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The topic for today is linear algebraic groups.

We will work mainly over an arbitrary field k (for the whole course).

Definition 1.1. A linear algebraic group is a smooth affine group scheme over k. This means that it is a

scheme, and a group object in the category of schemes. In particular, there are morphisms

G×G µ−→ G

G×G i−→ G×G

pt
e−→ G

called multiplication, inverse, and identity, respectively. These morphisms satisfy the group axioms, which

consist of certain commuting diagrams. The axioms include associativity, inverses, and identity.

Another way to think is to think of G is as a functor G : Rings→ Grp.

Another useful perspective is to think of G as a commutative Hopf algebra structure on the ring

k[G] = {algebraic functions on G}.

This means that there are maps which are dual to the maps above

k[G]
∆−→ k[G]⊗ k[G]

k[G]⊗ k[G]
a−→ k[G]⊗ k[G]

k[G]
ε−→ k[G]

Remark 1.2. Sometimes we talk about group schemes.

Example 1.3. The general linear group GLn = Spec(k[xij ][1/det])
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Example 1.4. The multiplicative group Gm = Speck[t±1] with

∆ : k[t±1]→ k[t±1
t ]⊗ k[t±1

2 ]

t 7→ t1 ⊗ t2

From a functor of points description, we can view Gm as the assignment Gm : k-Alg→ Grp described by

Gm(R) = R×

for any k-algebra R.

Example 1.5. A split torus T ' (Gm)n.

Notation 1.6. Let X be a scheme. Remember the functor of points description: This says that X

can be reconstructed uniquely from the functor k-Alg → Set which assigns to any k-algebra R, the set

Map(Spec(R), X). We denote the set of R points of X by X(R) = Map(Spec(R), X). In the case above,

where X = Gm, one can check that Map(Spec(R),Gm) can be identified with R×. Indeed, we can iden-

tify Map(Spec(R),Gm) with Mapk(k[t±1], R), which is then identified with R× by sending a morphism

ϕ : k[t±1]→ R to the image ϕ(t) ∈ R×.

Notation 1.7. Let X be a scheme over k and let R be a k-algebra. It is customary to denote Spec(R)×Spec(k)

X by XR, called the base change of X, which is a scheme over Spec(R) via the first projection. For example,

if A is a k-algebra and X = Spec(A), then XR = Spec(A⊗k R).

Definition 1.8. A torus is a linear algebraic group scheme such that Tk̄ ' (Gm)n
k̄
. In particular, the

Deligne torus is constructed as follows: Take (Gm)C, and perform the “Weil restriction” (see next remark)

along the map π : Spec(C)→ Spec(R) to obtain S over R. We find that the R-points are given by S(R) = C×,

and SC ' (Gm)C × (Gm)C and also that k[S] = (C[z±1, z̄±1])Z/2.

Remark 1.9. The “Weil restriction” is that if π : X → Y is a finite, flat morphism and we are given

W/X, we can construct π∗(W )/Y where π∗(W )(R) = W (X ×Y R). For example if W is the total space of a

locally free sheaf, then π∗(W ) is the total space of the pushforward sheaf. This construction preserves group

schemes. Moreover, Weil restriction commutes with base change in the sense that

ptC ∪ ptC //

��

Spec(C)

π∗

��
Spec(C) // Spec(R)

commutes.

Example 1.10. Let A be a geometrically reduced finite k-algebra. This means that when one performs a

base change to k̄, then one obtains a product of copies of k̄. Then perform the Weill restriction of Gm along
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Spec(A)→ Spec(k) to obtain a torus T . In this way, we obtain (T )k̄ ' (Gm)
dim(A)

k̄
. Morally speaking, we can

view T = A×. In fact, the multiplication action of A on itself gives an embedding T ↪→ GL(A) ' GLdim(A).

This construction gives examples of “maximal” tori in GLn which are not split; there are in fact many such

tori.

1.1 Representations of G

Definition 1.11. There are several equivalent definitions of a representation of G:

(i) A representation of G is a homomorphism of groups G→ GL(V ) for a finite dimensional vector space

V .

(ii) Equivalently, a representation is a map G × V → V which satisfies certain properties, such that it is

linear and there should be associativity.

(iii) Equivalently, we can view a representation as a functor V : Ring/k → Set which lifts to k-vector spaces.

(iv) A useful description is to think of a representation as a comodule over k[G], because this works for

infinite-dimensional representations. A comodule is a map ρ : V ∗ → V ∗ ⊗ k[G] which satisfies the

axioms

(a) identity map is given by V ∗ → V ∗ ⊗ k[G]
1⊗ξ−−→ V ∗

(b) there is associativity

V ∗

ρ

��

ρ // V ∗ ⊗ k[G]

1⊗∆

��
V ∗ ⊗ k[G]

ρ⊗1// V ∗ ⊗ k[G]⊗ k[G]

We will use this fourth description as our definition of a representation.

To go from (i) to (iv), the map G× V → V gives V ∗ ↪→ Sym(V ∗)→ Sym(V ∗)⊗ k[G], which must then lift

to a map V ∗ → V ∗ ⊗ k[G].

Example 1.12. This is an important example showing that the category of Gm representations is equivalent

to the category of Z-graded vector spaces. In fact, given a map

V → V ⊗k k[t±1]

v 7→
∑
i

vit
i,

then V decomposes as V = ⊕iVi where Vi is the span of all elements of the form ρ(v)i for v ∈ V . It remains

to show that Vi is a sub comodule.

3



Example 1.13. Let T be a split torus. Consider the group Homgrp(T,Gm), which is isomorphic to the

character lattice M . Any representation V of T splits canonically as a direct sum ⊕χ∈MVχ. On this space

Vχ, an element t ∈ T acts via χ(t) · (−).

Example 1.14. There is a homomorphism w : S→ Gm induced by the map

(C[z±1, z̄±1])Z/2 → R[t±1]

z, z̄ 7→ t.

This implies that a representation of S is an R-vector space V with a grading V = ⊕wVw along with the

data of a direct sum decomposition

(Vw)C '
⊕

a+b=w

(Vw)a,bC

such that (Vw)a,bC = (Vw)b,aC . This implies that representations of the Deligne-torus S are real Hodge struc-

tures.

Proposition 1.15. Any representation V of G is a union of finite-dimensional sub co-modules.

Proof. Let v ∈ V . (We want to show that v lies in some finite-dimensional sub co-module.) Choose a basis

{ei} for k[G], as a vector space. Using this basis, write

ρ(v) =
∑
i

vi ⊗ ei ∈ V ⊗ k[G]

for some vi ∈ V . The claim is that the linear span of vi is a sub co-module.

Indeed, using the co-multiplication, write ∆(ei) =
∑
i,j,k rijkej ⊗ ek for some constants rijk in the field.

Then the associativity axiom applied to ρ(v) implies that

∑
i,j,k

rijk(vi ⊗ ej ⊗ ek) =
∑
k

ρ(vk)⊗ ek.

This means that ρ(ek) =
∑
i,j rijk(vi ⊗ ej).

1.2 Main structure theorems

Theorem 1.16. There is an n such that there is an embedding G ↪→ GLn.

Remark 1.17. To prove this, find a finite sub-representation V ∗ of k[G] containing a set of generators,

which will lead to an embedding G ↪→ GL(V ).

Theorem 1.18 (Jordan decomposition). For any g ∈ G(k̄), there is a unique way to write g = gss ·gu, where

gss is semi-simple in some representation (meaning that it is diagonalizable in some faithful representation)

and gu is unipotent (meaning that it is unipotent in some representation) and such that gss, gu commute.
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Theorem 1.19. There exist maximal connected solvable subgroups B ↪→ G over k̄ which are unique up to

conjugation. Among connected, solvable subgroups, the condition of being maximal is equivalent to the fact

that G/B is projective.

Remark 1.20. The condition that G/B is projective is the definition of a parabolic subgroup. In fact,

all parabolic subgroups contain a Borel B.

Theorem 1.21. There is a maximal torus T ↪→ G such that Tk̄ → Gk̄ is maximal, and over k̄, this torus is

unique up to conjugation.

Theorem 1.22. There is a unique maximal normal unipotent connected subgroup Ru(G) ↪→ G→ H.

Definition 1.23. We say that G is reductive if Ru(G) = 1.

Theorem 1.24. If the characteristic of k is zero, then the condition of being reductive is equivalent to lin-

early reductive, which means that the category of co-modules of k[G] has no higher Ext’s, or equivalently, if

V →W is a surjective of G-representations, then there is a splitting σ : W → V . (Moreover, Nagata showed

that in characteristic p, the condition of being linearly reductive is equivalent to the connected component of

the identity being G0 = ((G)m)n and |G/G0| is coprime to the characteristic of k.)
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