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Informational Framework

I Each agent receives a private signal Xi which depends on S .

I Conditioned on S , private signals are i.i.d.

I Example. Gaussian private signals.

P [Xi = ·|S = 0] ∼ N(0, σ2) P [Xi = ·|S = 1] ∼ N(1, σ2)

I Example. Bernoulli private signals.

P [Xi = S ] = 1
2 + δ P [Xi = 1− S ] = 1

2 − δ

I Private signals suffice to estimate S correctly w.h.p. as
|V | → ∞.
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Example: Revealed Beliefs Model

I Let V = {1, 2},E = {(1, 2)}.

I Assume signal in [0, 1] with dF+ = 2xdx , dF− = (2− 2x)dx .

I Suppose X1(0) = 0.4 and X2(0) = 0.7.

I X1(1) = X2(1) = P [S = + | 0.4, 0.7].

I
P [0.4, 0.7 | S = +]

P [0.4, 0.7 | S = −]
=

0.8 ∗ 1.4

1.2 ∗ 0.6
=

14

9
.
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Example: Revealed Actions Model

I Let V = {1, 2},E = {(1, 2)}.

I Assume signal in [0, 1] with dF+ = 2xdx , dF− = (2− 2x)dx .

I Suppose X1(0) = 0.4 and X2(0) = 0.7.

I A1(0) = −,A2(0) = +.

I X1(1) = P [S = + | 0.4,≥ 0.5].

I

P [0.4,≥ 0.5 | S = +]

P [0.4,≥ 0.5 | S = −]
=

0.8 ∗ 3/4

1.2 ∗ 1/4
= 2 =⇒ A1(1) = +.

P [0.7,≤ 0.5 | S = +]

P [0.7,≤ 0.5 | S = −]
=

1.4 ∗ 1/4

0.6 ∗ 3/4
=

7

9
=⇒ A2(1) = −.

I etc.
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The Revealed Actions Model

I Model Specification:
I The agents lie on a connected undirected (or strongly

connected) graph.
I At time 0 each agents receive her own signal X0(t).

I The revealed actions model:
I In each time step t agent i tells her neighbors her preferred

actionAi (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].
I Fi (t + 1) is generated by (Xi (0),Aj(s) : s ≤ t, j ∼ i)

I Imitation principle (Gale and Kariv): In a strongly connected
graph if i ∼ j and limAi (t) 6= limAj(t) then
Xi (∞) = Xj(∞) = 1/2.

I Stronger version (M-Sly-Tamuz-12): Under the non-atomic
beliefs three possible limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .
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Agreement in actions models

Claim: If i ∼ j , then P [limAi (t) 6= limAj(t),Xj(∞) 6= 1/2] = 0.

I Proof:

I Let p(i) = limP [Ai (t) = S ]. Then:

I

p(i) = E [|Xi (∞)− 0.5|]+0.5 = max{P [Y = S ] ,Y ∈ Fi (∞)}

I =⇒ if i → j then p(i) ≥ p(j).

I In strongly connected graphs p(i) = p(j) for all i , j .

I Moreover, P [Ai = S | Fi (∞)] ≥ P [Aj = S | Fi (∞)]

I =⇒ P [Ai = S | Fi (∞)] = P [Aj = S | Fi (∞)] a.s.

I So X (i ,∞) > 1/2 but Aj(t) = 0 i.o. impossible.
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Why do economists care about information?

Economists are interested in information since if different players
have different information or different rules apply to them there is
room for arbitrage
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Arbitrage - An Example due to Hal Varian

Economists are interested in information since if different players
have different information or different rules apply to them there is
room for arbitrage

.
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Arbitrage - An Example due to Hal Varian

”An Economy Professor and a farmer were waiting for a bus in
New Hampshire. To pass the time the farmer suggested that they
played a game ...”

.
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Arbitrage - An Example due to Hal Varian

What kind of game would you like to
play?

.
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Arbitrage - An Example due to Hal Varian

How about this. I will ask a question
and if you can’t answer my question
you’ll give me one dollar. Then you
ask me a question and if I can’t
answer you question I will give you
one dollar. .
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Arbitrage - An Example due to Hal Varian

This sounds attractive, but I must
warn you. I am not just an ordinary
person. I am a professor of economics

.
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Arbitrage - An Example due to Hal Varian

O - in that case we should change the
rules. Tell you what. If you can’t
answer my question you still give me
a dollar. But if I can’t answer yours, I
only have to give you fifty cents. .
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Arbitrage - An Example due to Hal Varian

Yes - that sounds like a fair
agreement.

.
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Arbitrage - An Example due to Hal Varian

Okay - here’s my question. What
goes up the hill on seven legs and
down on three legs? .
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Arbitrage - An Example due to Hal Varian

Gosh - I don’t know. What goes up
the hill on seven legs and down on
three legs?

.
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Arbitrage - An Example due to Hal Varian

Well I don’t know either. But if you
give me your dollar, I’ll give you my
fifty cents.

8 / 22



The learning challenge

I It is known that all agents converge to same belief / action.

I But what is this belief?

I Central problem in learning, i.e. Gale and Kariv ask: ”
whether the common action chosen asymptotically is optimal,
in the sense that the same action would be chosen if all the
signals were public information... there is no reason why this
should be the case”

I Instead simpler models are studied where either each agents
acts only once, or agents are not truly rational.

I ”different motivation is simply technical expediency” (Ellison
and Fundenberg)

I ”to keep the model mathematically tractable... this possibility
[fully Bayesian agents] is precluded in our model... simplifying
the belief revision process considerably” (Bala and Goyal)
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The Action Learning Theorem

I Recall that in the revealed actions model:
Ai (t) = argmaxa∈{−1,1} P [a = S |Fi (t)] is announced to the
neighbors at time t.

I Technical Assumption: “non-atomic beliefs”: The belief
P [S = 1 | ω1] is non-atomic which avoids ties.

I Action Learning Theorem (M., Sly and Tamuz (2012))

I In the revealed actions model with non-atomic beliefs and
F+ 6= F− there exists a sequence q(n,F+,F−)→ 1 such for all
connected graphs G of size n

P [Learning] ≥ q(n).

I I.e., asymptotic learning on general graphs. Also holds for
strategic games.

I False: without non-atomic assumption, on directed graphs,
w.o independence.
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The strategic setup

I Common prior. P [S = 1] = P [S = 0] = 1
2 .

I Actions. Ai (t) ∈ {0, 1}.
I Utilities. Ui (t) = 1Ai (t)=S .

I Fi (t) = { private signal Xi , neighbors’ previous actions. }
I Myopic agents. Maximize E [Ui (t)].

Ai (t) = argmax
a∈{0,1}

P [S = a|Fi (t)] .

I Strategic agents. Discount by 0 < λ < 1.

ui = E

[∑
t

λtUi (t)

]
=

∑
t

λtP [Ai (t) = S ] .

I Ai (t) is a function of Fi (t).

I Our results hold in every equilibrium!
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Learning for revealed actions

Action Learning Theorem (M., Sly and Tamuz (2012))
In the revealed actions model with non-atomic beliefs there exists a
sequence q(n)→ 1 such for all connected graphs G of size n

P [Learning] ≥ q(n).

I.e., asymptotic learning on general graphs.

False in general without non-atomic assumption and on directed
graphs, independence is also needed.
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The Royal Family: When Agents Fail to Learn

I Royal family.
I Bounded private signals. E.g., Bernoulli.
I The combined signal of the royal family is very strong.
I Everyone follows it after one step if they happen to agree.
I But it still may be wrong.

13 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i− > j then pi (t + 1) ≥ pj(t).

I =⇒ For G (strongly) connected there exists
p(G ) = suptpi (t) which does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ can assume Gn are bounded degree.

14 / 22



Graph Limits

I Proof uses a topology (metric) on rooted directed graphs.

I d(G1, ρ1), (G2, ρ2) = 2−r , where r is the maximum radius
such that BG1(ρ1, r) is isomorphic to BG2(ρ2, r).

I Claim: The set of all undirected degree D bounded graphs is
sequentially compact.

I Proof: Apply diagonal argument.

I Def: A directed graph G is L-connected if for any edge i → j ,
there is a directed path of length at most L from j to i .

I Claim: The set of all D-bounded degree L-connected graphs
is sequentially compact.

I Claim The set of all D-bounded degree strongly connected
graphs is not sequentially compact.

I This topology is a bit simpler than the Benjamini-Schramm
topology.
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Local limits of graphs and Agreement Probabilities

I Definition (local convergence): (Gn, in)
L→ (G , i) if for each

t > 0, for large enough n the neighbourhoods BGn
in

(t) and

BG
i (t) are isomorphic.

I Claim: If (Gn, in)
L→ (G , i) then

p(G ) ≤ lim inf p(Gn).

I Proof: pt(i) = limn→∞pt(in) ≤ lim inf p(Gn)

I Since dounded degree graphs are sequentially compact under
local limits:

I Conclusion: To prove the theorem it suffices to show that
p(G ) = 1 for all infinite connected graphs G .

I Let
p∗ = inf

G infinite
p(G ).
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Limiting Actions and Transitive Graphs

I Recall Claim: Under the non-atomic beliefs three possible
limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

I Let A∗ ∈ {1,−1, ∗} denote the limiting action.

I Note: On transitive graphs a 0–1 law implies
P [A∗ = S |S = ±] ∈ {0, 1}.

I But P [A∗ = S ] ≥ P [A1(t) = S ] > 0.5 so P [A∗ = S ] = 1.

I More work needed for general graphs.
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Informative times on general graphs

I Using induction we find a vertex i and times t1 < . . . < tk
such that P [Ai (t`) = S ] ≈ p∗ and the Ai (t`) are almost
independent.

I Inductive Hypothesis: On any infinite graph G for any
k, ε > 0 there exists a vertex i such by some time t there exist
Fi (t) measureable random variables Y1, . . . ,Yk taking values
in {−1, 1} such that

I For each `, P [Y` = S ] ≥ p∗ − ε.
I The variables Y1, . . . ,Yk are ε close to conditionally

independent random variables, given S , in total variation
distance.

I Note that the case k = 1 follows from the definition of p∗.

I The induction claim implies the theorem by taking the
majority of the Y`. This identifies S with probability better
than p∗ unless p∗ = 1.
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independent random variables, given S , in total variation
distance.

I Note that the case k = 1 follows from the definition of p∗.

I The induction claim implies the theorem by taking the
majority of the Y`. This identifies S with probability better
than p∗ unless p∗ = 1.
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Proof Sketch of Main Induction Step

I Note for any i and any ε′ > 0, there exists t ′ and an

Ft′-measurable Ã∗ such that P
[
A∗ = Ã∗

]
≥ 1− ε′.

I By passing to a subsequence choose i1, i2, . . . so that

d(i , i`)→∞ and (G , i`)
L→ (H, i∗). By induction we can find

j∗ ∈ H with k informative times by time t∗.
I =⇒ ∃j ∈ G with

I d(i , j) > t ′ + t∗

I j has k informative times by time t∗

These are conditionally independent of Ã∗ given S and hence
approximately conditionally independent of A∗.

I But eventually agent j will learn A∗ too giving j another
informative time. This completes the induction.
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Remarks about the proof

I Same proof applies to bounded degree L-connected graphs.

I Finite to infinite principle.

I Like many finite to infinite proofs, no rate.
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Open Problems

I Both models: Rate of convergence? Dependence on graph?

I Actions Learning: how does the probability of learning change
with the graph?

I What if the agents do not know the graph + information
structure?

I What is the network is changing?
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Thanks for listening

Questions?
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