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1.1 Remarks on separation axioms

If f : X → Y is a map of algebraic spaces, then there is a map ∆f : X → X ×Y X, which is representable,

locally finite type, a monomorphism, separated, and locally quasi-finite.

There are certain “separation axioms” which impose nice conditions on the diagonal.

• Say that f is separated if ∆f is a closed immersion

• Say that f is quasi-separated if ∆f is quasi-compact.

This latter condition tends to be the weakest condition under which intuition works.

Example 1.1. This is a terrible example. Let k = Q. Then A1(R) = R and define Z(R) = Map(π0(SpecR),Z),

which is a group scheme, which acts freely on A1 by translation. One can form the quotient A1/Z is not

quasi-separated. Thus this example provides a counterexample to the following theorem.

Theorem 1.2. Let X be a quasi-separated, quasi-compact algebraic space over k. Then there is a dense

open subscheme X ′ ⊂ X

Remark 1.3. This theorem gives a perspective on algebraic spaces. In fact, the simplest constructions of

algebraic spaces come from constructions in birational geometry, namely, flips and flops of 3-folds over C.

Corollary 1.4. If G acts freely on a quasi-compact scheme X, then there is a dense open G-invariant

subscheme U ⊂ X such that U/G is a scheme.

Proof. In this case, the diagonal is quasi-compact (because G is quasi-compact). We have a map

G×X ⇒ X → Y := X/G

and take the fiber product

U //

��

Y 0

��
X // Y

which will give G-equivariant U by commutativity.

Definition 1.5. Let X be a scheme. A principal G-bundle on X is an algebraic space π : Y → X along

with a G-action such that π : Y → X is G-invariant and such that
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(i) G× Y → Y ×X Y is an equivalence (this roughly means that G acts freely on the fibers of Y )

(ii) étale locally, π admits a section

Another formulation views Y as a sheaf of sets on the site of X which satisfies further properties.

If π admits a section, can use this section and (i) to construct an isomorphism Y ' X ×G.

Remark 1.6. In fact, any sheaf of sets on the big étale site of schemes over X satisfying (i), (ii) is an

algebraic space.

Lemma 1.7. Because G is affine, any principal G bundle is a scheme and in fact affine over X.

Proof. The idea of the proof is as follows. For U ⊂ X, there is an isomorphism π−1(U) ' U × G. In this

case, G×U = Spec
U
A for some quasi-coherent sheaf of algebras A, which descends to some AX on X. Then

Y = Spec
X

(AX).

Remark 1.8. For certain groups, which are called “special” groups, principal G-bundles are always Zariski

locally trivial (when they are usually étale locally trivial).

For example, for GLn there is an equivalence of categories (or of groupoids) between the category of GLn-

bundles over X and the category of vector bundles over X and isomorphisms between them. The equivalence

sends a vector bundle E to its frame bundle Fr(E), which is the sheaf mapping U to Isom(O⊕nU , E|U ). One

can map a GLn-bundle Y to the space An ×GLn Y , which is a vector bundle.

As another example, if B ⊂ G is Borel, then B is “special”.

1.2 Return to quotients

Remember that for an action of G on a scheme, there is a subscheme (X/G)◦ ⊂ (X/G) which is itself a

scheme. So there is a U ⊂ X such that G/U is a scheme. In fact, formally, the map U 7→ U/G is a principal

G-bundle. Because G is affine, this implies that the map is affine.

We conclude that if X is a scheme with a free G action (or separated algebraic space), then there is a dense

open subscheme of X covered by G-equivariant open affines Uα such that Uα/G is also affine. Moreover, the

quotient X/G is a scheme if and only if X admits an open affine cover of this form.

1.3 Stacks

The question that stacks answer is this: What if the G action is not free? This means that G×X → X ×X

is not a monomorphism. In other words, the fibers of the map do not just consist of single points. However,

the map G×X → X ×X is still a groupoid, that is, a category in which all arrows are invertible.
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Definition 1.9. A groupoid scheme consists of two schemes X1, X2 together with five maps

s, t : X1 → X0

e : X0 → X1

m : X1 ×X0,s,t X1 → X1

i : X1 → X1

such that s ◦ e and t ◦ e are the identity morphisms, and s ◦m = s ◦ p1, t ◦m = t ◦ p2 and other obvious

conditions that generalize the axioms of group action. In practice, it is usually written as

X1 ⇒ X0.

Maps between groups are level-wise maps commuting with the structure maps.

Definition 1.10. A Morita morphism is a map of groupoid schemes f• : X• → Y• such that

(i) f0 : X0 → Y0 is fppf (this is essentially a very strong kind of essential surjectivity)

(ii) The following diagram is cartesian

X1
//

s,t

��

Y1

s,t

��
X0 ×X0

f0,f0

// Y0 × Y0

Remark 1.11. Groupoid schemes form a 2-category. A natural transformation between groupoid schemes

f•, g• : X• → Y• is a map η : X0 → Y1 such that the resulting map on R-points is a natural transformation.

Note 1.12. If f• : X• → Y• is a Morita morphism with a section σ of X0 → Y0, then there is a functor

σ• : Y• → X• such that f• ◦ σ• is the identity. There is also a natural transformation from σ• ◦ f• to the

identity idX• . Therefore, this notion of Morita morphism together with a section is an appropriate notion

of equivalence. (We will think of all Morita morphisms as “local equivalences.”)

Example 1.13. Equivalence relations. There is a Banal groupoid: for an fppf map of schemes X0 → Y ,

and we let X0 ×Y X0.

If G acts on X and H ⊂ G is a subgroup, then X/G should be equivalent to (H ×G X)/H. This can be

made more precise using Morita morphisms.
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