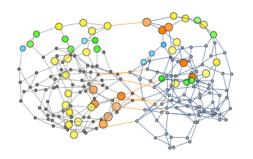
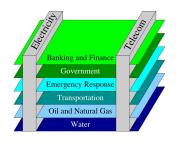
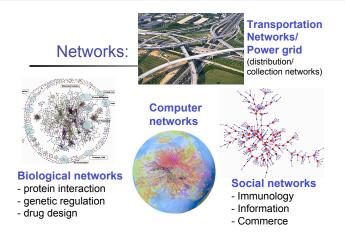
Cascades on interdependent networks





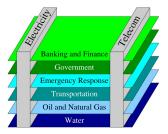
Raissa M. D'Souza University of California, Davis Dept of CS, Dept of Mech. and Aero. Eng. Complexity Sciences Center External Professor. Santa Fe Institute

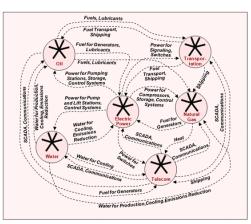
A collection of $\underline{\text{interacting}}$, $\underline{\text{dynamic}}$ networks form the core of modern society



- E-commerce \rightarrow WWW \rightarrow Internet \rightarrow Power grid \rightarrow River networks.
- Biological virus \to Social contact network \to Transportation nets \to Communication nets \to Power grid \to River networks.

Critical infrastructure





From Peerenboom et. al.

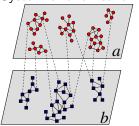
Moving to systems of interdependent networks What are the simplest, useful, **abstracted** models?

- What are the emergent new properties?
 - Host-pathogen interactions
 - Phase transition thresholds
- What features confer resilience in one network while introducing vulnerabilities in others?
- How do demands in one system shape the performance of the others? (e.g., demand informed by social patterns of communication)
- How do constraints on one system manifest in others?
 (e.g., River networks shape placement of power plants)
- Coupling of scales across space and time / co-evolution.

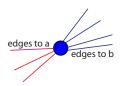
Configuration model for interacting networks

(E. Leicht and R. D'Souza, arXiv:0907.0894)

System of two networks



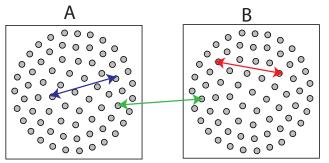
Connectivity for an individual node



- Degree distribution for nodes in network a: $p_{k_a k_b}^a$
- ullet For the the system: $\{p_{k_ak_b}^a,p_{k_ak_b}^b\}$
- Generating functions to calculate properties of the ensemble of such networks.

Modular Erdős-Rényi

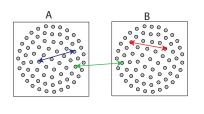
Divide nodes initially into two groups (A and B):

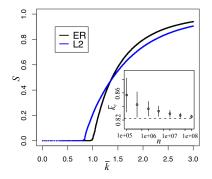


- Add internal a-a edges with rate λ .
- Add internal *b-b* edges with rate λ/r_1 , with $r_1 > 1$.
- Add intra-group *a-b* edges with rate λ/r_2 , with $r_2 > 1$, $r_2 \neq r_1$.

What happens? (Anything different?)

Wiring which respects group structures percolates earlier!

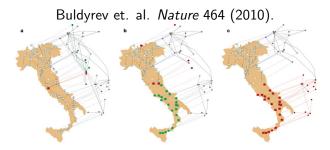




(Also tradeoffs between sparser and denser subnetworks.)

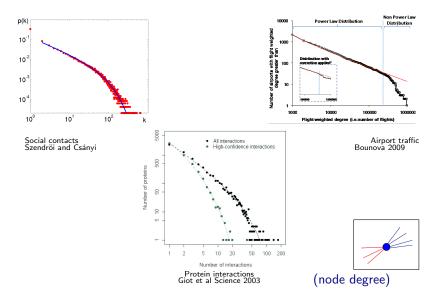
- Probability distribution for node degrees: $\{p_{k_ak_b}^a, p_{k_ak_b}^b\}$
- Generating functions to calculate properties of the ensemble of such networks.

The flip side: "Catastrophic cascade of failures in interdependent networks"



- Consider two coupled random graphs.
- Nodes fail (removed either in a targeted or random manner).
- Following an iterative removal process, small failures can lead to massive cascades of failure of the networks themselves.
- Surprising: What confers resilience to individual network (broad-scale degree distribution) may be a weakness for randomly coupled networks.

Single networks – broad scale degree distribution.



Approximated as power law $P_k \propto k^{-\gamma}$

(Note:
$$\gamma > 1$$
 required for $\sum_k P_k = 1$)

• First moment (Mean degree):

$$\langle k \rangle = \sum_{k=1}^{\infty} k p_k \approx \int_{k=1}^{\infty} k p_k dk$$

Diverges (i.e., $\langle k \rangle \to \infty$) if $\gamma \le 2$.

Second moment:

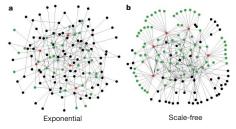
$$\langle k^2 \rangle = \sum_{k=1}^{\infty} k^2 p_k \approx \int_{k=1}^{\infty} k^2 p_k dk$$

Diverges (i.e., $\langle k^2 \rangle \to \infty$) if $\gamma \le 3$.

• Many results follow for 2 $<\gamma<$ 3 since $\left< k \right>/\left< k^2 \right> o 0$

Consequences of $p(k) \sim k^{-\gamma}$ for networks

- Most nodes are leaves (degree 1): Network connectivity very robust to random node removal.
- High degree nodes are hubs: Network connectivity very fragile to targeted node removal.



• Epidemic spreading on the network (contact process): if $2 < \gamma < 3$, then $\langle k \rangle / \langle k^2 \rangle \to 0$ and $\lim_{n \to 0}$ epidemic threshold $\to 0$.

(Buldyrev et al find broad scale more fragile for their particular cascade dynamics)

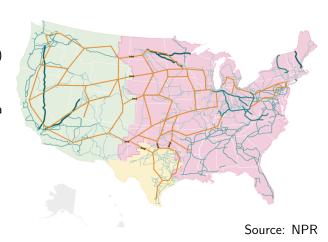
Dynamical processes on interdependent networks Motivation: interconnected power grids

C. Brummitt, R. M. D'Souza and E. A. Leicht *PNAS* 109 (12), 2012.

Power grid: a collection of interdependent grids. (Interconnections built originally for emergencies.)

Blackouts cascade from one grid to another (in a non-local manner).

Building more interconnections (Fig: planned wind transmission). Increasingly distributed



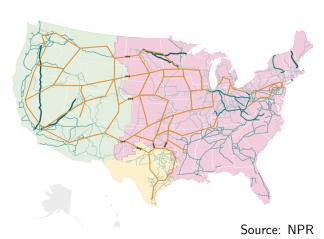
Motivation cont.: interconnected power grids

What is the effect of interdependence on cascades?

It is thought power grids organize to a

"critical" state

- power law distribution of black out sizes
- maximize profits while fearing large cascades



Sandpile models: "Self-organized criticality"

- Drop grains of sand ("load") randomly on nodes.
- Each node has a threshold for sand.
- Load > threshold → node topples = sheds sand to neighbors.
- These neighbors may topple. And their neighbors.
 And so on.
- Cascades of load/stress on a system.

The classic Bak-Tang-Wiesenfeld sandpile model:

 $(Neuronal\ avalanches,\ banking\ cascades,\ earthquakes,\ landslides,\ forest\ fires,\ blackouts...)$

- Finite square lattice in \mathbb{Z}^2
- Thresholds 4
- Open boundaries prevent inundation

Avalance size follows power law distribution $P(s) \sim s^{-3/2}$

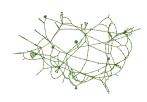
Sandpile model on arbitrary networks

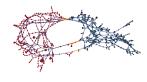
Sandpile model on arbitrary networks:

- Thresholds = degrees (shed one grain per neighbor)
- Boundaries: shedded sand are deleted independently with probability f (: $\approx 10/N$)
- Mean-field behavior $(P(s) \propto s^{-3/2})$ robust. (Goh et al. PRL 03, Phys. A 2004/2005, PRE 2005. PLRGs with $2 < \gamma < 3$ not mean-field.)

Sandpiles on interacting networks:

- Sparse connections between random graphs.
- Configuration model with multi-type degree distribution.





Sparsely coupled networks

Two-type network: a and b.

Degree distributions: $p_a(k_a, k_b), p_b(k_a, k_b)$

 $p_a(k_a, k_b)$ = fraction of a-nodes with k_a, k_b neighbors in a, b.

Configuration model: create degree sequences until valid (even total intra-degree, same number of inter-edge stubs), then connect edge stubs at random.

Measures of avalanche size

Topplings:

Drop a grain of sand. How many nodes eventually topple?

Avalanche size distributions:
$$s_a(t_a, t_b), s_b(t_a, t_b)$$

e.g., $s_a(t_a, t_b) = chance$ an avalanche begun in a topples t_a many a-nodes, t_b many b-nodes.

To study this, we need a more basic distribution...

• **Sheddings:** Drop a grain of sand. How many grains are eventually shed from one network to another?

```
Shedding size distributions: \rho_{od}(r_{aa}, r_{ab}, r_{ba}, r_{bb}) = chance a grain shed from network o to d eventually causes r_{aa}, r_{ab}, r_{ba}, r_{bb} many grains to be shed from a \rightarrow a, a \rightarrow b, b \rightarrow a, b \rightarrow b
```

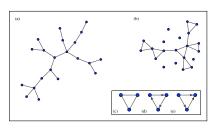
*Approximate shedding and toppling as multi-type branching processes.

Branching process approximation

Cascades in networks \approx branching processes if they're *tree-like*.

Power grids are fairly tree-like:

	clustering coefficient
Power grid in SE USA	0.01
Similar Erdős-Rényi graph	0.001



Sandpile cascades on interacting networks \approx a multitype branching process.

Overview of the calculations

From degree distribution to avalanche size distribution:

```
Input: degree distributions p_a(k_a, k_b), p_b(k_a, k_b)
                      ↓ compute
        shedding branching distributions q_{aa}, q_{ab}, q_{ba}, q_{bb}
                      ↓ compute
        toppling branching distributions u_a, u_b

↓ plug in

        toppling branching generating functions \mathcal{U}_a, \mathcal{U}_b

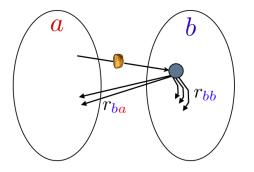
↓ plug in

        equations for avalanche size generating functions S_a, S_b
                      ↓ solve numerically, asymptotically
Output: avalanche size distributions s_a, s_b
```

Shedding branch distribution, q_{od}

Example:

 $q_{ab}(r_{ba}, r_{bb}) :=$ the branch (children) distribution for an ab-shedding.



Probability a single grain shed from a to b results in r_{ba} a-sheddings and r_{bb} b-sheddings.

The crux of the derivation

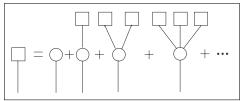
 $q_{od}(r_{da}, r_{db}) :=$ chance a grain of sand shed from network o to d topples that node, sending r_{da}, r_{db} many grains to networks a, b.

$$q_{od}(r_{da}, r_{db}) = \underbrace{\frac{r_{do}p_d(r_{da}, r_{db})}{\langle k_{do} \rangle}}_{\text{I}} \underbrace{\frac{1}{r_{da} + r_{db}}}_{\text{II}} \quad \text{for } r_{da} + r_{db} > 0.$$

- I: chance the grain lands on a node with degree $p_d(r_{da}, r_{db})$ (Edge following: r_{do} edges leading from network o.)
- II: empirically, sand on nodes is $\sim \text{Uniform}\{0,...,k-1\}$
- Chance of no children = $q_{od}(0,0) := 1 \sum_{r_{da}+r_{db}>0} q_{od}(r_{da}, r_{db})$ (Probability a neighbor of any degree sheds, properly weighted.)
- Chance at least one child = $1 q_{od}(0,0)$.

I. Edge following probability: single network

- Degree distribution, P_k , with G.F. $G_0(x) = \sum_k P_k x^k$.
- Probability of following a random edge to a node of degree k: $q_k = kP_k / \sum_k kP_k$, with G.F. $G_1(x) = \sum_k q_k x^k$.
- ("Contact immunization" strategy used by CDC.)
- Generating function "self consistency" construction. $H_1(x)$: G.F. for dist in comp size following random edge



$$H_1(x) = xq_0 + xq_1H_1(x) + xq_2[H_1(x)]^2 + xq_3[H_1(x)]^3 \cdots$$

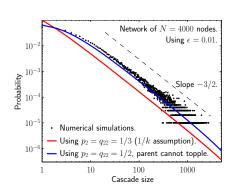
= $xG_1(H_1(x))$

(c.f. Newman, Strogatz, Watts PRE 2001.)

II. Revisiting the "1/k" assumption

Pierre-Andre Noël, C. Brummitt, R. D'Souza in progress

A node that just toppled is actually less likely to topple on the next time step. $(\text{prob zero sand} \neq 1/\text{k})$



Key: a node topples iff it sheds at least one grain of sand.

Probability an o to d shedding leads to at least one other shedding: $1 - q_{od}(0,0)$. Probability a single shedding from an a-node yields t_a , t_b topplings:

$$u_{a}(t_{a}, t_{b}) = \sum_{k_{a}=t_{a}, k_{b}=t_{b}}^{\infty} p_{a}(k_{a}, k_{b}) Binomial[t_{a}; k_{a}, 1 - q_{aa}(0, 0)].$$

$$\cdot Binomial[t_{b}; k_{b}, 1 - q_{ab}(0, 0)].$$

(e.g.,
$$k_a$$
 neighbors, t_a of them topple, each topples with prob $1 - q_{22}(0,0)$.)

Associated generating functions: $\mathcal{U}_a(\tau_a, \tau_b), \mathcal{U}_b(\tau_a, \tau_b)$.

Summary of distributions and their generating functions

	distribution	generating function
degree	$p_a(k_a, k_b), p_b(k_a, k_b)$	$G_a(\omega_a,\omega_b),G_b(\omega_a,\omega_b)$
shedding branch	$q_{od}(r_{da}, r_{db})$	
toppling branch	$u_a(t_a,t_b),u_b(t_a,t_b)$	$\mathcal{U}_a(\tau_a, \tau_b), \mathcal{U}_b(\tau_a, \tau_b)$
toppling size	$s_a(t_a,t_b), s_b(t_a,t_b)$	$S_a(\tau_a, \tau_b), S_b(\tau_a, \tau_b)$

Self-consistency equations:

$$S_a = \tau_a \mathcal{U}_a(S_a, S_b), \tag{1}$$

$$S_b = \tau_b \mathcal{U}_b(S_a, S_b). \tag{2}$$

Want to solve (1), (2) for $S_a(\tau_a, \tau_b)$, $S_b(\tau_a, \tau_b)$. Coefficients of S_a , S_b = avalanche size distributions S_a , S_b .

In practice, Eqs. (1), (2) are transcendental and difficult to invert.

Numerically solving $\vec{\mathcal{S}}(\vec{ au}) = \vec{ au} \cdot \vec{\mathcal{U}}(\vec{\mathcal{S}}(\vec{ au}))$

Methods for computing s_a , s_b for small avalanche size:

Method 1: Iterate starting from $S_a = S_b = 1$; expand.

Method 2: Iterate symbolically; use Cauchy's integration formula

$$s_a(t_a, t_b) = \frac{1}{(2\pi i)^2} \iint_D \frac{S_a(\tau_a, \tau_b)}{\tau_a^{t_a+1} \tau_b^{t_b+1}} d\tau_a d\tau_b,$$

where $D \subset \mathbb{C}^2$ encloses the origin and no poles of \mathcal{S}_a .

Method 3: Multidimensional Lagrange inversion (IJ Good 1960):

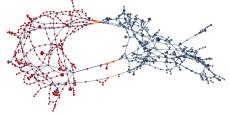
$$\mathcal{S}_{a} = \sum_{m_{a}, m_{b} = 0}^{\infty} \frac{\tau_{a}^{m_{a}} \tau_{b}^{m_{b}}}{m_{a}! m_{b}!} \left[\frac{\partial^{m_{a} + m_{b}}}{\partial \kappa_{a}^{m_{a}} \partial \kappa_{b}^{m_{b}}} \left\{ h(\vec{\kappa}) \mathcal{U}_{a}(\vec{\kappa})^{m_{a}} \mathcal{U}_{b}(\vec{\kappa})^{m_{b}} \middle| \left| \delta_{\mu}^{\nu} - \frac{\kappa_{\mu}}{\mathcal{U}_{\mu}} \frac{\partial \mathcal{U}_{\mu}}{\partial \kappa_{\mu}} \middle| \right| \right\} \right]_{\vec{\kappa} = 0},$$

if the types $\mu, \nu \in \{a, b\}$ have a positive chance of no children.

• Unfortunately for large avalanches need to use simulation. (Asymptotic approximations used for isolated networks do not apply.)

Plugging in degree distributions: A real world example

Two geographically nearby power grids in the southeastern US.

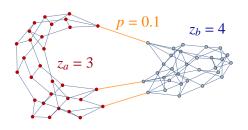


	Grid c	Grid d
# nodes	439	504
$\langle k_{int} \rangle$	2.4	2.9
$\langle k_{ext} \rangle$	0.02	0.01
clustering	0.01	0.08

8 links between these two distinct grids. Different average internal degree $\langle k_{int} \rangle$. Long paths. (Low clustering – approximately locally tree-like.)

A canonical idealization: Random regular graphs

Two random z_a -, z_b -regular graphs with "Bernoulli coupling": each node gets an external link independently with probability p. These \approx power grids.



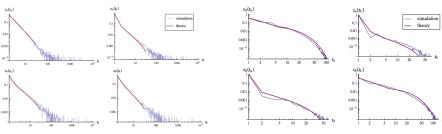
$$\mathcal{U}_{a}(\tau_{a},\tau_{b}) = \frac{(p - p\tau_{a} + (z_{a} + 1)(\tau_{a} + z_{a} - 1))^{z_{a}}(1 + p(\tau_{b} - 1) + z_{b})}{(z_{a} + 1)^{z_{a}}z_{a}^{z_{a}}(z_{b} + 1)}$$

Matching theory and simulation (for small'ish avalanches)

Plot marginalized avalanche size distributions

$$s_a(t_a) \equiv \sum_{t_b \geq 0} s_a(t_a, t_b), \quad s_a(t_b) \equiv \sum_{t_a \geq 0} s_a(t_a, t_b), \quad \text{etc.}$$

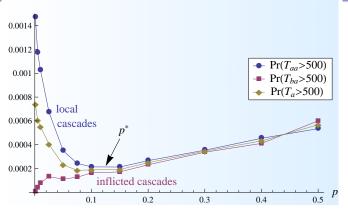
in simulations, branching process.



Regular(3)-Bernoulli(p)-Regular(10)

Power grids c, d.

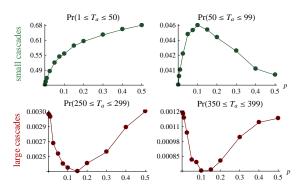
Main findings: For an individual network, optimal p^*



- (Blue curve) Initially increasing *p* decreases the largest cascades started in that network (second network is reservoir for load).
- (Red curve) Increasing *p increases* the largest cascades inflicted from the second network (two reasons: new channels and greater capacity).
- (Gold curve) Neglecting the origin of the cascade, the effects balance at a stable critical point, $p^* \approx 0.1$. (Reduced by 75% from p=0.001 to p=0.1)

Main findings: Individual network, "Yellowstone effect"

Supressing largest cascades amplifies small and intermediate ones! (Supressing smallest amplifies largest (Yellowstone and Power Grids*))



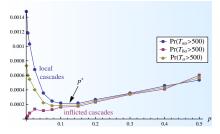
- To suppress smallest, isolation p = 0.
- To suppress intermediate (10% of system size) either p = 0 or p = 1.
- To suppress cascades > 25% of system size then $p = p* \approx 0.11$.

^{*}Dobson I, Carreras BA, Lynch VE, Newman DE Chaos, (2007).

Main findings: System as a whole

More interconnections fuel larger system-wide cascades.

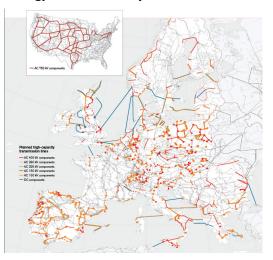
 Each new interconnection adds capacity and load to the system (Here capacity is a node's degree, interconnections increase degree)



- Test this on coupled random-regular graphs by rewiring internal edges to be spanning edges (increase interconnectivity with out increasing degree). No increase in the largest cascades.
- Inflicted cascades (Red curve) increase mostly due to increased capacity.
- \bullet So an individual operator adding edges to achieve p^* may inadvertantly cause larger global cascades.

Larger cascades from increased interconections: A warning sign?

- Financial markets
- Energy transmission systems



Source: Technology Review, "Joining the Dots", Jan/Feb (2011).

Main findings, continued: Frustrated equilibrium

Unless the coupled grids are identical, only one will be able to acheive it's p^* .

• Coupled $z_a \neq z_b$ regular random graphs (brancing process and simulation).

$$\frac{\langle s_a \rangle_b}{\langle s_b \rangle_a} = \frac{1 + z_a}{1 + z_b}$$

If $z_b > z_a$ inflicted cascades from b to a larger than those from a to b.

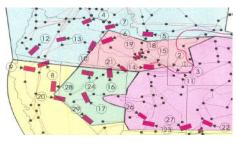
(An arm's race for capacity?)

Summary: Sandpile cascades on interacting networks

- Some interconnectivity can be beneficial, but too much is detrimental. Stable optimal levels are possible.
- From perspective of isolated network, seek optimal interconnectivity p*.
- This equilibrium will be frustrated if the two networks differ in their load or propensity to cascade.
- Tuning p to suppress large cascades amplifies to occurrence of small ones. (Likewise, suppressing small, amplifies large.)
- Additional capacity and overall load from new interconnections fuels larger cascades in the system as a whole.
- What might be good for an individual operator (adding edges to achieve p^*), may be bad for society.

Possible extensions - Real power grids

- Expand multi-type processes to encode for different types of nodes (buses, transformers, generators)
- Linearized power flow equations – cascades in real power grids are non-local: e.g. fig: 3 to 4, 7 to 8
- Game theoretic/ economic consideration (we assume adding connections is cost-free)



(1996 Western blackout NERC report)

(Power grids as "critical" - Balancing profit and fear of outages)

Possible extensions

Teams and social networks

- Tasks (sand) arriving on people (nodes)
- Each person has a capacity for tasks: sheds once overloaded
- Coupling to a second social network (team) can reduce large cascades

Amplifying cascades

- Encourage adoption of new products
- Snowball sampling

Airline networks

• Different carriers accepting load (bumped passengers)

Other types of cascades, not just than sandpiles

- Watt's threshold model: "topple" is some **fraction** ϕ of your neighbors have "toppled" (rather than "toppling", Watt's think of cascades in adopting a new product).
 - Harder to "topple" nodes of high degree.
- Kleinberg: rather than thresholds, diminishing returns (concave / sub-modular utility)

References and Acknowledgements

- C. Brummitt, R. M. D'Souza and E. A. Leicht, "Suppressing cascades of load in interdependent networks", it PNAS 109 (12) 2012.
- Note Author Summary for high-level overview.

