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Many Other Models 

•  There are many models of information exchange on 
networks. 
•  Q: Which model to chose?  

•  My answer – good features of models include:  
 
•  “Canonical” models.  
•  Amenable to analysis.  
•  Studied intensively before.  

•  Ok to invent your own models. 
•  Models are always just models …  
  
 
 
 
 
 



Ariel Rubinstein on theoretical economics 

 
 
 
 
 

•  When talking about economics:  
•  “Everything I say is personal, based upon the entire range 
of my life experience which also includes the fact that 
professionally I engage in economics theory. However, to the 
best of my understanding, economic theory has nothing to 
do say about the heart of the issue under discussion here. I 
am not sure I know what an opinion is. I am not attempting 
to predict the rate of inflation tomorrow …”  
 
 
 
 



Some other natural models 

•  Growth models: percolation models, DLA etc.  

•  Competition models: Competing growth.  

•  Infection models: Contact process, SIR, SIS …  

•  Aspects of modeling:  
•  Dynamic networks  
•  Random networks  
•  …  

•  Today: two examples of percolation based processes.   

  



Example1: models of collective behavior 

•  examples: 
–  joining a riot 
–  adopting a product 
–  going to a movie  

•  model features: 
–  binary decision 
–  cascade effect 
–  network structure 



viral marketing 

•  referrals, word-of-mouth can be very effective 
–  ex.: google+ 

•  viral marketing  
–  goal: mining the network value of potential customers 
–  how: target a small set of trendsetters, seeds 

•  example [Domingos-Richardson’02] 
–  collaborative filtering system 
–  use MRF to compute “influence” of each customer 



independent cascade model 

•  when a node is activated 
–  it gets one chance to activate each neighbour 
–  probability of success from u to v is pu,v  
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generalized models 

•  graph G=(V,E); initial activated set S0 

•  generalized threshold model [Kempe-Kleinberg-Tardos’03,’05] 
–  activation functions: fu(S) where S is set of activated nodes 
–  threshold value: θu uniform in [0,1] 
–  dynamics: at time t,set St to St-1 and add all nodes with fu(St-1) ≥ θu 
   (note the process stops after (at most) n-1 steps) 

•  generalized cascade model [KKT’03,’05] 
–  when node u is activated: 

•  gets one chance to activate each neighbours 
•  probability of success from u to v: pu(v,S) where S is set of nodes who have 

already tried (and failed) to activate u 

–  assumption: the pu(v,.)’s are “order-independent” 

•  theorem [KKT’03] - the two models are equivalent 



influence maximization 

•  definition - the influence σ(S) given the initial seed S is the 
expected size of the infected set at termination 

•  definition - in the influence maximization problem (IMP), we want 
to find the seed S of fixed size k that maximizes the influence 

•  theorem [KKT’03] - the IMP is NP-hard 
–  reduction from Set Cover: ground set U = {u1,…,un} and collection of cover 

subsets S1,…,Sm  

€ 

σ(S) = E S Sn−1[ ]

€ 

S* = argmax σ (S) : S ⊆ V ,  S = k{ }

independent 
cascade 
model 

€ 

∃S,  S = k,  σ(S) ≥ n + k ?… 

u1 
u2 
u3 

un 

… 

S1 
S2 
S3 

Sm 

€ 

(ui,S j )∈ E
⇔

ui ∈ S j



submodularity 

•  definition - a set function f : V -> R is submodular if for all A, B in V 

•  example: f(S) = g(|S|) where g is concave 

•  interpretation: “discrete concavity” or “diminishing returns”, indeed 
submodularity equivalent to 

•  threshold models: 
–  it is natural to assume that the activation functions have diminishing 

returns 
–  supported by observations of [Leskovec-Adamic-Huberman’06] in the 

context of viral marketing 

€ 

f (A) + f (B) ≥ f (A∩ B) + f (A∪ B)

€ 

∀S ⊆ T,∀v ∈ V ,      f (T∪{v}) − f (T) ≤ f (S∪{v}) − f (S)



main result 

•  theorem [M-Roch’06; first conjectured in KKT’03] - in the 
generalized threshold model, if all activation functions are monotone 
and submodular, then the influence is also submodular 

•  corollary [M-Roch’06] - IMP admits a (1 - e-1 - ε)-approximation 
algorithm (for all ε > 0) 
–  this follows from a general result on the approximation of submodular 

functions [Nemhauser-Wolsey-Fisher’78] 

•  known special cases [KKT’03,’05]: 
–  linear threshold model, independent cascade model 
–  decreasing cascade model, “normalized” submodular threshold model 

€ 

∀S ⊆ T,  pu(v,S) ≥ pu(v,T) or equiv. fu(S∪{v}) − fu(S)
1− fu(S)

≥
fu(T∪{v}) − fu(T)

1− fu(T)



related work 

•  sociology 
–  threshold models: [Granovetter’78], [Morris’00] 
–  cascades: [Watts’02] 

•  data mining 
–  viral marketing: [KKT’03,’05], [Domingos-Richardson’02] 
–  recommendation networks: [Leskovec-Singh-Kleinberg’05], [Leskovec-

Adamic-Huberman’06] 

•  economics 
–  game-theoretic point of view: [Ellison’93], [Young’02] 

•  probability theory 
–  Markov random fields, Glauber dynamics 
–  percolation 
–  interacting particle systems: voter model, contact process 



 
proof sketch 



coupling 

•  we use the generalized threshold model 
•  arbitrary sets A, B; consider 4 processes: 

–  (At) started at A 
–  (Bt) started at B 
–  (Ct) started at A∩B 
–  (Dt) started at A∪B 

•  it suffices to couple the 4 processes in such a way that for all t 

•  indeed, at termination 

   (note this works with |.| replaced with any w monotone, submodular) 

€ 

Ct ⊆ At ∩ Bt

Dt ⊆ At ∪ Bt

€ 

An−1 + Bn−1 ≥ An−1∩ Bn−1 + An−1∪ Bn−1 ≥ Cn−1 + Dn−1



proof ideas 

•  our goal: 

•  antisense coupling 
–  obvious way to couple: use same θu’s for all 4 processes 
–  satisfies (1) but not (2) 
–  “antisense”: using θu for (At) and (1-θu) for (Bt) “maximizes union” 
–  we combine both couplings 

•  piecemeal growth 
–  seed sets can be introduced in stages 
–  we add A∩B then A\B and finally B\A 

•  need-to-know 
–  not necessary to pick all θu’s at beginning 
–  can unveil only what we need to know: 

€ 

Ct ⊆ At ∩ Bt     (1)          Dt ⊆ At ∪ Bt     (2)

€ 

θv ∈ fv St−2( ), fv St−1( )[ ]?



piecemeal growth 

•  process started at S: (St) 
•  partition of S: S(1),…,S(K) 
•  consider the process (Tt): 

–  pick θu’s 
–  run the process with seed S(1) until termination 
–  add S(2) and continue until termination 
–  add S(3) and so on 

•  lemma - the sets Sn-1 and TKn-1 have the same distribution 



antisense coupling 

•  disjoint sets: S, T 
•  partition of S: S(1),…,S(K) 
•  piecemeal process with seeds S(1),…,S(K),T: (St) 

•  consider the process (Tt): 
–  pick θu’s 
–  run piecemeal process with seeds S(1),…,S(K) until termination 
–  add T and continue with threshold values 

•  lemma - the sets S(K+1)n-1 and T(K+1)n-1 have the same distribution 

€ 

θv '=1−θv + fv TKn−1( )



need-to-know 

•  proof of lemma 
–  run the first K stages identically in both processes 
–  note that for all v not in SKn-1 = TKn-1, θv is uniformly distributed in  
   [fv(TKn-1),1] 
–  but θv’ = 1 - θv + fv(TKn-1) has the same distribution 

€ 

θv ∈ fv St−2( ), fv St−1( )[ ]?

simulation 1 simulation 2 
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proof I 

ANTI 
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proof II 

ANTI 



21/31 

proof III 

•  new processes have correct final distribution 

•  up to time 2n-1, Bt = Ct and At = Dt so that 

•  for time 2n, note that 

•  so by monotonicity and submodularity 

•  then proceed by induction 

tttttt BADBAC ∪⊆∩⊆           

€ 

B2n−1 ⊆ D2n−1

B2n = B2n−1∪ (T \ S)          D2n = D2n−1∪ (T \ S)

€ 

fv (B2n ) − fv (B2n−1) ≥ fv (D2n ) − fv (D2n−1)



22/31 

general result 

•  we have proved: 
   theorem [Mossel-R’06] - in the generalized threshold model, if all 

activation functions are submodular, then for any monotone, submodular 
function w, the generalized influence 

   is submodular 

•  Note: A closure property for sub-modular functions! 
 € 

σw (S) = E S[w(Sn−1)]
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First passage percolation

First passage percolation:
Fix a graph G = (V ,E ), consider iid edge lengths (`e)e∈E .
Define the random metric on V

d(x , y) = inf
Γ
`(Γ),

where the infimum is taken over all paths Γ connecting x and y
and `(Γ) is the sum of lengths of the edges on Γ.

An important case: `e ∼ exp(λ).
Process r 7→ B(0, r) evolves as a Markov process, new vertices are
added at the rate λ× the number of neighbors in B(0, r).
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First passage percolation

Theorem (Cox-Durrett shape theorem)

There exists a compact convex set A such that for any δ > 0

lim
r→∞

P
(
(1− δ)rA ⊂ B(0, r) ⊂ (1 + δ)rA

)
= 1.
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Competing first passage percolation

Competing first passage percolation (also called Two-type
Richardson Model by Häggström, Pemantle):

Start with one red vertex and one blue vertex, other uncolored.

Uncolored vertices become red at the rate (λR× the number
of red neighbors) and blue at the rate (λB× the number of
blue neighbors).

Once colored, vertices never change the color.
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Competing first passage percolation

Theorem (Häggström, Pemantle)

On 2D lattice, for λR = λB

P(both red and blue→∞) > 0;

for at most countable set S

λR
λB

/∈ S ⇒ P(both red and blue→∞) = 0.
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Random regular graphs

Random regular graphs

Have only bounded number of short cycles.

Neighborhoods or typical vertices are trees.

Expander properties.

Configuration model

Elchanan Mossel Competing first passage percolation on random regular graphs



Competing process on random graphs

Let Gn be random d-regular graph on n vertices.

Uniformly choose r(n) vertices of Gn and color it red and b(n)
vertices and color it blue (r(n) and b(n) are given functions).

Run the same dynamics as in the competing first passage
percolation model with rates λR and λB .

Consider the number of red and blue vertices Rfinal
n and Bfinal

n

when the graphs is exhausted.

Question: Can we estimate Rfinal
n and Bfinal

n ?
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Compare with the Torus

Both processes occupy Θ(n) = Θ(k2) vertices.
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Results - asymptotics

Theorem (Antunović, Dekel, M, Peres)

Up to a constant factor with high probability

Rtotal
n ∼ r(n)

( n

b(n)

)λR/λB
∧ n.

In particular if r(n) = nρ and b(n) = nβ then

Rtotal
n ∼

{
nρ+(1−β)λR/λB , for ρ < 1− (1− β)λR/λB ,
n, for ρ ≥ 1− (1− β)λR/λB .

“Balance” occurs at (1− ρ)λB = (1− β)λR .
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Configuration model

P(Bad configuration) is bounded away from 1.
Conditioned that there are no Bad configuration the algorithm
generates a random regular graph.
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Couple CFPP and the configuration model

We will keep track of:
Rt and Bt ... number of red and blue “half-edges” at step t.

Transition probabilities:

(Rt+1,Bt+1) =



(Rt + d − 2,Bt), w .p. λRRt
λRRt+λBBt

dn−2t−Rt−Bt
dn−2t−1

(Rt ,Bt + d − 2), w .p. λBBt
λRRt+λBBt

dn−2t−Rt−Bt
dn−2t−1

(Rt − 2,Bt), w .p. λRRt
λRRt+λBBt

Rt−1
dn−2t−1

(Rt ,Bt − 2), w .p. λBBt
λRRt+λBBt

Bt−1
dn−2t−1

(Rt − 1,Bt − 1), w .p. (λR+λB)BtRt

(λRRt+λBBt)(dn−2t−1)
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Couple CFPP and the configuration model

To control Rt and Bt we use martingale techniques to control

Xt = Rt + Bt

and

Yt =
Rt

BλR/λBt

Xt ... number of active half-edges in the configuration model
Yt ... is the continuous time martingale when both processes
evolve without any interactions (and self-interactions)
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Couple CFPP and the configuration model

Xt = Rt + Bt
Process (Xt , dn − 2t − Xt) evolves as an urn model( −2 0

d − 2 −d

)

As n→∞

Xt = (1± o(1))

(
dn − 2t − (dn − X0)

(
1− 2t

dn

)d/2
)
,

for all 0 ≤ t < dn/2.
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Couple CFPP and the configuration model

Yt =
Rt

BλR/λBt

As long as Xt is large

Yt = (1± o(1))Y0

(
1− 2t

dn

)λB−λR
2λB .

Observe the “extra advantage” of the faster process.
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  you!	
  	
  
•  Speakers: … 
•  Organizers:   
•  Laurent, Lionel, Tasia  
•  Heather Peterson 
•  You!  
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