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The Bayesian View of the Jury Theorem 
•  Recall: we assume 0/1 with prior probability (0.5,0.5).  
  
•  Each voter receives signal xi which is correct with 
probability p independently.  

•  Note that if this is indeed the case, then after the vote 
has been cast, all voters can calculate:  
•  P[s = 1 | x]/ P[s = 0 | x].  

•  Obtain posterior probability of 1,0.  

•  Everybody agree about the posterior.  

•  Can this be extended to networks?  
  
 
 



Bayesian Exchange on Networks 

•  Setup:  
•  S 2 {0,1} with P[S = 1] =  ½ (apriori). 
•  Distributions of signals D0, D1  
•  A (directed) social network G = (V,E) of size n with 
self loops.    
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•  Setup:  
•  S 2 {0,1} with P[S = 1] =  ½ (apriori). 
•  Distributions of signals D0, D1  
•  A (directed) social network G = (V,E) of size n with 
self loops.    
•  At time 0: agents receive ind. signals X(i,0) from DS  
•  Let F(i,0) = ¾(X(i)) 
•  At each discrete time step t ¸ 1:  
•  Agent i declares  
•  X(i,t) = P[S = 1| F(i,t-1)] =  E[S | F(i,t-1)]  
•  Let F(i,t) = ¾(X(j,s) : (i → j) 2 E, s · t)  

 
  

 
 
 



Bayesian Exchange on Networks 

•  Setup:  
•  S 2 {0,1} with P[S = 1] =  ½ (apriori). 
•  Distributions of signals D0, D1  
•  A (directed) social network G = (V,E) of size n with 
self loops.    
•  At time 0: agents receive ind. signals X(i,0) from DS  
•  Let F(i,0) = ¾(X(i)) 
•  At each discrete time step t ¸ 1:  
•  Agent i declares X(i,t) = E[S | F(i,t-1)]  
•  Let F(i,t) = ¾(X(j,s) : (i → j) 2 E, s · t)  

•  Q1: Do agents converge?  
•  Q2: If they do, what to do they converge to?  

 
  

 
 
 



Convergence of a Single Agent 

• At time 0: agent i, receives a signal X(i,0) from DS  
•  Let F(i,0) = ¾(X(i)) 
•  At each discrete time step t ¸ 1:  
•  Agent i declares X(i,t) = E[S | F(i,t-1)]  
•  Let F(i,t) = ¾(X(j,s) : (i → j) 2 E, s · t)  

•  Claim: Each agent converges. 
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Convergence of a Single Agent 

• At time 0: agent i, receives a signal X(i,0) from DS  
•  Let F(i.0) = ¾(X(i)) 
•  At each discrete time step t ¸ 1:  
•  Agent i declares X(i,t) = E[S | F(i,t-1)]  
•  Let F(i,t) = ¾(X(j,s) : (i → j) 2 E, s · t)  

•  Claim: Each agent converges. 
•  Pf: X(i,t) is a bounded martingale.  

•  Note: Doesn’t use anything about  
•  Network structure or  
•  Independence of signals.  

•  Q: Do agents agree in the limit?  
 
  

 
 
 



Bayesian Exchange on Networks 

•  Q1: Do agents converge to the same belief?  
•  Not necessarily.  
•  For example – disconnected graph.   
 
  

 
 
 



Bayesian Exchange on Networks 

•  Q1: Do agents converge to the same belief?  
•  Not necessarily.  
•  For example – disconnected graph.  
•  Or even graph that is not strongly connected.   
 
  

 
 
 



Agreement 
•   Q1: Do agents converge to the same belief?  
•  Not necessarily.  
•  For example – disconnected graph.  
•  Or even graph that is not strongly connected.   
 
•  Thm (Aumann 76, Geanakoplos &  Polemarchakis 82, 
Parikh, Krasucki):  
  
•  If the graph G is strongly connected, all agents will 
a.s. converge to the same value.  

•  Recall: Strongly connected means that for every pair 
of vertices there is a directed path connecting them. 
 
 
  

 
 
 



Agreement Proof 
 Proof Sketch: : 
•  Let X(i) = lim X(i,t) = E[S | F(i)], where F(i) = lim F(i,t). 

•  X(i) is the function closest to S in L2(F(i)). 
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•  Let X(i) = lim X(i,t) = E[S | F(i)], where F(i) = lim F(i,t). 

•  X(i) is the function closest to S in L2(F(i)). 

•  If i  j in G then X(j) 2 L2(F(i)).  

•  Therefore: |X(i)-S|2 · |X(j)-S|2. 

•  Strong connectivity ) 8 i,j: |X(i)-S|2 =  |X(j)-S|2  

 
  
   
 
 
  

 
 
 



Agreement Proof 
 Proof Sketch: : 
•  Let X(i) = lim X(i,t) = E[S | F(i)], where F(i) = lim F(i,t). 

•  X(i) is the function closest to S in L2(F(v)). 

•  If i  j in G then X(j) 2 L2(F(i)).  

•  Therefore: |X(i)-S|2 · |X(j)-S|2. 

•  Strong connectivity ) 8 i,j: |X(i)-S|2 =  |X(j)-S|2  

•  If i  j, P[X(i) ≠ X(j)] > 0 then Z = 0.5(X(i)+X(j)) 2 F(i) 
and Z closer to S than either X(i) or X(j).  

•  Strong connectivity ) 8 i,j: X(i) = X(j). 
 
  
   
 
 
  

 
 
 



Agreement History  
 
•  Note: Result and proof above did not use 
independence of signals.  
  
• Aumann 76: notion of common knowledge:  
“ If two people have the same priors and their 
posterior for a given event are common 
knowledge, then these posteriors must be equal” 

•  Critique of Bayesian economics.  

•  Geanakoplos &  Polemarchakis 82: Dynamics 
with two individuals.  

•  Parikh, Krasucki: Networks  
  
   
 
 
  

 
 
 



The Learning Problem 
 
  
   
 
 
  

 
 
 

•  Assume G is strongly connected.  

•  Do agents learn?  

•  Strongest possible sense of learning:  
  
•  Do as well as if all see all signals.  

•  Strongest possible sense of non-learning:  

•  Do not do better than random.  

•  Consider: dependent / independent signals.  

   
 
 
  

 
 
 



Non-Learning 
 
  
   
 
 
  

 
 
 

•  Assume G is strongly connected.  

•  Do agents learn?  

•   Example of non learning: G = ({1,2}, {(1,2)}) 
•  S(1) and S(2) uniform +/- with S = S(1) S(2)  
•  X(1,t) = X(2,t) = 0 for all t.  

•  Or G = Kn where ½ of the vertices get S(1) and ½  get S(2).  

•  A lot of information but it is all lost.  

•  How about if the the signals are (conditionally) 
independent?  
 
 
  

 
 
 



Learning with independent signals 
 
  
   
 
 
  

 
 
 

•  Assume G is strongly connected &  
•  The signals X(i) are i.i.d. conditionally on S. 
•  Let X = limt X(i,t) = limit common belief.  
  
•  Thm (M, Sly, Tamuz): X = E[S | X(1),…,X(n)]  
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•  Let X = limt X(i,t) = limit common belief.  
  
•  Thm (M, Sly, Tamuz): X = E[S | X(1),…,X(n)]  
  
• Agents aggregate optimally!  

•  Statement and proof work for any model where the 
posterior beliefs are common knowledge.  
  
 
 
 
  

 
 
 



Learning with independent signals 
 
  
   
 
 
  

 
 
 

•  Assume G is strongly connected &  
•  The signals X(i) are i.i.d. conditionally on S. 
•  Let X = limt X(i,t) = limit common belief.  
  
•  Thm (M, Sly, Tamuz): X = E[S | X(1),…,X(n)]  
  
• Agents aggregate optimally!  

•  Statement and proof work for any model where the 
posterior beliefs are common knowledge.  
  
• The proof uses Chebyshev’s sum inequality: if f and g are 
strictly increasing then E[f(X) g(X)] ¸ E[f(X)] E[g(X))] and 
equality means that g = c f.  

 
 
  

 
 
 



 
  
   
 
 
  

 
 
 

Agreeing on beliefs implies learning - proof

Belief Learning Theorem (M. Sly and Tamuz (2012))
If there exists a random variable X such that
X = X

i

:= E [S | F
i

(1)] for all i then all agents learned optimally:

X = P [S = 1 | X (1), . . . ,X (n)] .

23 / 27



 
  
   
 
 
  

 
 
 

Proof Sketch

I

Z
i

:= log
P [S = 1 | X (i)]

P [S = 0 | X (i)i ]
= log

P [X (i) | S = 1]

P [X (i) | S = 0]
, Z =

X

i

Z
i

so
P [S = 1 | X (1), . . . ,X (n)] = L(Z )

where L(x) = ex/(ex + e�x).

I Since X is F
i

measurable

X = E [L(Z ) | F
i

] = E [L(Z ) | X ] .

I Hence since Z
i

is F
i

measurable

E [Z
i

· L(Z ) | X ] = E [E [Z
i

· L(Z ) | F
i

] | X ]

= E [Z
i

· X | X ]

= E [Z
i

| X ]E [L(Z ) | X ]
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Proof concluded

E [Z
i

· L(Z ) | X ] = E [Z
i

| X ]E [L(Z ) | X ]

I Summing over i we get that

E [Z · L(Z ) | X ] = E [Z | X ]E [L(Z ) | X ]

I Since L(x) is strictly increasing this implies that Z is constant
conditional on X , i.e. Z is X measurable so

X = E [L(Z ) | X ] = E [L(Z ) | Z ] = L(Z )

I So the agreed value X equal to the optimal estimator L(Z ) as
needed.
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Some Open Problems 
 
  
   
 
 
  

 
 
 

•  Open problem 1:  
•  Is the learning theorem valid under weaker conditions 
on the distributions?    

•  Open problem 2:  
•  How quick is the convergence to the agreed value? 

•  Open problem 3:  
•  Are there good algorithms to compute the dynamics?  

•  We will now look at problems 2 and 3 in some simple 
special cases.   

   
 
 
  

 
 
 



Learning in finite probability spaces  
 
  
   
 
 
  

 
 
 

•  Question: Assume the probability space of the state of 
the world and the signals is finite. Does the learning 
process converge in a finite number of iterations?  

  
   
 
 
  

 
 
 



Learning in finite probability spaces  
 
  
   
 
 
  

 
 
 

•  Claim: Consider the process on a graph G with n vertices 
and assume that the size of the probability space 
(including S and all signals) is a finite M.  
•  Then the learning process converges in at most M n 
iteration.   

 

  
   
 
 
  

 
 
 



Learning in finite probability spaces  
 
  
   
 
 
  

 
 
 

•  Claim: Consider the process on a graph G with n vertices 
and assume that the size of the probability space Ω 
(including S and all signals) is a finite M.  
•  Then the learning process converges in at most M n 
iteration.   

•  Pf: 
•  The information Fi(t) may be encoded by Si(t) ½ Ω.  
•  Satisfying: Si(t+1) µ Si(t).  
•  If Si(t+1) = Si(t) for some t and all i then the process has 
converged.  
•  Argument is close to that of  Geanakoplos &  
Polemarchakis 82.  
•  Open problem: Can this bound be improved?  

  
   
 
 
  

 
 
 



An Example of Learning in Finite Spaces 
 
  
   
 
 
  

 
 
 

•  Example: X 2 [n2] with uniform prior. The signals are: 
•  Player 1: X 2 {1…,n}, X 2 {n+1,..,2n} etc. 
•  Player 2: X 2 {1,…,n+1},X 2 {n+2,..,2n+2},…, X 2 {n2} 
•  True value is X is sampled to be 1.  
•  The event  the players are estimating  
•  S = 1(X 2 {1,n+2,2n+3, 3n + 4,…, n2 -1, n2}). 

•  Q: What will happen?  
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•  Example: X 2 [n2] with uniform prior. The signals are: 
•  Player 1: X 2 {1…,n}, X 2 {n+1,..,2n} etc. 
•  Player 2: X 2 {1,…,n+1},X 2 {n+2,..,2n+2},…, X 2 {n2} 
•  True value is X is sampled to be 1.  
•  The event  the players are estimating  
•  S = 1(X 2 {1,n+2,2n+3, 3n + 4,…, n2 -1, n2}). 

•  What will happen?  
•  Player 1 will say 1/n 
•  Player 2 will say 1/(n+1) 
•  Player 1 learns that it is not n2 but will still say 1/n. 
•  Player 2 learns that player 1 was not in the last group 
but will still say 1/(n+1).  
•  Q: How tight is the bound?   

  
   
 
 
  

 
 
 



Next Example 

•  We will talk about a Gaussian model which is: 
•  Computationally feasible  
•  Has rapid convergence.  
•  Converges to the optimal answer for every connected 
network.  

•  Following model was studied in P. DeMarzo, D. Vayanos, 
and J. Zwiebel. and by Mossel and Tamuz. 
 
  
   
 
 
  

 
 
 



The Gaussian Model 

•  The original signals are N(µ = ?,1). 
•  In each iteration 

–  Each agent action reveals her current 
estimate of µ to her neighbors. 

–  E.g. set price by min utility (x- µ)2 

–  Each agent calculates a new estimate of µ 
based on her neighbors’ broadcasts. 

•  Assume agents know the graph structure. 
•  Repeat ad infinitum 
•  Assume agents know the graph structure. 
•  Example: interval of length 4. 

 



Utopia 
• “Network Learns” Avg(Xv) 
• Variance of this estimator is 1/n. 
• Could be achieved if everyone 

was friends with everyone. 
• Technical comments: This is 

both the  
• ML estimator &   
• Bayesian estimator with uniform 

prior on (-1,1) 
 



Results 

• For every connected network: 
• The best estimator is reached 

within n2 rounds where  
 n = #nodes (DVZ) 

• Convergence time can be 
improved to 2* n * diameter (MT) 

• All computations are efficient (MT) 

 



Pf: ML and Min Variance. 

• Claim 1: At each iteration  
 Xv(t) = Bayes Estimator  

            = Maximum Like estimator 
• Moreover, Xv(t) 2 Lv(t), where  
 Lv(t)= span { Xw(0),…,Xw(t-1) : w ~ v} 

•  Xv(t) is a minimizer of  
 {Var(X) : X 2 Lv(t), E[X] = µ}  

• Claim: Can be calculated efficiently  
 
 



Pf: ML and Min Variance. 

• Cor: Var(Xv(t)) decreases with time  
• Note: If Xv(t) ≠ Xu(t), dim of either 

Lv or Lu goes up by 1 (v ~ u) 
•   ) Converges in n2 rounds. 
• Claim: Weight that agent gives 

own estimator has to be at least 
1/n (prove it!) 

•   ) converges to optimal estimator 
 
 



Convergence in 2n*d steps 

•  Claim: If an agent u estimator X remains constant for 
2*d steps t,t+1,…t+2d then the process has converged.  

•  Pf: 
•  Let L = Lu(t+2d) 
•  Let v be a neighbor of u.  
•  Xt+1(v),…Xt+2d-1(v) 2 L.  
•  X 2 Lv(t+1)  
•  So Xt+1(v) = … = Xt+2d-1(v)  = X 
•  If w is a neighbor of w then:  
•  Xt+2(v) = … = Xt+2d-2(v)  = X 
•  By induction at time t+d all estimators are X.   

•  Open: Is there a bound that depends only on d?  
  

 
 
 



Some open problems 

•  When is learning achieved? e.g. positively correlated 
signals?  
  
• General statements about convergence times?  

•  More models where convergence time can be 
estimated?  
  
• Efficiency of computations?  
 

 
 
 



Truncated information 

•  Why could we analyze the cases so far?  
 
• A main feature was that agents declarations were 
martingales.  

•  A more difficult case is where agents declarations are 
more limited.  

•  Example: +/- actions / declarations.  

•  This will be discussed next lectures.  
  

 
 
 


