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Lecture Plan

* We will see the first simple models of information exchange on
networks.

« Assumptions:
« P[S=+] =P[S=-] =0.5.
* N independent signals S; with P[S; =5 | S] = p > 0.5.

. Agents update their opinions in various ways ...



Lecture Plan

» Basic questions:

* Agreement: Do all agents converge to the same
belief/action?

 Learning: Do the agents converge to the correct
state of the world (with high probability)?

« Compare to the Jury Theorem where we have
agreement (the majority value) and learning (by the
Jury Theorem)



The DeGroot Model

* DeGroot model: Repeated averaging of probabilities
of self and neighbors.

* Formal definition: n individuals denoted 1,...,n.

» At time 0 some initial beliefs: s(i) = s(i,0) for i € [n].
» Averaging weights: w(i,j) > 0 satisfy »; w(i,j) =1

* Update rule: s(i,t+1) = >, w(i,]j) s(j,t)

 [n matrix notation: s(t+1) = W s(t)

 Linear model, linear updates ...
* Introduced by De Groot (Penn Statistician, 1931-1989)
in 1974.



The DeGroot Model and Markov Chains

 In matrix notation: s(t+1) = W s(t)

 Let X(i,t) be the Markov chain defined by W
started at i and run for t steps.

e Claim: s(i,t) = E[ s(X(i,t)) ]

« Recall that W is called ergodic if there is a
power t such that all entries of Wt are
positive.

Kolmogorv (wikipedia)



Agreement in the DeGroot Model

» Corollary: If W is ergodic with stationary distribution
m then s(i,t) —,_. . 2, 7(j) s(j)  (all agents converge to
same S)

* Interpretation: «(j) is the centrality of node j
(it’s PageRank)




Agreement in the DeGroot Model

 Corollary: If W is ergodic with stationary distribution
m then s(i,t) —,_, 2, 7(j) s(j)  (all agents converge to
same p)

* Network interpretation: Suppose w(i,i) > O for all i. Let
G = ([n],E) be the directed graph where (i,j) € E iff w(i,j)
> (0. Then if G is strongly connected then W has a

unique stationary distribution so agreement is reached.




Agreement in the DeGroot Model

 Corollary: If W is ergodic with stationary distribution
m then s(i,t) —,_, 2, 7(j) s(j)  (all agents converge to
same p)

* Network interpretation: Suppose w(i,i) > O for all i. Let
G = ([n],E) be the directed graph where (i,j) € E iff w(i,j)
> (0. Then if G is strongly connected then P has a

unique stationary distribution so agreement is reached.

« Exercise: infinite graphs 7??

* Next question: Do the agents also learn?




Learning in the DeGroot Model

» Def: Consider the DeGroot model W corresponding to a chain
with a unique stationary distribution = and signal of bias p.
Assume the initial signals 5(1),..,5(n) are conditionally i.i.d.
with P[S(i) =S | S] = p > V2. Then:

* The probability of learning in the model is:
* P,[Learning in W] := P[S = sgn(} i S(H))]

* Note - this definition is somewhat arbitrary. Ideally we would

like the definition to also measure how convinced the agents
are.



Learning in the DeGroot Model

» Def: Consider the DeGroot model W corresponding to a chain
with a unique stationary distribution = and signal of bias p.
Assume the initial signals 5(1),..,5(n) are conditionally i.i.d.
with P[S(i) =S | S] = p > V2. Then:

*The probability of learning in the model is:

* Py[Learning in W] := P_[S = sgn(} m; 5(j))]

» Def 2: Given a sequence of models W" and a bias p, we say
that learning holds if P [Learning in W'] — 1 as n — oo

* Note: Learning depends only on stationary distribution(s).

 Claim: Learning holds for all p>1/2 for the models W" if and
only if limsup, max; 7(j) = 0.




Learning in the DeGroot Model

 Claim: Learning holds for all p>1/2 for the models W" if and
only if limsup, max; 7"(j) = 0 (“Egalitirism leads to learning”)




Learning in the DeGroot Model

 Claim: Learning holds for all p>1/2 for the models W" if and
only if limsup, max; 7"(j) = 0 (“Egalitirism leads to learning”)

* Pf: If limsup, max; n"(j) = 0 apply the weak law of large
numbers.

* Other direction: exercise!

* Q: Examples of sequences of graphs where:

* 1. There is learning

2. There is no learning.

* 3. There is learning for some values of p but not for others.



Learning in the DeGroot Model

 Claim: Learning holds for all p>1/2 for the models W" if and
only if limsup, max; 7"(j) = 0 (“Egalitirism leads to learning”)

* Pf: If limsup, max; n"(j) = 0 apply the weak law of large
numbers.

* Other direction: exercise!

« Example 1: Consider w = 1 for all edges (including loops).
Then learning for the DeGroot model holds for any sequence
of connected bounded degree graphs G, with |V | — oo.

* This is true since max n"*(i) < maxdeg / (|V,|-1) — 0

Example 2: No learning for (G,) = (star on n vertices)




Rate of Convergence in the DeGroot Model

» Next we briefly discuss the rate of convergence in
the Degroot model.

« Assume that the chain corresponding to W has a
unique stationary distribution.

Def: The total variation distance between two
distributions P,Q is:

* [P-Ql; = 0.5 2, IP(x)-Q(x)]



Rate of Convergence

* In the theory of M.C. there are many ways to
measure the rate of convergence of a chain.

* We can directly use any of them to obtain bounds on
the rate of convergence. For example:

Claim: For all s € [1/2-6,1/2+6]" it holds that
*|s(i,t)—E_s| =|Es (X(i,t)) —E_s| <2 §|P(i,t) - 7|

* P(i,t) is the distribution of X(i,t).
 Long after mixing time, agents have almost converged.

* Some of the techniques in the theory of Markov chain
include: Spectral techniques and conductance,
coupling, log sobolev inequalities etc.



Rate of Convergence

« Condoctance bounds:

* (0 A) 1= 3 {W(X,y) (X) + W(y,X) mt(y) : (X,Y) € (A,A%]
o | =min {Q(0 A)/ wt(A) : m(A) < V2}.

* Then gap > 12/8 (Cheeger’ s inequality) and therefore
« By time t = 8 s (1+max; In(1/x(i)))/1? we have:

* | P(i,t) — =|; < exp(-s) for all i.

» This means if there are no “isolated communities”
then convergence is quick.

* |n the minimum suffices to look at connected sets.



Cheating in the DeGroot Model

A basic question:
* What happens if somebody cheats? Can they convince

the rest of the group to reach whatever value they
want?



Cheating in the DeGroot Model

A basic question:

* What happens if somebody cheats? Can they convince
the rest of the group to reach whatever value they
want?

 Claim:_If the chain is ergodic and there is one cheater
by repeatedly stating a fixed value all opinions will
converge to that value.




Cheating in the DeGroot Model

A basic question:

* What happens if somebody cheats? Can they convince
the rest of the group to reach whatever value they
want?

 Claim:_If the chain is ergodic and there is one cheater
by repeatedly stating a fixed value all opinions will
converge to that value.

« Pf: Follows from MC interpretation:

 Let the cheater play v. Let A(i,t) be the event that
X(i,0),..,X(i,t) hit the cheater by time t then:

* p(t,1) = E[1(A(i,t)) x v+ (1-1(A(1,t)) x X(i,1)]

« Exercise / Research Question: Multiple cheaters?



The Voter Model

« The Voter model: Repeated sampling of opinions of
neighbors.

* Formal definition: n individuals denoted 1,...,n.

* At time 0 some initial -/+ beliefs: s(i) = fori € [n].
» Averaging weights: w(i,j) > 0 satisfy »; w(i,j) =1

« Update rule: P[s(i,t+1) = s(j,t)] = w(i,])

* Introduced in the 1970s by P. Cliford and A. Sudury
and studied by Holley and Liggett



Voter Model




Agreement in the Voter Model

* Claim: Let G be the directed graph defined by
letting i -> j € E iff w(i,j) > 0. Assume that G is
strongly connected and w(i,i)>0 for all i. Then the
voter model on G converges a.s. to all + or all -.




Agreement in the Voter Model

* Claim: Let G be the directed graph defined by
letting i -> j € E iff w(i,j) > 0. Assume that G is
strongly connected and w(i,i)>0 for all i. Then the
voter model on G converges a.s. to all + or all -.

 Pf Sketch:

* The voter model is a Markov chain.

* All + and all - are fixed point of the chain.

« Under the conditions from any other state it is
possible to reach the all + or all - states.




(Non) Learning in the Voter Model

» Setup: Assume self loops and that G is strongly
connected.

« Claim: Suppose p < P[S(i) = S] < q. Let r be the
probability that the voter model converges to the
correct state then p < r < g (no learning)




(Non) Learning in the Voter Model

» Setup: Assume self loops and that G is strongly
connected.

« Claim: Suppose p < P[S(i) = S] < q. Let r be the
probability that the voter model converges to the
correct action then p < r < g (no learning)

« Claim: For all S, P[S(i,t) = 1] = DG(i,t) where DG(i,t)
is the value of node i at iteration t in the DeGroot
model with the same starting conditions S.



Convergence Rate of the Voter Model

* There are numerous ways of analyzing the
convergence rate of the voter model.

» Coalescence of Random walks:

* 5(1,t) = 5(X(i, 1))

* If we can couple X(i,t) so that by time T we have
X(i,T) = X(j,T) for all i and j, then agreement must
have occurred by time T!

 See Liggett, Durrett, ...



Convergence Rate of the Voter Model

 Martingale arguments:

« Example: suppose G is undirected and connected.

 Claim: M(t) = X, d(i) S(i,t) is a martingale.




Convergence Rate of the Voter Model

 Martingale arguments:

« Example: suppose G is undirected and connected.

 Claim: M(t) = X, d(i) S(i,t) is a martingale.

« Pf Sketch: For each edge e, the contribution of that edge is
a martingale.

« Then: use Wald’s 2" equation to bound the convergence
time.

« Exercise: Do it: show that converges in time O(|V|?)
» Get better bounds when the graph expands.




Bribery in the Voter Model

 Martingale arguments:

« Example: suppose G is undirected and connected.
* M(t) = >, d(i) S(i,t) is a martingale.

« Exercise: Suppose you can bribe k nodes who are - and
change their value to +. Which nodes will you bribe?




(Non) Learning in the Voter Model

» Recall that we saw that if the original signals satisfy
*Suppose p < P[S(i) = S] < g then the probability r of
convergence to the correct action also satisfies p < r <
g (no learning)

» Question: is there a dynamic “like” the voter model
where learning holds?

 Stronger question: is there a dynamic “like” the
voter model which converges to the majority of the
original signals?

 Claim: No local dynamics without additional memory.




Strong Weak Voter Model

* |t's possible with one extra bit of memoryin a
non-synchronous model:



Strong Weak Voter Model

It’s possible with one extra bit of memory in a
non-synchronous model:

Edges are chosen according to Poisson process.

All Voters have opinion (red/blue) and strength
of opinion (STRONG/weak). Originally all strong.

When they meet,

— Update color:
 STRONG influence weak
e Otherwise voter model
— Update Strengths:
 Two STRONGS of different colors cancel to weak

e Otherwise stay the same
* Two sides swap location with probability 0.5.



Recent Research Topic

What can local dynamics compute on
networks?

Motivation from:
Experimental Sociology Latane L' Herrou (96)

Sensor networks (Aspens and collaborators
04-...)

Biological computing (Winfree ..., 2005-)
See also recent preprint by M-Parkash-Valiant



A 3 type of dynamics

 We've seen two networks dynamics:
e 15t Average your neighbors (DeGroot)
e 2Md :Sample one of your neighbors (voter)



A 3" type of dynamics

We’'ve seen two networks dynamics:

15t: Average your neighbors (DeGroot)
2"d :Sample on of your neighbors (voter)
3rd: Take a majority of your neighbors.



Majority Dynamics

3"d: Take a majority of your neighbors.

Formal definition: n individuals denoted 1,...,n.
At time 0 some initial -/+ beliefs: s(i) = fori e
[n].

Weights: w(i,j) > 0 satisfy Y w(i,j) =1

Update rule: s(i,t+1) = sgn(> w(i,j) s(j,t) )
Much harder to analyze

Not all nodes converge to same value

Very few tools available - we’ll see a few.

Go to Omer’s Talk!



The effect of a voter

Def: E [f] is called the influence of voter |,
where f,(x) = f(1,x;)-f(-1,x,)

Theorem (Talagrand 94):
 Let f be a monotone function.
* If 8 = max, max; E [f.] and p < q then
* Ep[f | s—+](1 E oLf | s=+]) < exp(cIn o (q-p))|
. for some fixed constant c>0.

* In particular: if f is fair and monotone, taking p=0.5:

* E,[f is correct] > 1- exp(c In & (g-0.95))



The effect of a voter

. Theorem (Talagrand 94):

Let f be a monotone function.

* If 3 = max, max; E,[f] and p < g then

« EJIf | s=+] (1-E.[f | s = +]) < exp(cInd (g-p))
 for some fixed constant ¢>0.

* In particular: if f is fair and monotone, taking p=0.5:
* E,[f is correct] > 1- exp(c In 6 (g-0.95))

* This means that if each voter has a small influence then the
function aggregates well!



An important case

Def. A function f: {-,+}" = {-,+} is transitive if there exists a
 group G acting transitively on [n] s.t.

» for every x € {-,+}" and any o€ G it holds that f(x_) = f(x),
where

* X,(1) = x(a(i))

Thm (Friedgut-Kalai-96) :

e If f is transitive and monotone and

* E[f | s= +] > ¢ then

* E,[f | s=+]>1-¢for g=p+clog(1/2¢)/ log n

Note: If f is fair transitive and monotone
we obtain
E,[f is correct] > 1-¢ for g=0.5+c log(1/2¢)/ log n




An important case

Thm (Friedgut-Kalai-96) :

* If f is transitive and monotone and

* E [f] > ¢ then

* E,[f] > 1-¢ for g=p+c log(1/2¢)/ log n

 Note: If f is fair transitive and monotone we obtain
E,[f is correct] > 1-¢ for g=0.5+c log(1/2¢)/ log n




Back to Majority Dynamics

 Note: If f is fair transitive and monotone we obtain
E,[f is correct] > 1-¢ for g=0.5+c log(1/2¢)/ log n

Can be applied to: f = Majority of signals at the end of
majority dynamics on transitive graphs to show that

E,[majority is correct] > 1-¢ for g=0.5+c log(1/2¢)/ log n
So information is retained.

See M-Neeman-Tamuz for generalization to quasi-transitive
and pluralities instead majorities.



