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Lecture Plan  

•  We will see the first simple models of information exchange on 
networks.  

•  Assumptions:  

•  P[S = +] = P[S = -] = 0.5.  

•  N independent signals Si with P[Si = S | S] = p > 0.5.  

. Agents update their opinions in various ways …  



Lecture Plan  

•  Basic questions: 

•  Agreement: Do all agents converge to the same 
belief/action?  

•  Learning: Do the agents converge to the correct 
state of the world (with high probability)?  

•  Compare to the Jury Theorem where we have 
agreement (the majority value) and learning (by the 
Jury Theorem)  



The DeGroot Model 

•  DeGroot model: Repeated averaging of probabilities 
of self and neighbors.  

•  Formal definition: n individuals denoted 1,…,n.  
•  At time 0 some initial beliefs: s(i) = s(i,0) for i 2 [n].  
•  Averaging weights: w(i,j) ¸ 0 satisfy ∑j w(i,j)  =1  
•  Update rule: s(i,t+1) = ∑j w(i,j) s(j,t) 
•  In matrix notation: s(t+1) = W s(t) 
 
•  Linear model, linear updates … 
•  Introduced by De Groot (Penn Statistician, 1931-1989) 
in 1974.  
 

  

  
 
 



The DeGroot Model and Markov Chains 
 
•  In matrix notation: s(t+1) = W s(t) 

•  Let  X(i,t) be the Markov chain defined by W 
started at i and run for t steps.  
  
•  Claim: s(i,t) = E[ s(X(i,t)) ] 
  
•  Recall that W is called ergodic if there is a 

power t such that all entries of Wt are 
positive.  

 

  

  
 
 

Markov (wikipedia) 

Kolmogorv (wikipedia) 



Agreement in the DeGroot Model 
 
•  Corollary: If W is ergodic with stationary distribution 
¼ then s(i,t) →t → 1 ∑j ¼(j) s(j) . (all agents converge to 
same s) 

•  Interpretation: ¼(j) is the centrality of node j  
  (it’s PageRank)  

 

  

  
 
 



Agreement in the DeGroot Model 
 
•  Corollary: If W is ergodic with stationary distribution 
¼ then s(i,t) →t → 1 ∑j ¼(j) s(j) . (all agents converge to 
same p) 

•  Network interpretation: Suppose w(i,i) > 0 for all i. Let 
G = ([n],E) be the directed graph where (i,j) 2 E iff w(i,j) 
> 0. Then if G is strongly connected then W has a 
unique stationary distribution so agreement is reached.  
 
 

 

  

  
 
 



Agreement in the DeGroot Model 
 
•  Corollary: If W is ergodic with stationary distribution 
¼ then s(i,t) →t → 1 ∑j ¼(j) s(j) . (all agents converge to 
same p) 

•  Network interpretation: Suppose w(i,i) > 0 for all i. Let 
G = ([n],E) be the directed graph where (i,j) 2 E iff w(i,j) 
> 0. Then if G is strongly connected then P has a 
unique stationary distribution so agreement is reached.  
 
•  Exercise:  infinite graphs ??  

•  Next question: Do the agents also learn?  

 

  

  
 
 



Learning in the DeGroot Model 
 
•  Def: Consider the DeGroot model W corresponding to a chain 
with a unique stationary distribution ¼ and signal of bias p. 
Assume the initial signals S(1),..,S(n) are conditionally i.i.d. 
with P[S(i) = S | S] = p > ½. Then: 
 
•  The probability of learning in the model is:  
•  Pp[Learning in W] := Pp[S = sgn(∑ ¼j S(j))] 

•  Note – this definition is somewhat arbitrary. Ideally we would 
like the definition to also measure how convinced the agents 
are.  
 
 

  

  
 
 



Learning in the DeGroot Model 
 
•  Def: Consider the DeGroot model W corresponding to a chain 
with a unique stationary distribution ¼ and signal of bias p. 
Assume the initial signals S(1),..,S(n) are conditionally i.i.d. 
with P[S(i) = S | S] = p > ½. Then: 
• The probability of learning in the model is:  
•  Pp[Learning in W] := Pp[S = sgn(∑ ¼j S(j))] 
•   
•  Def 2: Given a sequence of models Wn and a bias p, we say 
that learning holds if Pp[Learning in Wn] → 1 as n → 1 

•  Note: Learning depends only on stationary distribution(s).  

•  Claim: Learning holds for all p>1/2 for the models Wn if and 
only if limsupn maxj ¼n(j) = 0.   

 

  

  
 
 



Learning in the DeGroot Model 
 
•  Claim: Learning holds for all p>1/2 for the models Wn if and 
only if limsupn maxj ¼n(j) = 0 (“Egalitirism leads to learning”) 

 

  

  
 
 



Learning in the DeGroot Model 
 
•  Claim: Learning holds for all p>1/2 for the models Wn if and 
only if limsupn maxj ¼n(j) = 0 (“Egalitirism leads to learning”) 

•  Pf: If limsupn maxj ¼n(j) = 0 apply the weak law of large 
numbers.  
  
•  Other direction: exercise!  

•  Q: Examples of sequences of graphs where: 
•  1. There is learning  
•  2. There is no learning. 
•  3. There is learning for some values of p but not for others.  

 

  

  
 
 



Learning in the DeGroot Model 
 
•  Claim: Learning holds for all p>1/2 for the models Wn if and 
only if limsupn maxj ¼n(j) = 0 (“Egalitirism leads to learning”) 

•  Pf: If limsupn maxj ¼n(j) = 0 apply the weak law of large 
numbers.  
  
•  Other direction: exercise!  

•  Example 1: Consider w = 1 for all edges (including loops). 
Then learning for the DeGroot model holds for any sequence 
of connected bounded degree graphs Gn with |Vn| → 1.  
•  This is true since max ¼n(i) · max deg / (|Vn|-1)  → 0  

• Example 2: No learning for (Gn) = (star on n vertices)  
 

  

  
 
 



Rate of Convergence in the DeGroot Model 
 
•  Next we briefly discuss the rate of convergence in 
the Degroot model.  
 
•  Assume that the chain corresponding to W has a 
unique stationary distribution.  
  
• Def: The total variation distance between two 
distributions P,Q is: 

•  |P-Q|1 =  0.5 ∑x |P(x)-Q(x)| 
 
  
  

  
 
 



Rate of Convergence 
•  In the theory of M.C. there are many ways to 
measure the rate of convergence of a chain.  
•  We can directly use any of them to obtain bounds on 
the rate of convergence. For example:  

• Claim: For all s 2 [1/2-±,1/2+±]n it holds that  
•  | s(i,t) – E¼ s|  = | E s (X(i,t)) – E¼ s| · 2  ± |P(i,t) - ¼|1 

•  P(i,t) is the distribution of X(i,t). 
•  Long after mixing time, agents have almost converged.  
 

•  Some of the techniques in the theory of Markov chain 
include: Spectral techniques and conductance, 
coupling, log sobolev inequalities etc.   

  

  
 
 



Rate of Convergence 
 
•  Condoctance bounds:  
•  π(∂ A) := ∑ {w(x,y) π(x) + w(y,x) π(y) : (x,y) 2 (A,Ac)} 
•  I = min {Q(∂ A)/ π(A) : π(A) · ½}.  
•  Then gap ¸ I2/8 (Cheeger’s inequality) and therefore  
•  By time t = 8 s (1+maxi ln(1/π(i)))/I2 we have:  
•  | P(i,t) – π|1 · exp(-s) for all i.  

•  This means if there are no “isolated communities” 
then convergence is quick.  

•  In the minimum suffices to look at connected sets.  

  

  
 
 



Cheating in the DeGroot Model 
•  A basic question:  
•  What happens if somebody cheats? Can they convince 
the rest of the group to reach whatever value they 
want?  

 
  
 
 



Cheating in the DeGroot Model 
•  A basic question:  
•  What happens if somebody cheats? Can they convince 
the rest of the group to reach whatever value they 
want?  

•  Claim: If the chain is ergodic and there is one cheater 
by repeatedly stating a fixed value all opinions will 
converge to that value.   

 
  
 
 



Cheating in the DeGroot Model 
•  A basic question:  
•  What happens if somebody cheats? Can they convince 
the rest of the group to reach whatever value they 
want?  

•  Claim: If the chain is ergodic and there is one cheater 
by repeatedly stating a fixed value all opinions will 
converge to that value.   

•  Pf: Follows from MC interpretation:  
•  Let the cheater play v. Let A(i,t) be the event that 
X(i,0),..,X(i,t) hit the cheater by time t then:  
•  p(t,i) = E[1(A(i,t)) £ v + (1-1(A(i,t)) £ X(i,t)]  
 
•  Exercise / Research Question: Multiple cheaters?  

  
 
 



The  Voter Model 

•   The Voter model: Repeated sampling of opinions of 
neighbors.  

•  Formal definition: n individuals denoted 1,…,n.  
•  At time 0 some initial -/+ beliefs: s(i) =  for i 2 [n].  
•  Averaging weights: w(i,j) ¸ 0 satisfy ∑j w(i,j)  =1  
•  Update rule: P[s(i,t+1) =  s(j,t)] = w(i,j)  
 
•  Introduced in the 1970s by P. Cliford and A. Sudury 
and studied by Holley and Liggett 

  

  
 
 



Voter	  Model	  

State State 

State 

State 

State 

State State State State State 



Agreement in the  Voter Model 

•  Claim: Let G be the directed graph defined by  
 letting i -> j 2 E iff w(i,j) > 0. Assume that G is 
strongly connected and w(i,i)>0 for all i. Then the 
voter model on G converges a.s. to all + or all -. 

  

  
 
 



Agreement in the  Voter Model 

•  Claim: Let G be the directed graph defined by  
 letting i -> j 2 E iff w(i,j) > 0. Assume that G is 
strongly connected and w(i,i)>0 for all i. Then the 
voter model on G converges a.s. to all + or all -. 

•  Pf Sketch: 
•  The voter model is a Markov chain.  
•  All + and all – are fixed point of the chain.  
•  Under the conditions from any other state it is 
possible to reach the all + or all – states.   

  

  
 
 



(Non) Learning in the  Voter Model 

•  Setup:  Assume self loops and that G is strongly 
connected.  

•  Claim: Suppose p < P[S(i) = S] < q. Let r be the 
probability that the voter model converges to the 
correct state then p < r < q (no learning)  
 
  

  
 
 



(Non) Learning in the  Voter Model 

•  Setup:  Assume self loops and that G is strongly 
connected.  

•  Claim: Suppose p < P[S(i) = S] < q. Let r be the 
probability that the voter model converges to the 
correct action then p < r < q (no learning)  

•  Claim: For all S, P[S(i,t) = 1] = DG(i,t) where DG(i,t) 
is the value of node i at iteration t in the DeGroot 
model with the same starting conditions S.    

  

  
 
 



Convergence Rate of the  Voter Model 

•  There are numerous ways of analyzing the 
convergence rate of the voter model.  

•  Coalescence of Random walks:  
•  S(i,t) = S(X(i,t)) 
•  If we can couple X(i,t) so that by time T we have 
X(i,T) = X(j,T) for all i and j, then agreement must 
have occurred by time T!  

•  See Liggett, Durrett, …    

  

  
 
 



Convergence Rate of the  Voter Model 

•  Martingale arguments: 

•  Example: suppose G is undirected and connected.  

•  Claim: M(t) = ∑ι d(i) S(i,t) is a martingale.  

  
 
 



Convergence Rate of the  Voter Model 

•  Martingale arguments: 

•  Example: suppose G is undirected and connected.  

•  Claim: M(t) = ∑ι d(i) S(i,t) is a martingale.  

•  Pf Sketch:  For each edge e, the contribution of that edge is 
a martingale.  

•  Then: use Wald’s 2nd equation to bound the convergence 
time.  

•  Exercise: Do it: show that converges in time O(|V|2)  
•  Get better bounds when the graph expands.  
  
 
 



Bribery in the Voter Model 

•  Martingale arguments: 

•  Example: suppose G is undirected and connected.  

•  M(t) = ∑ι d(i) S(i,t) is a martingale.  

•  Exercise: Suppose you can bribe k nodes who are – and 
change their value to +. Which nodes will you bribe?  
 
 



(Non) Learning in the  Voter Model 

•  Recall that we saw that if the original signals satisfy   
• Suppose p < P[S(i) = S] < q then the probability r of 
convergence to the correct action also satisfies p < r < 
q (no learning)  

•  Question: is there a dynamic “like” the voter model 
where learning holds?  

•  Stronger question: is there a dynamic “like” the 
voter model which converges to the majority of the 
original signals?  

•  Claim: No local dynamics without additional memory.  

  

  
 
 



Strong	  Weak	  Voter	  Model	  

•  It’s	  possible	  with	  one	  extra	  bit	  of	  memory	  in	  a	  
non-‐synchronous	  model:	  



Strong	  Weak	  Voter	  Model	  
•  It’s	  possible	  with	  one	  extra	  bit	  of	  memory	  in	  a	  
non-‐synchronous	  model:	  

•  Edges	  are	  chosen	  according	  to	  Poisson	  process.	  	  
•  All	  Voters	  have	  opinion	  (red/blue)	  and	  strength	  
of	  opinion	  (STRONG/weak).	  	  Originally	  all	  strong.	  

•  When	  they	  meet,	  	  
– Update	  color:	  

•  STRONG	  influence	  weak	  
•  Otherwise	  voter	  model	  

– Update	  Strengths:	  
•  Two	  STRONGS	  of	  different	  colors	  cancel	  to	  weak	  
•  Otherwise	  stay	  the	  same	  
•  Two	  sides	  swap	  locaQon	  with	  probability	  0.5.	  	  



Recent	  Research	  Topic	  

•  What	  can	  local	  dynamics	  compute	  on	  
networks?	  	  

•  MoQvaQon	  from:	  	  	  
•  Experimental	  Sociology	  Latane	  L’Herrou	  (96)	  	  
•  Sensor	  networks	  	  (Aspens	  and	  collaborators	  
04-‐…)	  	  

•  Biological	  compuQng	  (Winfree	  …,	  2005-‐)	  	  
•  See	  also	  recent	  preprint	  by	  M-‐Parkash-‐Valiant	  



A	  3rd	  type	  of	  dynamics	  

•  We’ve	  seen	  two	  networks	  dynamics:	  
•  1st:	  Average	  your	  neighbors	  (DeGroot)	  
•  2nd	  :Sample	  one	  of	  your	  neighbors	  (voter)	  



A	  3rd	  type	  of	  dynamics	  

•  We’ve	  seen	  two	  networks	  dynamics:	  
•  1st:	  Average	  your	  neighbors	  (DeGroot)	  
•  2nd	  :Sample	  on	  of	  your	  neighbors	  (voter)	  
•  3rd:	  Take	  a	  majority	  of	  your	  neighbors.	  	  



Majority	  Dynamics	  

•  3rd:	  Take	  a	  majority	  of	  your	  neighbors.	  	  
•  Formal definition: n individuals denoted 1,…,n.  
•   At time 0 some initial -/+ beliefs: s(i) =  for i 2 

[n].  
•   Weights: w(i,j) ¸ 0 satisfy ∑j w(i,j)  =1  
•   Update rule: s(i,t+1) = sgn(∑ w(i,j) s(j,t) ) 
•  Much harder to analyze 
•  Not all nodes converge to same value 
•  Very few tools available – we’ll see a few.  
•  Go to Omer’s Talk!  



The effect of a voter 
 
Def: Ep[fi] is called the influence of voter i,  
where fi(x) =  f(1,x-i)-f(-1,x-i) 
  
Theorem (Talagrand 94):  
•  Let f be a monotone function.  
•  If δ = maxr maxi Er[fi] and p < q then  
•  Ep[f | s = +] (1-Eq[f | s=+]) · exp(c ln δ (q-p)) 
•  for some fixed constant c>0. 
 
•  In particular:  if f is fair and monotone, taking p=0.5:  
 
•  Eq[f is correct] ¸ 1- exp(c ln δ (q-0.5)) 
  



The effect of a voter 
. Theorem (Talagrand 94):  
• Let f be a monotone function.  
•  If δ = maxp maxi Ex[fi] and p < q then  
•  Ep[f | s = +] (1-Eq[f | s = +]) · exp(c ln δ (q-p)) 
•  for some fixed constant c>0. 
 
•  In particular:  if f is fair and monotone, taking p=0.5:  
 
•  Eq[f is correct] ¸ 1- exp(c ln δ (q-0.5)) 

•  This means that if each voter has a small influence then the 
function aggregates well!  
  



An important case 
Def: A function f: {-,+}n  {-,+} is transitive if there exists a  
•  group G acting transitively on [n] s.t.  
•  for every x 2 {-,+}n and any σ2 G it holds that f(xσ) = f(x), 
where  
•  xσ(i) = x(σ(i)) 

Thm (Friedgut-Kalai-96) :   
•  If f is transitive and monotone and  
•  Ep[f | s= +] > ε then  
•  Eq[f | s = + ] > 1-ε for q=p+c log(1/2ε)/ log n 
 
Note:  If f is fair transitive and monotone  
we obtain  
Eq[f is correct] > 1-ε for q=0.5+c log(1/2ε)/ log n 



An important case 
 
Thm (Friedgut-Kalai-96) :   
•  If f is transitive and monotone and  
•  Ep[f] > ε then  
•  Eq[f] > 1-ε for q=p+c log(1/2ε)/ log n 
 
•  Note:  If f is fair transitive and monotone we obtain  
Eq[f is correct] > 1-ε for q=0.5+c log(1/2ε)/ log n 
 



Back to Majority Dynamics 
 
 
•  Note:  If f is fair transitive and monotone we obtain  
Eq[f is correct] > 1-ε for q=0.5+c log(1/2ε)/ log n 
 
•  Can be applied to: f = Majority of signals at the end of 

majority dynamics on transitive graphs to show that  

•  Eq[majority is correct] > 1-ε for q=0.5+c log(1/2ε)/ log n 

•  So information is retained.  

•  See M-Neeman-Tamuz for generalization to quasi-transitive 
and pluralities instead majorities.  

 


