
Cascades on interdependent networks

Raissa M. D’Souza
University of California, Davis

Dept of CS, Dept of Mech. and Aero. Eng.
Complexity Sciences Center

External Professor, Santa Fe Institute



A collection of interacting , dynamic networks

form the core of modern society

Networks:

Transportation
Networks/
Power grid
(distribution/
collection networks)

Biological networks
- protein interaction
- genetic regulation
- drug design

Computer
networks

Social networks
- Immunology
- Information
- Commerce

E-commerce → WWW → Internet → Power grid → River networks.

Biological virus → Social contact network → Transportation nets →
Communication nets → Power grid → River networks.



Critical infrastructure

From Peerenboom et. al.



Moving to systems of interdependent networks
What are the simplest, useful, abstracted models?

What are the emergent new properties?
– Host-pathogen interactions
– Phase transition thresholds

What features confer resilience in one network while
introducing vulnerabilities in others?

How do demands in one system shape the performance of the
others? (e.g., demand informed by social patterns of
communication)

How do constraints on one system manifest in others?
(e.g., River networks shape placement of power plants)

Coupling of scales across space and time / co-evolution.



Configuration model for interacting networks

(E. Leicht and R. D’Souza, arXiv:0907.0894)

System of two networks Connectivity for an individual node

a

b

edges to a
edges to b

• Degree distribution for nodes in network a: pa
kakb

• For the the system: {pa
kakb

, pb
kakb
}

• Generating functions to calculate properties of the ensemble of
such networks.



Modular Erdős-Rényi

Divide nodes initially into two groups (A and B):

A B

Add internal a-a edges with rate λ.

Add internal b-b edges with rate λ/r1, with r1 > 1.

Add intra-group a-b edges with rate λ/r2, with r2 > 1,
r2 6= r1.

What happens? (Anything different?)



Wiring which respects group structures percolates earlier!
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1e+05 1e+06 1e+07 1e+08

0.
82

0.
86

n

k

S

k c
0.

82
0.

86

1e+05 1e+06 1e+07 1e+08
n

(Also tradeoffs between sparser and denser subnetworks.)

Probability distribution for node degrees: {pakakb , p
b
kakb
}

Generating functions to calculate properties of the ensemble
of such networks.



The flip side: “Catastrophic cascade of failures in
interdependent networks”

Buldyrev et. al. Nature 464 (2010).

Consider two coupled random graphs.

Nodes fail (removed either in a targeted or random manner).

Following an iterative removal process, small failures can
lead to massive cascades of failure of the networks themselves.

Surprising: What confers resilience to individual network
(broad-scale degree distribution) may be a weakness for
randomly coupled networks.



Single networks – broad scale degree distribution.

Illustration: Analysis of the Flight Weighted 
U.S. Air Transportation Network

! The flight weighted U.S. air 

transportation network exhibits a 

partial power law distribution

! Power law distribution for small and 

medium size nodes up to approximately 

250,000 flights per year

! Non power law distribution (above 250,000 

flights per year)

! Hypothesis: Limits to scale and 

capacitated nodes (i.e. capacity 

constrained airports) are present in the 
non power law part of the distribution

10

U.S. Air Transportation Network
(Airport level)

Analysis of the U.S. Air Transportation Network

*

Social contacts Airport traffic
Szendröi and Csányi Bounova 2009

We first identified protein classes significant-
ly enriched or depleted in the high-confi-
dence network (table S5). Enriched classes
relate primarily to DNA metabolism, tran-
scription, and translation. Depleted classes
are primarily plasma membrane proteins, in-
cluding receptors, ion channels, and pepti-
dases. Enrichment and depletion of specific
classes may be due to technical biases of the
two-hybrid assay.

We then classified each interaction ac-
cording to its corresponding pair of protein
classes to identify class-pairs that are en-
riched in the network. Rather than using a
contingency table (13), we used a random-
ization method to calculate statistical sig-
nificance (6 ). Enriched class-pairs involv-
ing structural domains (Pfam annotations)
may represent binding modules and could
provide the biological rules for building
multiprotein complexes. We identified 67
pairs of Pfam domains enriched with a P
value of 0.05 or better after correcting for
multiple testing (table S6). These include
known domain pairs (F-box/Skp1, P ! 9 "
10#20; LIM/LIM binding, P ! 5 " 10#8;
actin/cofilin, P ! 2 " 10#7) as well as
domain pairs involving domains of un-
known function (DUF227/DUF227, P !
9 " 10#5; cullin/DUF298, P ! 0.0003). An
additional 88 domain pairs are significant
at P ! 0.05 before correcting for multiple
testing and may represent additional bio-
logically relevant binding patterns.
Properties of the high-confidence pro-

tein-interaction network. Protein networks
are of great interest as examples of small-
world networks (14–16). Small-world net-
works exhibit short-range order (two proteins
interacting with a third protein have an en-
hanced probability of interacting with each
other) but long-range disorder (two proteins
selected at random are likely to be connect-
ed by a small number of links, as in a
random network).

Small-world properties arise in part
from the existence of hub proteins, those
having many interaction partners. Hubs are
characteristic of scale-free networks, and
the Drosophila network resembles a scale-
free network in that the distribution of in-
teractions per protein decays slowly, close
to a power law (Fig. 2D). To determine the
signature of biological organization in
small-world properties beyond what would
be expected of scale-free networks in gen-
eral, we calculated properties for both the
actual Drosophila network and an ensem-
ble of randomly rewired networks with the
same distribution of interactions per protein
as in the original network. We considered
only the giant connected component to
avoid ill-defined mathematical quantities.

The distribution of the shortest path be-
tween pairs of proteins peaks at 9 to 10

protein-protein links (Fig. 3A). A logistic-
growth mathematical model for the probabil-
ity that the shortest path between two distinct
proteins has ! links is (N #1)#1 K$(!; N, J ),
where K(!; N, J ) ! N/ [1% (N # 1) J#!] is
the number of proteins within ! links of a
central protein and the symbol $ indicates
differentiation with respect to !, K$(d; N,
J ) ! N(N # 1)(ln J ) J#!/[1 % (N #1)J#!]2.
Although this model fits the ensemble of
random networks, the fit to the actual net-
work is less adequate.

Small-world properties of biological
networks may reflect biological organiza-
tion, and hierarchical organization has been
used to describe the properties of metabolic
networks (7). We tested the ability of a
simple, two-level hierarchical model to de-
scribe the properties of the Drosphila pro-
tein-interaction network. The lower level of
organization in this model represents pro-
tein complexes, and the high level repre-
sents interconnections of these complexes.
In this case, the probability Pr(!) that the

Fig. 2. Confidence scores for protein-protein interactions (A) Drosophila protein-protein interac-
tions have been binned according to confidence score for the entire set of 20,405 interactions
(black), the 129 positive training set examples (green), and the 196 negative training set examples
(red). (B) The 7048 proteins identified as participating in protein-protein interactions have been
binned according to the minimum, average, and maximum confidence score of their interactions.
Proteins with high-confidence interactions total 4679 (66% of the proteins in the network, and
34% of the protein-coding genes in the Drosophila genome). (C) The correlation between GO
annotations for interacting protein pairs decays sharply as confidence falls from 1 to 0.5, then
exhibits a weaker decay. Correlations were obtained by first calculating the deepest level in the GO
hierarchy at which a pair of interacting proteins shared an annotation (interactions involving
unannotated proteins were discarded). The average depth was calculated for interactions binned
according to confidence score, with bin centers at 0.05, 0.1, . . . , 0.95. Finally, the correlation for
the bin centered at x was defined as [Depth(x) # Depth(0)]/[Depth(0.95) # Depth(0)]. This
procedure effectively controls for the depth of each hierarchy and for the probability that a pair of
random proteins shares an annotation. (D) The number of interactions per protein is shown for all
interactions (black circles) and for the high-confidence interactions (green circles). Linear behavior
in this log-log plot would indicate a power-law distribution. Although regions of each distribution
appear linear, neither distribution may be adequately fit by a single power-law. Both may be fit,
however, by a combination of power-law and exponential decay, Prob(n) & n#'exp#(n, indicated
by the dashed lines, with r 2 for the fit greater than 0.98 in either case (all interactions: ' ! 1.20)
0.08, ( ! 0.038 ) 0.006; high-confidence interactions: ' ! 1.26 ) 0.25, ( ! 0.27 ) 0.05). Note
that the power-law exponents are within 1* for the two interaction sets.
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Protein interactions
Giot et al Science 2003 (node degree)

Approximated as power law Pk ∝ k−γ



Pk ∼ k−γ, the first two moments

(Note: γ > 1 required for
∑

k Pk = 1)

First moment (Mean degree):

〈k〉 =
∞∑
k=1

kpk ≈
∫ ∞
k=1

kpkdk

Diverges (i.e., 〈k〉 → ∞) if γ ≤ 2.

Second moment:

〈
k2
〉

=
∞∑
k=1

k2pk ≈
∫ ∞
k=1

k2pkdk

Diverges (i.e.,
〈
k2
〉
→∞) if γ ≤ 3.

Many results follow for 2 < γ < 3 since 〈k〉 /
〈
k2
〉
→ 0



Consequences of p(k) ∼ k−γ for networks

Most nodes are leaves (degree 1): Network connectivity very
robust to random node removal.

High degree nodes are hubs: Network connectivity very fragile
to targeted node removal.

letters to nature
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

Epidemic spreading on the network (contact process):
if 2 < γ < 3, then 〈k〉 /

〈
k2
〉
→ 0 and limn→0 epidemic

threshold → 0.

(Buldyrev et al find broad scale more fragile for their particular cascade

dynamics)



Dynamical processes on interdependent networks

Motivation: interconnected power grids

C. Brummitt, R. M. D’Souza and E. A. Leicht PNAS 109 (12), 2012.

Power grid: a collection
of interdependent grids.
(Interconnections built

originally for emergencies.)

Blackouts cascade from
one grid to another (in a

non-local manner).

Building more
interconnections
(Fig: planned wind
transmission).
Increasingly distributed Source: NPR



Motivation cont.: interconnected power grids

What is the effect of
interdependence on
cascades?

It is thought power grids
organize to a
“critical” state
– power law distribution
of black out sizes
– maximize profits while
fearing large cascades Source: NPR



Sandpile models: “Self-organized criticality”

Drop grains of sand (“load”) randomly on nodes.

Each node has a threshold for sand.

Load > threshold  node topples = sheds sand to
neighbors.

These neighbors may topple. And their neighbors.
And so on.

Cascades of load/stress on a system.

The classic Bak-Tang-Wiesenfeld sandpile model:
(Neuronal avalanches, banking cascades, earthquakes, landslides, forest fires, blackouts...)

Finite square lattice in Z2

Thresholds 4

Open boundaries prevent inundation

Avalance size follows power law distribution P(s) ∼ s−3/2



Sandpile model on arbitrary networks

Sandpile model on arbitrary networks:

Thresholds = degrees
(shed one grain per neighbor)

Boundaries: shedded sand are deleted
independently with probability f (:≈ 10/N)

Mean-field behavior (P(s) ∝ s−3/2) robust.
(Goh et al. PRL 03, Phys. A 2004/2005, PRE

2005. PLRGs with 2 < γ < 3 not mean-field.)

Sandpiles on interacting networks:

Sparse connections between random graphs.

Configuration model with multi-type degree
distribution.



Sparsely coupled networks

Two-type network: a and b.

Degree distributions: pa(ka, kb), pb(ka, kb)

pa(ka, kb) = fraction of a-nodes with ka, kb neighbors in a, b.

Configuration model: create degree sequences until valid (even
total intra-degree, same number of inter-edge stubs), then connect
edge stubs at random.



Measures of avalanche size

• Topplings:
Drop a grain of sand. How many nodes eventually topple?

Avalanche size distributions: sa(ta, tb), sb(ta, tb)

e.g., sa(ta, tb) = chance an avalanche begun in a topples
ta many a-nodes, tb many b-nodes.

To study this, we need a more basic distribution...

• Sheddings: Drop a grain of sand. How many grains are
eventually shed from one network to another?

Shedding size distributions: ρod(raa, rab, rba, rbb)
= chance a grain shed from network o to d eventually causes
raa, rab, rba, rbb many grains to be shed from a→a, a→b, b→a, b→b

*Approximate shedding and toppling as multi-type branching
processes.



Branching process approximation

Cascades in networks ≈ branching processes if they’re tree-like.

Power grids are fairly tree-like:
clustering coefficient

Power grid in SE USA 0.01
Similar Erdős-Rényi graph 0.001
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Sandpile cascades on interacting networks ≈
a multitype branching process.



Overview of the calculations

From degree distribution to avalanche size distribution:

Input: degree distributions pa(ka, kb), pb(ka, kb)

⇓ compute

shedding branching distributions qaa, qab, qba, qbb

⇓ compute

toppling branching distributions ua, ub

⇓ plug in

toppling branching generating functions Ua,Ub
⇓ plug in

equations for avalanche size generating functions Sa,Sb
⇓ solve numerically, asymptotically

Output: avalanche size distributions sa, sb



Shedding branch distribution, qod

Example:
qab(rba, rbb) := the branch (children) distribution for

an ab-shedding .

Probability a single grain shed from a to b results in rba
a-sheddings and rbb b-sheddings.



Shedding branch distributions qod
The crux of the derivation

qod(rda, rdb) := chance a grain of sand shed from network o to d
topples that node, sending rda, rdb many grains to networks a, b.

qod(rda, rdb) =
rdopd(rda, rdb)

〈kdo〉︸ ︷︷ ︸
I

1

rda + rdb︸ ︷︷ ︸
II

for rda + rdb > 0.

I: chance the grain lands on a node with degree pd(rda, rdb)
(Edge following: rdo edges leading from network o.)

II: empirically, sand on nodes is ∼ Uniform{0, ..., k − 1}

Chance of no children = qod(0, 0) := 1−
∑

rda+rdb>0 qod(rda, rdb)

(Probability a neighbor of any degree sheds, properly weighted.)

Chance at least one child = 1− qod(0, 0).



I. Edge following probability: single network

Degree distribution, Pk , with G.F. G0(x) =
∑

k Pkxk .

Probability of following a random edge to a node of degree k :
qk = kPk/

∑
k kPk , with G.F. G1(x) =

∑
k qkxk .

(“Contact immunization” strategy used by CDC.)

Generating function “self consistency” construction.
H1(x): G.F. for dist in comp size following random edge

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + xq3[H1(x)]3 · · ·
= xG1(H1(x))

(c.f. Newman, Strogatz, Watts PRE 2001.)



II. Revisiting the “1/k” assumption

Pierre-Andre Noël, C. Brummitt, R. D’Souza
in progress

A node that just toppled is
actually less likely to topple on

the next time step.
(prob zero sand 6= 1/k)

The 1/k assumption for sandpiles on networks: origin, failure and alternative.
Pierre-André Noël, Charles D. Brummitt, and Raissa M. D’Souza. University of California, Davis.

1. In a nutshell.

• A common assumption for sandpile models is shown to be false in quenched networks.

• This causes large deviations in the probability distribution.

• Previous work focused on power-law exponent, which is preserved.

• An alternative approach, based on self-consistency, is presented.

2. Context.

• We faced an unexpected problem while studying cascading

failures on power grids.

• We here study a minimal system reproducing the problem: a

Bak-Tang-Wiesenfeld sandpile model on a 3-regular network.

• The heterogeneous degree distribution case behaves similarly.
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3. Sandpiles on 3-regular networks.

• Each node has up to 2 grains of sand on it.

• A new grain is dropped on a random node.

• Nodes with more than 2 grains topple:

their grains are sent to their neighbours.

• Sand is destroyed with probability �.

4. The 1/k assumption.

• Define pi the probability that a random node has i grains of sand on it.

• Define qij the probability that a node has j grains, knowing that its neighbour has i grains.

• The 1/k assumption states that the k nonzero pi are equal (i.e., p0 = p1 = p2 = 1/3).

• Christensen and Olami proved it for annealed networks (quenched case not proven).

– Annealed: a node’s neighbours are randomly chosen each time it topples.

– Quenched: neighbours at one time will always be neighbours (fixed structure).

• In quenched settings, it is often presented as an approximation (e.g., Goh et al.).

– Nodes topple 1/k of the times they receive a grain of sand (within 1%).

– Models using this assumption provide the right power-law exponent for cascade size.

• Hidden assumption: there are no correlations, i.e., qij = pj (true for annealed).

5. Failure of the 1/k assumption.

• For an infinite quenched network, a toppled node (parent) may only topple again during

the same cascade if all its neighbours (children) topple too: parent toppling is unlikely.

• Hence, more sand accumulates than in the annealed case (explaining p0 � 1/3).

• The process also introduces correlations (i.e., qij �= pj).

– For example, the only explanation for two neighbours to both have 0 grains on them is

that sand was destroyed when the last one toppled (explaining q00 � p0, since � is small).

6. Outline of the alternative approach.

• Treat the pi and qij as 12 unknown parameters.

– Normalization forces p0 + p1 + p2 = 1 and qi0 + qi1 + qi2 = 1.

– Network structure (and Bayes’ theorem) requires pi qij = pj qji.

– Hence, only 5 parameters are independent.

• Assumption: after some time, these parameters will reach a dynamical equilibrium.

• We consider a branching process providing the probability generating functionH(x,y, Z).

– x generates the cascade size distribution.

– yi generates the change in the number of nodes with i grains (and y = [y0 y1 y2]�).

– zij generates the change in the number of links joining nodes with i grains to nodes with

j grains (and Z is the matrix of these generators).

– Parent toppling is explicitly considered when all children topple.

• Fix the parameters by requesting self consistency.

– Constant pi implies no expected change in the number of nodes with i grains.

– Constant qij implies no expected change in the number of associated links.

0 =
∂H

∂yi

����
x=y

i�=zi�j�=1 ∀i�,j�
0 =

∂H

∂zij

����
x=y

i�=zi�j�=1 ∀i�,j�
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Network of N = 4000 nodes.
Using � = 0.01.

Slope −3/2.

Numerical simulations.

Using p2 = q22 = 1/3 (1/k assumption).

Using p2 = q22 = 1/2, parent cannot topple.

Figure: cascade size probability distribution as obtained through

numerical simulations (symbols) and analytical calculations (curves).

Red: the 1/k assumption fails at all scales to provide an accurate

probability distribution. Although it produces the right power-law

exponent, many similar assumptions do. Blue: making the approxi-

mation that parent nodes never topple, while other nodes topple 1/2

of the time they receive sand, is closer to reality.

p0 ≈ 0.091 q00 ≈ 0.005 q10 ≈ 0.071 q20 ≈ 0.116

p1 ≈ 0.337 q01 ≈ 0.262 q11 ≈ 0.319 q21 ≈ 0.359

p2 ≈ 0.573 q02 ≈ 0.733 q12 ≈ 0.611 q22 ≈ 0.525

Table: the actual pi and qij produced by the simulations.
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Above: some of the terms composing H(x,y, Z).

References.

- P. Bak, C. Tang, and K. Wiesenfeld. PRL 59, 381 (1987).
- K. Christensen, and Z. Olami. PRE 48, 3361 (1993).
- I. Dobson, B.A. Carreras, V.E. Lynch, and D.E. Newman. CHAOS 17, 026103 (2007).
- K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim. PRL 91, 148701 (2003).

Acknowledgements.

- Defense Threat Reduction Agency, Basic Research Award HDTRA1-10-1-0088.
- The Army Research Laboratory, Cooperative Agreement W911NF-09-2-0053.



Toppling branch distributions ua, ub
shedding branch distributions qod  toppling branch distributions ua, ub

Key: a node topples iff it sheds at least one grain of sand.

Probability an o to d shedding leads to at least one other
shedding: 1− qod(0, 0). Probability a single shedding from an
a-node yields ta, tb topplings:

ua(ta, tb) =
∞∑

ka=ta,kb=tb

pa(ka, kb)Binomial [ta; ka, 1− qaa(0, 0)]·

· Binomial [tb; kb, 1− qab(0, 0)].

(e.g., ka neighbors, ta of them topple, each topples with prob

1− qaa(0, 0).)

Associated generating functions: Ua(τa, τb),Ub(τa, τb).



Summary of distributions and their generating functions

distribution generating function

degree pa(ka, kb), pb(ka, kb) Ga(ωa, ωb),Gb(ωa, ωb)

shedding branch qod(rda, rdb)

toppling branch ua(ta, tb), ub(ta, tb) Ua(τa, τb),Ub(τa, τb)

toppling size sa(ta, tb), sb(ta, tb) Sa(τa, τb),Sb(τa, τb)

Self-consistency equations:

Sa = τa Ua(Sa,Sb), (1)

Sb = τb Ub(Sa,Sb). (2)

Want to solve (1), (2) for Sa(τa, τb),Sb(τa, τb).
Coefficients of Sa,Sb = avalanche size distributions sa, sb.

In practice, Eqs. (1), (2) are transcendental and difficult to invert.



Numerically solving ~S(~τ) = ~τ · ~U( ~S(~τ))

Methods for computing sa, sb for small avalanche size:

Method 1: Iterate starting from Sa = Sb = 1; expand.
Method 2: Iterate symbolically; use Cauchy’s integration formula

sa(ta, tb) =
1

(2πi)2

∫∫
D

Sa(τa, τb)

τ ta+1
a τ tb+1

b

dτadτb,

where D ⊂ C2 encloses the origin and no poles of Sa.
Method 3: Multidimensional Lagrange inversion (IJ Good 1960):

Sa=
∑∞

ma,mb=0

τ
ma
a τ

mb
b

ma!mb !

[
∂ma+mb

∂κ
ma
a ∂κ

mb
b

{
h(~κ)Ua(~κ)maUb(~κ)mb

∣∣∣∣∣∣∣∣δνµ− κµUµ ∂Uµ
∂κµ

∣∣∣∣∣∣∣∣}]
~κ=0

,

if the types µ, ν ∈ {a, b} have a positive chance of no children.

• Unfortunately for large avalanches need to use simulation.
(Asymptotic approximations used for isolated networks do not apply.)



Plugging in degree distributions: A real world example

Two geographically nearby power grids in the southeastern US.

Grid c Grid d

# nodes 439 504

〈kint〉 2.4 2.9

〈kext〉 0.02 0.01

clustering 0.01 0.08

8 links between these two distinct grids.
Different average internal degree 〈kint〉. Long paths.
(Low clustering – approximately locally tree-like.)



A canonical idealization: Random regular graphs

Two random za-, zb-regular graphs with “Bernoulli coupling”:
each node gets an external link independently with probability p.
These ≈ power grids.

za = 3

zb = 4p = 0.1

Ua(τa, τb) =
(p − pτa + (za + 1)(τa + za − 1))za(1 + p(τb − 1) + zb)

(za + 1)zazza
a (zb + 1)



Matching theory and simulation (for small’ish avalanches)

Plot marginalized avalanche size distributions

sa(ta) ≡
∑
tb≥0

sa(ta, tb), sa(tb) ≡
∑
ta≥0

sa(ta, tb), etc .

in simulations, branching process.

Regular(3)-Bernoulli(p)-Regular(10) Power grids c , d .



Main findings: For an individual network, optimal p∗
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• (Blue curve) Initially increasing p decreases the largest cascades started
in that network (second network is reservoir for load).

• (Red curve) Increasing p increases the largest cascades inflicted from
the second network (two reasons: new channels and greater capacity).

• (Gold curve) Neglecting the origin of the cascade, the effects balance

at a stable critical point, p∗ ≈ 0.1. (Reduced by 75% from p=0.001 to p=0.1)



Main findings: Individual network, “Yellowstone effect”

Supressing largest cascades amplifies small and intermediate ones!
(Supressing smallest amplifies largest (Yellowstone and Power Grids∗))
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• To suppress smallest, isolation p = 0.
• To suppress intermediate (10% of system size) either p = 0 or p = 1.

• To suppress cascades > 25% of system size then p = p∗ ≈ 0.11.

*Dobson I, Carreras BA, Lynch VE, Newman DE Chaos, (2007).



Main findings: System as a whole

More interconnections fuel larger system-wide cascades.

• Each new interconnection adds capacity and load to the system
(Here capacity is a node’s degree, interconnections increase degree)
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• Test this on coupled random-regular graphs by rewiring internal edges
to be spanning edges (increase interconnectivity with out increasing
degree). No increase in the largest cascades.

• Inflicted cascades (Red curve) increase mostly due to increased capacity.

• So an individual operator adding edges to achieve p∗ may inadvertantly

cause larger global cascades.



Larger cascades from increased interconections:
A warning sign?
• Financial markets
• Energy transmission systems

Source:

Technology Review,

“Joining the Dots”,

Jan/Feb (2011).



Main findings, continued: Frustrated equilibrium

Unless the coupled grids are identical, only one will be able to
acheive it’s p∗.

Coupled za 6= zb regular random graphs (brancing process and
simulation).

〈sa〉b
〈sb〉a

=
1 + za
1 + zb

If zb > za inflicted cascades from b to a larger than those
from a to b.

(An arm’s race for capacity?)



Summary: Sandpile cascades on interacting networks

Some interconnectivity can be beneficial, but too much is
detrimental. Stable optimal levels are possible.

From perspective of isolated network, seek optimal
interconnectivity p∗.

This equilibrium will be frustrated if the two networks differ in
their load or propensity to cascade.

Tuning p to suppress large cascades amplifies to occurrence of
small ones. (Likewise, suppressing small, amplifies large.)

Additional capacity and overall load from new interconnections
fuels larger cascades in the system as a whole.

What might be good for an individual operator (adding edges
to achieve p∗), may be bad for society.



Possible extensions – Real power grids

Expand multi-type
processes to encode for
different types of nodes
(buses, transformers,
generators)

Linearized power flow
equations – cascades in
real power grids are
non-local: e.g. fig: 3 to 4, 7 to 8

Game theoretic/
economic consideration
(we assume adding
connections is cost-free)

Sequence of outages in Western blackout, July 2 1996!

System Disturbances — 1996 
 

NERC 26 

 
 
 
Figure 1 
 

from NERC 1996 blackout report!

(1996 Western blackout NERC report)

(Power grids as “critical” – Balancing profit and fear of outages)



Possible extensions

Teams and social networks

Tasks (sand) arriving on people (nodes)

Each person has a capacity for tasks: sheds once overloaded

Coupling to a second social network (team) can reduce large
cascades

Amplifying cascades

Encourage adoption of new products

Snowball sampling

Airline networks

Different carriers accepting load (bumped passengers)



Other types of cascades, not just than sandpiles

Watt’s threshold model: “topple” is some fraction φ of your
neighbors have “toppled” (rather than “toppling”, Watt’s
think of cascades in adopting a new product).
– Harder to “topple” nodes of high degree.

Kleinberg: rather than thresholds, diminishing returns
(concave / sub-modular utility)
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Note Author Summary for high-level overview.
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