Renormalization of hierarchically interacting Lambda-Cannings processes

Anton Klimovsky

Joint work with A. Greven (Erlangen), F. den Hollander (Leiden/Eindhoven), S. Kliem (Essen)

Eindhoven University of Technology

July 24, 2012, Cornell University
Plan

- **Introduce** a (class of) models for *evolution of spatially structured populations*.
- **Analyze** the large (space-time) scale behavior of the models and their *ergodic behavior*.
Universality and renormalization

- Substantial literature on renormalization of \textit{diffusive spatially interacting models}.

\textbf{This talk:}

- Universality for a class of \textit{non-diffusive} spatio-temporal models with \textbf{jumps}.
Spatial multi-scale \wedge-Cannings process

- Structured population evolving in **time** and **space**.
- Geographically scattered colonies of individuals.
- **Reproduction: Cannings process** – progeny of size comparable to the size of the whole population (\Rightarrow skewed offspring distribution):
 - Genetic diversity observed in population genetics data is less than the one predicted by diffusive models.
 - Highly selective environment, selective sweeps.
 - Population size fluctuations/bottlenecks.
 - ...
- **Migration**.
- **Occasional global catastrophes \Rightarrow reshuffling-resampling.**
Single-colony Λ-Cannings process

- Single colony of M individuals: $I := \{1, \ldots, M\}$.
- Genetic types: $T(i, t) \in E, t \in \mathbb{R}_+, i \in I$.
- Type-space: E compact Polish.
- Initially: $T(i, 0) \sim \theta, \theta \in \mathcal{M}_1(E)$.
- Resampling: fixed-M reproduction.
- Poisson point process Π with $dt \otimes \Lambda^*(dr)$.
- $\Lambda^*(dr) \in \mathcal{M}([0, 1])$.
- $(t, r) \in \Pi$ encodes a resampling event at time t:
 - Mark the individuals for resampling independently with success prob r.
 - Randomly choose a parent individual (among the marked ones).
 - Change the types of the marked individuals to the type of the parent.
- Progeny comparable to the size of population: $\approx Mr$.
Single-colony \(\Lambda \)-Cannings process

\[
\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Figure: Cannings resampling event in a colony of \(M = 8 \) individuals of two types.

- **Q:** Which \(\Lambda^*(dr) \)?
- **A:** \(\Lambda^*(dr) := \Lambda(dr)/r^2 \), where \(\Lambda \in \mathcal{M}_f([0, 1]) \).
- \[
\Rightarrow \frac{1}{2}N(N-1)\int_0^1 \Lambda^*(dr)r^2 < \infty
\]
- **Assumptions:** \(\Lambda(\{0\}) = 0 \) (no diffusive part)
- **Genetic types distribution:** \(X(t) := \frac{1}{M} \sum_{i=1}^{M} \delta_{T(i,t)} \in \mathcal{M}_1(E) \).
- Let \(M \to \infty \).
Multi-colony Λ-Cannings process

Assume:

- Individuals **migrate** between colonies.
- Symmetric (rate c) random walk on the **full graph** of N vertices.

Figure: Possible immediate migration steps between $N = 4$ colonies with $M = 3$ individuals of two types in the mean-field version.
Hierarchical geographic space

- **Geographical space:** hierarchical group (regular tree):
 \[\Omega_N = \left\{ \eta = (\eta^l)_{l \in \mathbb{N}_0} \in \{0, 1, \ldots, N-1\}^{\mathbb{N}_0} \mid \sum_{l \in \mathbb{N}_0} \eta^l < \infty \right\} \text{ of order } N. \]

- **Ultrametric:**
 \[d(\eta, \zeta) = \min\{k \in \mathbb{N}_0 \mid \eta^l = \zeta^l, \text{ for all } l \geq k\}, \quad \eta, \zeta \in \Omega_N. \]

- **Topology:** blocks
 \[B_k(\eta) = \{ \zeta \in \Omega_N : d(\eta, \zeta) \leq k \}, \quad \eta \in \Omega_N, k \in \mathbb{N}_0 \]

- **Migration between colonies:** hierarchical random walk:
 - **Migration rates:**
 \[c := (c_k)_{k \in \mathbb{N}_0} \in (0, \infty)^{\mathbb{N}_0} \]
 - Each indiv. at \(\eta \in \Omega_N \) jumps unif. in \(B_k(\eta) \) at rate \(c_{k-1}/N^{k-1} \)
Transience vs. recurrence: Comparison with SRW on \mathbb{Z}^d

N.B. Dawson, Gorostiza and Wakolbinger (2005), the HRW is

- **recurrent** $\iff \sum_{k \in \mathbb{N}_0} (1/c_k) = \infty$.
- **transient** $\iff \sum_{k \in \mathbb{N}_0} (1/c_k) < \infty$

Example. $c_k = c^k$. Can associate (potential theoretic) **dimension** $d = d(c, N)$ to HRW. Then:

- **recurrent** $\iff c < 1 \iff$ SRW $d < 2$
- **critically recurrent** $\iff c = 1 \iff$ SRW $d = 2$
- **transient** $\iff c > \infty \iff$ SRW $d > 2$
Hierarchically interacting Λ-Cannings process

Colonies on Ω_N.

- **Migration**: hierarchical random walk.
- **Non-local reshuffling-resampling**:
 - **Resampling measures**: $\Delta := (\Lambda_k)_{k \in \mathbb{N}_0} \in \mathcal{M}_f([0,1])^\mathbb{N}_0$
 - For each η, for each Λ_k, resample-reshuffle macro-colony $B_k(\eta)$ at rate $\frac{1}{N^{2k}}$
 - **Reshuffling**:

Figure: Random reshuffling in a 1-block on the hierarchical lattice of order $N = 3$ with $M = 3$ individuals of two types per colony.
Summary (so far)

Hierarchically interacting \((c, \Lambda)\)-Cannings process

\[
X^{(\Omega_N)} = \left(X^{(\Omega_N)}(t) \right)_{t \geq 0} \quad \text{with} \quad X^{(\Omega_N)}(t) = \{ X^{(\Omega_N)}_{\eta}(t) \}_{\eta \in \Omega_N} \in \mathcal{M}_1(E)^{\Omega_N}.
\]

Competition between:

- **Migration** \(c = (c_k)_{k \in \mathbb{Z}_+}\) (spatial movement) vs. **Resampling** \(\Lambda = (\Lambda_k)_{k \in \mathbb{Z}_+}\) (reproduction under constrained resources).

 plus

- (Hierarchy of) **time scales**.

N.B. Important features:

- **Non-diffusive behavior**: jumps.
- **Strongly correlated global updates**: non-local reshuffling-resampling.

\[
Q: \mathcal{L} \left[X^{(\Omega_N)}(t) \right] \xrightarrow{N \to +\infty} ? \quad t \to +\infty
\]
Large space-time scale analysis: renormalization

- “Separate” slow and fast time scales.
- Renormalize.
- Macroscopic observables:

\[Y_{\eta,k}^{(N)}(tN^k) = \frac{1}{N^k} \sum_{\zeta \in B_k(\eta)} X_{\zeta}^{(\Omega_N)}(tN^k), \quad \eta \in \Omega_N, \ k \in \mathbb{Z}_+ \]

(block averages of order \(k \in \mathbb{Z}_+ \)).

- **Single scale** (mean-field) \(\rightsquigarrow \) propagation of chaos \(\rightsquigarrow \) McKean-Vlasov process.
- **Multiple scales** simultaneously: \(\rightsquigarrow \) Markov interaction chain.
- **Hierarchical mean-field limit:**

\[\Omega_N \uparrow \Omega_\infty, \quad N \to +\infty. \]
McKean-Vlasov limiting object

Algebra of test functions: \(\mathcal{B} \subseteq C_b(\mathcal{M}_1(E), \mathbb{R}) \) with \(G \in \mathcal{B} \):

\[
G(x) = \int_{E^n} x^\otimes n (du) \varphi(u), \quad x \in \mathcal{M}_1(E), n \in \mathbb{N}, \varphi \in C_b(E^n, \mathbb{R}).
\]

Generator: \(L^{c,d,\Lambda}_\theta : \mathcal{B} \to C_b(\mathcal{M}_1(E), \mathbb{R}) \)

\[
(L^{c,d,\Lambda}_\theta G)(x) = c \int_E (\theta - x) (da) \frac{\partial G(x)}{\partial x} [\delta_a]
+ d \int_E \int_E Q_x(du, dv) \frac{\partial^2 G(x)}{\partial x \partial x} [\delta_u, \delta_v]
+ \int_{[0,1]} \Lambda^* (dr) \int_E x(da) \left[G((1 - r)x + r\delta_a) - G(x) \right], \quad G \in \mathcal{B},
\]

where

\[
Q_x(du, dv) = x(du) \delta_u(dv) - x(du) x(dv).
\]

\(\Lambda^\Lambda \)-processes with immigration-emigration:

\[
Z^{c,d,\Lambda}_\theta = (Z^{c,d,\Lambda}_\theta(t))_{t \geq 0}, \quad Z^{c,d,\Lambda}_\theta(0) = \theta.
\]
Asymptotic behavior of the macroscopic observables

- **Volatility constants:** $d = (d_k)_{k \in \mathbb{Z}_+}$,

 $d_0 = 0, \quad d_{k+1} = \frac{c_k(\lambda_k/2 + d_k)}{c_k + (\lambda_k/2 + d_k)}, \quad k \in \mathbb{Z}_+$,

 where $\lambda_k = \Lambda_k([0; 1])$.

- **N.B.** (inhomogeneous) **Möbius transformation.**

Theorem (behaviour of the macroscopic observables)

For every $k \in \mathbb{Z}_+$, uniformly in $\eta \in \Omega_\infty$,

$$\mathcal{L} \left[\left(Y_{\eta,k}^{(N)}(tN^k) \right)_{t \geq 0} \right] \xrightarrow{N \to +\infty} \mathcal{L} \left[\left(Z_{\theta}^{c_k,d_k,\Lambda_k}(t) \right)_{t \geq 0} \right].$$
Ergodic behavior of $X^{(N)}$, $N < \infty$

Set

$$m_k := \frac{\lambda_k/2 + d_k}{c_k}.$$

Theorem (Clustering vs. coexistence criterion)

- **[Clustering]** (= formation of large mono-type regions), if $\sum_{k \in \mathbb{Z}_+} m_k = \infty$
 vs.

- **[Local coexistence]** (= convergence to multi-type equilibria), if $\sum_{k \in \mathbb{Z}_+} m_k < \infty$.

N.B. $\sum_{k \in \mathbb{Z}_+} m_k = \infty$ vs. $< \infty \iff \sum_{k \in \mathbb{N}_0} (1/c_k) \sum_{l=0}^k \lambda_l = \infty$ vs. $< \infty$.

- Recurrent migration \rightsquigarrow clustering.

- \exists transient migrations and strong enough reshuffling-resampling $\sum_{l \in \mathbb{N}_0} \lambda_l = \infty \rightsquigarrow$ clustering.
Theorem (Clustering vs. coexistence criterion)

The following dichotomy holds:

(a) **[Local coexistence]** If \(\sum_{k \in \mathbb{Z}^+} m_k < \infty \), then for every \(\theta \in \mathcal{P}(E) \) and every \(X^{(\Omega_N)}(0) \) whose law is stationary and ergodic w.r.t. translations in \(\Omega_N \) and has a single-site mean \(\theta \),

\[
\mathcal{L} \left[X^{(\Omega_N)}(t) \right] \xrightarrow{t \to +\infty} \nu^{(\Omega_N),c,\lambda}_{\theta} \in \mathcal{P}(\mathcal{P}(E)^{\Omega_N})
\]

for some unique law \(\nu^{(\Omega_N),c,\lambda}_{\theta} \) that is stationary and ergodic w.r.t. translations in \(\Omega_N \) and has single-site mean \(\theta \).

(b) **[Clustering]** If \(\sum_{k \in \mathbb{Z}^+} m_k = \infty \), then, for every \(\theta \in \mathcal{P}(E) \),

\[
\mathcal{L} \left[X^{(\Omega_N)}(t) \right] \xrightarrow{t \to +\infty} \int_0^1 \theta(du)\delta_{(\delta_u)^{\Omega_N}} \in \mathcal{P}(\mathcal{P}(E)^{\Omega_N})
\]