze, *RSA* 19, 2001]

[Achlioptas, D'Souza, Spencer, Science 323, 2009]

- Possible to Enhance or Delay the onset?
- The "Product Rule"
 - Choose *two* edges at random each step.
 - Add only the desirable edge and discard the other.

The Power of Two Choices in randomized algorithms.

Azar; Broder; Mitzenmacher; Upfal; Karlin;

ProdRule: Explicit example

- Prod $e_1 = (7) \times (2) = 14$
- Prod $e_2 = (4) \times (4) = 16$
- To *enhance* choose e_2 . To *delay* choose e_1 .

Product Rule

• Enhance – similar to ER but with earlier onset.

Delay –Extremely abrupt

The scaling window, Δ from $n^{1/2}$ to 0.5n

- Let e_0 denote the last edge added for which $C_{max} < n^{1/2}$. (Recall ER has $n^{2/3}$ at t_c .)
- Let e_1 denote the first edge added for which $C_{max} > 0.5n$.
- Let $\Delta = e_1 e_0$.

PR From $n^{1/2}$ to 0.5n in number of edges that is sublinear in n.

In terms of edge density or "time", t_c , where t=e/n (Note, for ER, $t_c=1/2$)

- For $t < t_c$, $C_{\text{max}} < n^{1/2}$.
- For $t > t_c, C_{\text{max}} > 0.5n$.

Jumps "instantaneously" from $C_{\rm max}$ = $n^{1/2}$ to 0.5n.

Why this is surprising

Percolation theory on networks and lattices serves as a theoretical underpinning for :

- Onset of epidemic spreading
- Flow through porous media / random transport
- Vulnerability and resilience of networks
- Many prior variants (bond, site, directed, ...) on many types of networks and lattices; All continuous transitions.
 - Continuous phase transitions are accompanied by critical scaling which can provide warning signs.

"Explosive Percolation in Random Networks"

From n^{γ} to greater than 0.6n "instantaneously" (Compelling evidence that the transition is discontinuous)

 C_{\max} jumps from sublinear n^{γ} to $\geq 0.5n$ in n^{β} edges, with $\beta,\gamma<1$.

Nontrivial Scaling behaviors $\gamma + 1.2\beta = 1.3$ for $A \in [0.1, 0.6]$

Achlioptas, D'Souza, Spencer, Science, 323 (5920), 2009

Many more EP systems and mechanisms now discovered

(Condensed list here)

Lattice percolation, power law graphs, cluster aggregation:

- R. Ziff, *Phys. Rev. Lett.* 103, 045701 (2009).
- Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009).
- F. Radicchi, S. Fortunato, *Phys. Rev. Lett.* 103, 168701 (2009).
- E. J. Friedman, A. S. Landsberg, *Phys. Rev. Lett.* 103, 255701 (2009).
- Y.S. Cho, B. Kahng, D. Kim, *Phys. Rev. E* (R), 2010.
- R. M. D'Souza, M. Mitzenmacher, *Phys. Rev. Lett.* 104, 195702 (2010).
- Araújo, Andrade Jr, Ziff, Herrmann, Phys. Rev. Lett. 106, 095703 (2011).
- Hooyberghs, Van Schaeybroeck, Phys. Rev. E 83, 032101 (2011).
- Gomez-Gardenes, Gomez, Arenas, Moreno, Phys. Rev. Lett. in press.

Observed in real world:

- Rozenfeld, Gallos, Makse; Eur. Phys. J. B, 75, 305-310, (2010). (PHN)
- Pan, Kivelä, Jari Saramäki, Kaski, Kertész, Phys. Rev. E 83, (2011). (Communities)
- Y. Kim, Y.-k. Yun, and S.-H. Yook, Phys. Rev. E 82, 061105 (2010). (Nanotubes)
- Growth of Wikipedias (Bounova, personal communication.)

Alternate mechanisms (with out competition):

- Araújo, Herrmann, Phys. Rev. Lett. 105, 035701 (2010).
- W. Chen, R. M. D'Souza, *Phys. Rev. Lett.* 106, 115701 (2011).

Beyond "Product Rule": Models with fixed choice

- "Achlioptas process": examine fixed number of edges, add the one that optimizes a pre-set criterion.
 - "Sum rule", Adjacent edge, Triangle rule, k-clique rule, etc., all also work.
- Novel subcritical behavior : components are similar in size; many almost linear size components

Rank-size top 1000 at t=t_c

• **Applications**: Community detection, Minimizing interference in wireless networks, Wikipedia growth....

"Explosive Percolation": Some caveats

"Weakly discontinuous":

 ΔC_{max} , the biggest change in C_1 due to **addition of a single edge**, decays with system size. (Nagler, et. al, *Nature Physics*, 2011).

- In limit $n \to \infty$, fixed choice rules are continuous!
 - da Costa, Dorogovtsev, Goltsev, Mendes, Phys. Rev. Lett. 105, (2010).
 - Riordan and Warnke, *Science* 333, (2011).
- Infinite choice : if number of choices $k \to \infty$ as number of nodes $n \to \infty$, this is sufficient for discontinuous transition.

```
e.g. k = \log(n).
```

- As $n \to \infty$, jump $\Delta C_{\max} \to 0$, but for $n \sim 10^{18}$, ΔC_{\max} can be of size 0.1n.
 - The $n \to \infty$ limit is not the regime of real-world networks.
 - e.g., social networks $n \leq 10^{10}$

Percolation as cluster aggregation models

- Excellent review on percolation as cluster aggregation:
 - D. J. Aldous, "Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists", *Bernoulli*, 5(1): 348, 1999.

(Scientific Modeling (SM) mathematics rather than Theorem-Proof (TP) mathematics.)

• Assume each edge merges two previously distinct components, with probability of connecting a component of size x and one of size y, proportional to **kernel** K(x,y).

$$K(x,y)=1$$
 uniform attachment / size independent
$$K(x,y)=xy \quad \hbox{``gravitational attraction'' / this is Erdős-Rényi.} \ (F_{
m gravity}=-M_1M_2/r_{12}^2)$$

Smoluchowski family of coagulation equations

- Given kernel K(x,y)
- Evolution of n(x,t), the expected number of clusters of size x at time t.
- Mean-field over all graphs (ensemble properties)

$$\frac{d}{dt}n(x,t) = \frac{1}{2} \sum_{y=1}^{x-1} K(y,x-y)n(y,t)n(x-y,t) - n(x,t) \sum_{y=1}^{\infty} K(x,y)n(y,t)$$

Smoluchowski approach to "Explosive Percolation"

• Y.S. Cho, B. Kahng, D. Kim; *Phys. Rev. E* 81, 030103(R), 2010. "Cluster aggregation model for discontinuous percolation transition"

• R.D. and M. Mitzenmacher, "Local cluster aggregation models of explosive percolation", *Phys. Rev. Lett.*, 104, 2010.

Adjacent edge: Let $x_i = in(i, t)$ (fraction of nodes)

$$\frac{dx_i}{dt} = -ix_i - i(2x_iS_i - x_i^2) + i\sum_{j+k=i} x_j(2x_kS_k - x_k^2)$$

- S. S. Manna and Arnab Chatterjee "A new route to Explosive Percolation", Physica A 390, 177182 (2011).
- R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, "Explosive Percolation' Transition is Actually Continuous", Phys. Rev. Lett. 105, 255701 (2010).

da Costa, et al PRL 2010

- Define $P(s,t) = sn(s,t)/\langle s \rangle$, distribution of finite component sizes to which a randomly chosen vertex belongs.
- Use a (mean-field) Smoluchowski-type eqn:

$$\frac{\partial P(s,t)}{\partial t} = s \sum_{u+v=s} Q(u,t)Q(v,t) - 2sQ(s,t)$$

- Size of largest component, $S(t) = 1 \sum_{i=1}^{10^6} P(s,t) \approx 1 \sum_{i=1}^{10^6} P(s,t)$.
- If assume $P(s,t_c)$ is distributed according to a power law, obtain the main result: critical behavior, $S(t) \sim (t-t_c)^{\beta}$, with $\beta = 0.0555 \approx 1/18$.
- Jump: $\Delta S = S(t_c^+) S(t_c) = S(t_c^+) o(n) \sim (t_c^+ t_c)^{\beta} = (1/n)^{\beta}$
- If $n = 10^{18}$, jump = 0.1 n ... ten percent of system!

Are any real social or technological networks of size $n\sim 10^{18}$?

Riordan and Warnke, Science 2011

- Rigorous proof: Any fixed choice process ultimately continuous!
- Proof by contradiction. ("The vanishing 'powder keg'")
- Δ , the scaling window from our PR simulations, will ultimately crossover to linear in n, but no estimate of crossover length from these arguments.
- Moreover, AP's can be nonconvergent (no scaling limit). (arXiv.1111.6177)

Typically assume
$$\lim_{n\to\infty} C_1 = A(t)n$$
 once $t>t_c$

(That there is a function A(t) that describes the growth of C_1 in the supercritical regime.)

translated into physics terminology:

"Achlioptas processes are not always self-averaging", to appear PRE

Beyond choice and competition: Discontinuous percolation other mechanisms

Control only of the largest cluster

- Araujo, N. A. M. & Herrmann, H. J. Explosive percolation via control of the largest cluster.
 Phys. Rev. Lett. 105, 035701 (2010).
- Araujo, et. al. Tricritical point in explosive percolation. Phys. Rev. Lett. 106, (2011).
 ('tri-critical" points separate region of 1st order (discontinuous) from 2nd order (continuous) transitions).
- W. Chen and R.D. *Phys. Rev. Lett.* 83 (2011).

Cooperative phenomena

 Bhizani, Paczuski, Grassberger "Discontinuous percolation transitions in epidemic processes, surface deppining in random media and Hamiltonian graphs". in press PRE

Correlated percolation

- L. Cao, J. M. Schwarz, "Correlated percolation and tricriticality", arXiv:1206.1028
- **Dressing up a simple structure** (one-dim lattice with hierarchy of long-range bonds) Boettcher, Singh, Ziff, *Nature Communications*, 3:787 (2012).
- Restricted Erdős-Rényi: Choose one node at random, one from restricted set. Panagiotou, et. al. *Elec. Notes. Disc. Math.* 2011.

A deterministic model

Friedman, Landsberg *PRL* (2009); Rozenfeld, et. al. *EPJB* (2010); Nagler, Levina, Timme, *Nature Phys.* (2011)

- (a) Phase k = 2, merge all isolated nodes into pairs.
- (b) Phase k = 4, merge pairs into size 4 components.
- (c) Phase k = 8, merge pairs of 4's into 8's.
- etc.

• At edge e = n (time t = 1) one giant of size n emerges

(Giant emerges when only one component remains)

Re-visiting the Bohman Frieze Wormald model (BFW)

(Random Structures & Algorithms, 25(4):432-449, (2004))

- A stochastic model, which exams a single-edge at a time.
- Like deterministic, start with n isolated vertices, and stage k=2.
- Sample edges uniformly at random from the complete graph on n nodes.
- Can *reject* edges provided the fraction of accepted remains greater than a function decaying with phase *k*. Let:

u be number of edges sampled, t be the number accepted:

Fraction of accepted edges,

$$t/u \ge g(k) = 1/2 + (2k)^{-1/2}$$

(Note: $\lim_{k\to\infty} g(k) \to 1/2$)

The BFW model

- Start with n isolated vertices, and cap on maximum component set to k=2.
- Examine an edge selected uniformly at random from the complete graph:
- 1. If the resulting component size $\leq k$, accept the edge.
- 2. Otherwise reject that edge if possible (meaning the fraction of accepted edges $t/u \ge g(k)$).
- 3. Else augment $k \to k+1$, and repeat (1) and (2), with (3) if necessary. (Step 3 executes for "troubling edge")

When troubling edge encountered, $k \to k+1$ until either:

- The edge can be rejected due to sufficient decrease of g(k)
- The edge can be accepted due to k large enough.

The BFW model stated formally

- Initially n isolated nodes with cap on maximum size set to k=2.
- Let u denote the total number of edges sampled
- A the set of accepted edges (initially $A = \emptyset$)
- t = |A| the number of accepted edges.

At each step u, select edge e_u uniformly at random from complete graph, and apply the following loop:

```
Set l= maximum size component in A\cup\{e_u\} if (l\leq k) { A\leftarrow A\cup\{e_u\} u\leftarrow u+1\ \} else if (t/u< g(k)) { k\leftarrow k+1\ \} else { u\leftarrow u+1\ }
```

- If the edge e_u is troubling and t/u < g(k), augment k repeatedly until either:
- (i) k increases sufficiently that e_u is accepted or
- (ii) g(k) decreases sufficiently that e_u is rejected.

Simultaneous emergence of multiple stable giants in a strongly discontinuous transition

(Wei Chen and R.D. *Phys. Rev. Lett.* 83 (2011).)

Two stable giants!

$$(C_1 = 0.570, C_2 = 0.405.)$$

- Fraction of internal cluster edges > 1/2.
- (If restrict to sampling only edges that span clusters, only one giant ultimately.)

"Strongly" discontinuous (gap independent of n)

$$\Delta C_1 \approx 0.165$$

Tuning the number of stable giants

(Wei Chen and R.D. *Phys. Rev. Lett.* 83 (2011).)

• Now let $g(k) = \alpha + (2k)^{-1/2}$. Smaller α more edges can be rejected. α determines number of stable giants!

- Multiple stable giants, not anticipated. ("uniqueness of the giant component" / gravitational coalescence of Smoluchowski kernel K(x,y)=xy)
- Applications for multiple giants? (Communications, epidemiology, building blocks for modular networks, polymerization (Krapivsky, Ben-Naim)...)

Evolution of component density for BFW

- For $\beta = 0.5$ no scaling. Separates into components of size O(n) and $< \log(n)$.
- ullet For eta=0.5 and eta=2.0 no finite size effects in the location of the "hump" (inset), unlike for PR where location depends on n. (c.f. Lee, Kim, Park: data collapse)
- No scaling, no "early warning signs" (Scheffer, et. al. Nature (2009).

Deriving the underlying mechanism: Slow decay of g(k) leads to growth by overtaking

(Wei Chen and R.D, arXiv:1106.2088)

- Instead of $g(k) = 1/2 + (2k)^{-1/2}$ now let $g(k) = 1/2 + (2k)^{-\beta}$
- Procedure: analyze by how much k must grow before g(k) would decrease sufficiently to reject troubling edge.

- For $\beta \in (0.5,1]$, an increase in $k \sim n^{\beta}$ is always sufficient to reject a troubling edge. Slow increase in k means:
 - Growth by overtaking*: two smaller components merge becoming new C_1 .
 - Multiple components of size O(n) before the largest jump.

• For $\beta > 1$, once stage $k = n^{1/\beta}$, troubling edges **must** be accepted at times, leading to large direct growth of C_1 , and a weakly discontinuous transition.

^{*} Consistent with Nagler, et. al., *Nature Phys* (2011), for direct growth forbidden.

More generally, macroscopic jump means: Multiple giants coexist in critical window

- Note, we define as the critical point t_c , the single edge who's addition causes the biggest change, ΔC_1 . (Recall C_1 is the *fraction* of nodes in the largest component.)
- If $\Delta C_1 > 0$ there necessarily existed another macroscopic component. e.g. If $\Delta C_1 = 0.1$ that means C_1 merged with a component of size $|C_j| = 0.1n$.
- Let t_c' denote emergence of giant.
- Let t_c denote largest jump in C_1
- Is $t_c = t'_c$??

Is $t_c = t_c'$?

(Schrenk, Felder, Deflorin, Araujo, D'Souza, Herrmann, PRE 2012) N-1

"Explosive Percolation" Conclusions & Future Directions:

- Delaying percolation leads to abrupt connectivity transition.
- Finite choice results in continuous transition for $n \to \infty$. But large jumps (e.g., 0.2n to 0.5n) for sizes of real-world networks (n=10¹⁰) Can we develop a rigorous finite size scaling theory?
- Is $t_c = t'_c$?
- Mechanisms:
 - $-\log(n)$ choices (i.e. infinite choice)
 - evolving cap on largest component,
 - cooperation / correlations
 - specialized structures (e.g., hierarchical small world 1-D lattices, restricted Erdős-Rényi)
- Applications based on keeping clusters distributed in space and of similar size — community structure detection, wireless networks, going viral through local community growth....

Tomorrow?

Methods

- Probability generating functions / configuration models
- Cluster aggregation evolution equations / Smoluchowski equations
- Multitype branching processes

Models

Cascades on interconnected networks