Cascades on interdependent networks
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A collection of interacting , dynamic networks

form the core of modern society
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< Power grid
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Networks:

Computer
networks

t
Social networks

Biological networks
- protein interaction

- genetic regulation - Immunology
- drug design - Information
- Commerce

@ E-commerce - WWW — Internet — Power grid — River networks.

@ Biological virus — Social contact network — Transportation nets —
Communication nets — Power grid — River networks.



Critical infrastructure

Governme

A

A

Water

Fuel Transport,
Shippin
Fuel for Generators, Powerfor
Lubricants Signaling,

Switches_|

s,

A" powerfor Pumping
_ Stations, Storage

uction

Powerfor Pump
andLiftStatfons,
Control Systom.

SCADA, Communications
scADA,
Communications

From Peerenboom et. al.




Moving to systems of interdependent networks

What are the simplest, useful, abstracted models?

@ What are the emergent new properties?
— Host-pathogen interactions
— Phase transition thresholds

@ What features confer resilience in one network while
introducing vulnerabilities in others?

@ How do demands in one system shape the performance of the
others? (e.g., demand informed by social patterns of
communication)

@ How do constraints on one system manifest in others?
(e.g., River networks shape placement of power plants)

e Coupling of scales across space and time / co-evolution.



Configuration model for interacting networks

(E. Leicht and R. D'Souza, arXiv:0907.0894)

System of two networks Connectivity for an individual node
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e Degree distribution for nodes in network a: piakb

e For the the system: {p/i,kb’ pli,kb}

e Generating functions to calculate properties of the ensemble of
such networks.
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Modular Erdds-Rényi

e Divide nodes initially into two groups (A and B):
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o Add internal a-a edges with rate \.
e Add internal b-b edges with rate A/ry, with r; > 1.

@ Add intra-group a-b edges with rate A/rp, with r, > 1,
rn ;é r.

’What happens? (Anything different?)‘




Wiring which respects group structures percolates earlier!

A B e
0coo 000
o o ° o
OOOOOOOO OOoooooo © _| — ER
0 0 900 o© o%oo o — L2
00 %05 090 0 %og»®,0°
o © 5 [ 0©° o ° 3
°s0 o °% %000 %o 0% Q
©00°%0 OOGE 900°%0 Oooo e
© o0 0459 %o 00 0450 %9 A
© 05,0%0 © 05,0%0
0,70 o 0,70 Jo <
©0° ©0° S
o
=1
o 1e+05  1et06 1e+07 1e+08
S o

T T T T T T T
0.0 0.5 10 _ 15 20 25 3.0

(Also tradeoffs between sparser and denser subnetworks.)

@ Probability distribution for node degrees: {p,‘iakb, p,l(’akb}

@ Generating functions to calculate properties of the ensemble
of such networks.



The flip side: “Catastrophic cascade of failures in

interdependent networks”

Buldyrev et. al. Nature 464 (2010)
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@ Consider two coupled random graphs.
@ Nodes fail (removed either in a targeted or random manner).

e Following an iterative removal process, small failures can
lead to massive cascades of failure of the networks themselves.
@ Surprising: What confers resilience to individual network

(broad-scale degree distribution) may be a weakness for
randomly coupled networks.



Single networks — broad scale degree distribution.
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Approximated as power law Py o< k=7



P, ~ k=7, the first two moments

(Note: v > 1 required for >, P, =1)
@ First moment (Mean degree):
() = ko [ kpuck
k=1 k=1
Diverges (i.e., (k) = 00) if vy <2.

@ Second moment:

e )
(K) =Y Kp = / k*pidk
k

k=1 =1

Diverges (i.e., (k?) = c0) ify<3.

@ Many results follow for 2 < v < 3 since (k) / (k?) — 0



Consequences of p(k) ~ k=7 for networks

@ Most nodes are leaves (degree 1): Network connectivity very
robust to random node removal.

@ High degree nodes are hubs: Network connectivity very fragile
to targeted node removal.

Exponential Scale-free

e Epidemic spreading on the network (contact process):
if 2 <~ <3, then (k) /(k?) — 0 and lim,_o epidemic
threshold — O.

(Buldyrev et al find broad scale more fragile for their particular cascade
dynamics)



Dynamical processes on interdependent networks

Motivation: interconnected power grids

C. Brummitt, R. M. D'Souza and E. A. Leicht PNAS 109 (12), 2012.

Power grid: a collection
of interdependent grids.
(Interconnections built

originally for emergencies.)

Blackouts cascade from
one grid to another (in a
non-local manner).

Building more
interconnections

(Fig: planned wind
transmission).
Increasingly distributed

Source: NPR



Motivation cont.: interconnected power grids

What is the effect of
interdependence on
cascades?

It is thought power grids
organize to a

“critical” state

— power law distribution
of black out sizes

— maximize profits while
fearing large cascades Source: NPR




Sandpile models: “Self-organized criticality”

@ Drop grains of sand (“load") randomly on nodes.

@ Each node has a threshold for sand.

@ Load > threshold ~~ node topples = sheds sand to
neighbors.

@ These neighbors may topple. And their neighbors.
And so on.

e Cascades of load/stress on a system.

The classic Bak-Tang-Wiesenfeld sandpile model:

(Neuronal avalanches, banking cascades, earthquakes, landslides, forest fires, blackouts...)
e Finite square lattice in Z?
@ Thresholds 4

@ Open boundaries prevent inundation

3/2

Avalance size follows power law distribution P(s) ~ s~



Sandpile model on arbitrary networks

Sandpile model on arbitrary networks:

@ Thresholds = degrees
(shed one grain per neighbor)
@ Boundaries: shedded sand are deleted
independently with probability f (:~ 10/N)
o Mean-field behavior (P(s) o s73/2) robust.

(Goh et al. PRL 03, Phys. A 2004/2005, PRE
2005. PLRGs with 2 < v < 3 not mean-field.)

Sandpiles on interacting networks:

@ Sparse connections between random graphs.

e Configuration model with multi-type degree
distribution.



Sparsely coupled networks

Two-type network: a and b.

Degree distributions: p,(ka, k5), pp( k2, kb)

pa(ka, ki) = fraction of a-nodes with k., k;, neighbors in a, b.

Configuration model: create degree sequences until valid (even
total intra-degree, same number of inter-edge stubs), then connect
edge stubs at random.



Measures of avalanche size

e Topplings:
Drop a grain of sand. How many nodes eventually topple?

Avalanche size distributions: s,(ts, tp), sp(ta, th)

e.g., sa(ta, tp) = chance an avalanche begun in a topples
t, many a-nodes, t, many b-nodes.

To study this, we need a more basic distribution...

e Sheddings: Drop a grain of sand. How many grains are
eventually shed from one network to another?

Shedding size distributions: pod(raa, fab, bas rbb)
= chance a grain shed from network o to d eventually causes
Faay Fabs Fba, Fop Many grains to be shed from a—a, a—b, b—a, b—b

*Approximate shedding and toppling as multi-type branching
processes.



Branching process approximation

Cascades in networks = branching processes if they're tree-like.

Power grids are fairly tree-like:
‘ clustering coefficient
Power grid in SE USA 0.01

Similar Erdés-Rényi graph 0.001

@

Sandpile cascades on interacting networks =
a multitype branching process.



Overview of the calculations

From degree distribution to avalanche size distribution:

Input: degree distributions p,(ka, kp), pp(ka, k)
| compute

shedding branching distributions q.., gap, Gpa, Gbb
| compute
toppling branching distributions wu,, up,
U plug in
toppling branching generating functions 4, U,
| plug in
equations for avalanche size generating functions S,, Sy,

|} solve numerically, asymptotically

Output: avalanche size distributions s,, s,



Shedding branch distribution, goq

Example:
q2b(rba, rpp) := the branch (children) distribution for
an ab-shedding.

Probability a single grain shed from a to b results in rp,
a-sheddings and rpp b-sheddings.



Shedding branch distributions goq

The crux of the derivation

God(rdas rdp) := chance a grain of sand shed from network o to d
topples that node, sending ry4,, ryp many grains to networks a, b.

rdoPd(rdas rdb) 1
, = fo > 0.
God(rdas db) (ko) rao ot ran r rga + rdp
——
I II

@ I: chance the grain lands on a node with degree py(rqz, rap)
(Edge following: r4, edges leading from network o.)

e II: empirically, sand on nodes is ~ Uniform{0, ...,k — 1}

@ Chance of no children = ¢,4(0,0) :=1— Zrda+,db>0 God (Fdas rdb)
(Probability a neighbor of any degree sheds, properly weighted.)

@ Chance at least one child = 1 — g,4(0,0).



|. Edge following probability: single network

o Degree distribution, Py, with G.F. Go(x) = >, Prx*.

@ Probability of following a random edge to a node of degree k:
qk = kPx/ >, kPk, with G.F. Gi(x) = >, qexk.

o (“Contact immunization” strategy used by CDC.)

@ Generating function “self consistency” construction.
Hi(x): G.F. for dist in comp size following random edge

et

Hi(x) = xqo + xq1H1(x) + xqa[H1(x)]* + xq3[H1(x)]? - --
= xGi(H1(x))

(c.f. Newman, Strogatz, Watts PRE 2001.)




Il. Revisiting the “1/k” assumption

Pierre-Andre Noél, C. Brummitt, R. D'Souza

A node that just toppled is
actually less likely to topple on
the next time step.
(prob zero sand # 1/k)

in progress
Network of N = 4000 nodes.
10 teo S Using € = 0.01. )
"\ N
N
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107, Numerical simulations. o

A Using p» = g2 = 1/3 (1/k assumption).
107 Using p» = go» = 1/2, parent cannot topple.
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Toppling branch distributions u,, up

shedding branch distributions goqs ~~ toppling branch distributions u,, up

Key: a node topples iff it sheds at least one grain of sand.

Probability an o to d shedding leads to at least one other
shedding: 1 — q,4(0,0). Probability a single shedding from an
a-node yields t,, t, topplings:

o0

ua(tats) = Y palka, kp)Binomial[ta; ks, 1 — q.2(0,0)]-
ka=ta,kp=tp

- Binomial[tp; kp, 1 — q.5(0,0)].

(e.g., ks neighbors, t, of them topple, each topples with prob
1 —g.,(0,0).)

Associated generating functions: U,(7a, 7p), Up(Ta, Tp).



Summary of distributions and their generating functions

distribution generating function
degree Pa(ka, kb), Po(kas kp)  Ga(wa, wp), Gp(wa, wh)
shedding branch God(rdas rdb)

toppling branch | wua(ta, tp), up(ta, tp) U(Ta, Tb), Up(Ta, Tb)
toppling size sa(ta, tb), Sp(tas tp) Sa(7a, ), Sb(Ta, Th)

Self-consistency equations:

Sa = Taua(’saygb)? (1)
Sp = Tbub(Sa,Sb). (2)

Want to solve (1), (2) for Sa(7a, 7b), Sp(Ta, Tb)-
Coefficients of S5, Sp = avalanche size distributions s, sp.

In practice, Egs. (1), (2) are transcendental and difficult to invert.



Numerically solving §(¥) =7. 7/7(5(7?))

Methods for computing s,, s, for small avalanche size:

Method 1: lterate starting from S; = Sp = 1; expand.
Method 2: Iterate symbolically; use Cauchy’s integration formula

Ta, 7_b
fa+1 tb+1

(ta, tb dTadTb,

D T3

where D C C? encloses the origin and no poles of S,.
Method 3: Multidimensional Lagrange inversion (1J Good 1960):

f.

if the types u, v € {a, b} have a positive chance of no children.

T ma b gMma+mp - _ = Ky OU,
ma.mp=0 “maTmyT” [m (R s () ™2 (K)o | |81~ g e

Sa= K Uy Oy

e Unfortunately for large avalanches need to use simulation.
(Asymptotic approximations used for isolated networks do not apply.)



Plugging in degree distributions: A real world example

Two geographically nearby power grids in the southeastern US.

‘ Grid ¢ Grid d

# nodes 439 504
(Kint) 2.4 2.9
(Kext) 0.02 0.01

clustering | 0.01 0.08

8 links between these two distinct grids.
Different average internal degree (kj,:). Long paths.
(Low clustering — approximately locally tree-like.)



A canonical idealization: Random regular graphs

Two random z,-, zp-regular graphs with “Bernoulli coupling”:
each node gets an external link independently with probability p.
These ~ power grids.

(P — pTa+ (Za + 1)(7-3 +z;— 1))23(1 + P(Tb - 1) + Zb)
(za+1)7z3%(zp + 1)

ua(Tav 7—b) =



Matching theory and simulation (for small’ish avalanches)

Plot marginalized avalanche size distributions

sa(ts) = Z sa(tar tp),  Sa(tp) = Z sa(ta, tp),  etc.

t,>0 ta>0

in simulations, branching process.
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Main findings: For an individual network, optimal p*

-o- Pr(T,2>500)
= Pr(Tpa>500)
-o Pr(T,>500)

0.001

0.0008
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0.0002 ——
inflicted cascades

L L L L L L L L L
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e (Blue curve) Initially increasing p decreases the largest cascades started
in that network (second network is reservoir for load).

e (Red curve) Increasing p increases the largest cascades inflicted from
the second network (two reasons: new channels and greater capacity).

e (Gold curve) Neglecting the origin of the cascade, the effects balance
at a stable critical point, p* = 0.1. (Reduced by 75% from p=0.001 to p=0.1)



Main findings: Individual network, “Yellowstone effect”

Supressing largest cascades amplifies small and intermediate ones!
(Supressing smallest amplifies largest (Yellowstone and Power Grids*))

Pr(1< T, <50)

Pr(50 < T, < 99)

e To suppress smallest, isolation p = 0.
e To suppress intermediate (10% of system size) either p=0or p = 1.

e To suppress cascades > 25% of system size then p = px ~ 0.11.

g 068 0.046
® o6L 0044
% 055 0042
g 0.49 0.041
01 02 03 04 05 01 02 03 04 05
Pr(250 < Ta < 299) Pr(350 = T < 399)
0.0030, 0.0012y
83 <
R 0.0029 00011
% 00027 0.00098
(]
g’ 0.0025 0.00085
01 02 03 04 05 01 02 03 04 05

*Dobson |, Carreras BA, Lynch VE, Newman DE Chaos, (2007).
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Main findings: System as a whole

More interconnections fuel larger system-wide cascades.

e Each new interconnection adds capacity and load to the system
(Here capacity is a node's degree, interconnections increase degree)

& Pr(Ta>500)
-2 Pr(Tpa>500)
-+ Pr(T,>500)

vy Vot
" inflicted cascades
. h .
P

L
0.1 02 03 04 05

e Test this on coupled random-regular graphs by rewiring internal edges
to be spanning edges (increase interconnectivity with out increasing
degree). No increase in the largest cascades.

e Inflicted cascades (Red curve) increase mostly due to increased capacity.

e So an individual operator adding edges to achieve p* may inadvertantly
cause larger global cascades.



Larger cascades from increased interconections:

A warning sign?
e Financial markets
e Energy transmission systems

Source:

Technology Review,
“Joining the Dots”,
Jan/Feb (2011).




Main findings, continued: Frustrated equilibrium

Unless the coupled grids are identical, only one will be able to
acheive it's p*.

e Coupled z, # z, regular random graphs (brancing process and
simulation).

<Sa>b _ 1+ Z,
(sp)a 142z

If z, > z, inflicted cascades from b to a larger than those
from a to b.

(An arm’s race for capacity?)



Summary: Sandpile cascades on interacting networks

@ Some interconnectivity can be beneficial, but too much is
detrimental. Stable optimal levels are possible.

@ From perspective of isolated network, seek optimal
interconnectivity p*.

@ This equilibrium will be frustrated if the two networks differ in
their load or propensity to cascade.

@ Tuning p to suppress large cascades amplifies to occurrence of
small ones. (Likewise, suppressing small, amplifies large.)

e Additional capacity and overall load from new interconnections
fuels larger cascades in the system as a whole.

e What might be good for an individual operator (adding edges
to achieve p*), may be bad for society.



Possible extensions — Real power grids

o Expand multi-type
processes to encode for
different types of nodes
(buses, transformers,
generators)

@ Linearized power flow
equations — cascades in
real power grids are
non-local: eg fig: 3t04, 7108

e Game theoretic/
economic consideration
(we assume adding
connections is cost-free)

(Power grids as “critical” — Balancing profit and fear of outages)



Possible extensions

Teams and social networks
@ Tasks (sand) arriving on people (nodes)
@ Each person has a capacity for tasks: sheds once overloaded

@ Coupling to a second social network (team) can reduce large
cascades

Amplifying cascades
@ Encourage adoption of new products

@ Snowball sampling

Airline networks

e Different carriers accepting load (bumped passengers)



Other types of cascades, not just than sandpiles

@ Watt's threshold model: “topple” is some fraction ¢ of your
neighbors have “toppled” (rather than “toppling”, Watt's
think of cascades in adopting a new product).

— Harder to “topple” nodes of high degree.

o Kleinberg: rather than thresholds, diminishing returns
(concave / sub-modular utility)
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@ Note Author Summary for high-level overview.
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