Taming Moduli Problems in Algebraic Geometry Daniel Halpern-Leistner

1 September 29, 2016

Proposition 1.1. Suppose that $f: X_{\bullet} \to Y_{\bullet}$ is a Morita morphism of groupoid schemes. Then the pullback functor $f^*: QCoh(Y_{\bullet}) \to QCoh(X_{\bullet})$ is an equivalence of categories.

Proof. We sketch a proof here.

Step 0. Cook up a bit of machinery and notation. There is a cleaner way to think of the category $\operatorname{QCoh}(X_{\bullet})$. The idea is to define a category QCoh with objects being pairs (X, E) where X is a scheme and E is a quasi-coherent sheaf on X, and maps consist of maps of schemes $f: X \to Y$ together with maps of sheaves $F \to f_*E$ over Y. One can say that a map in QCoh is **Cartesian** if the induced map $f^*F \to E$ is an isomorphism.

We think of X_{\bullet} as a diagram in the category of schemes. In particular, there is a small category \mathcal{G} such that each groupoid scheme X_{\bullet} is a functor $\mathcal{G} \to \text{Sch}$. There is a projection functor $\text{QCoh} \to \text{Sch}$. With this terminology, the category $\text{QCoh}(X_{\bullet})$ is the category of sections $\mathcal{G} \to \text{QCoh}$ all of whose arrows are Cartesian. (In fact, for any diagram X_{\bullet} of schemes, one can define the category $\text{QCoh}(X_{\bullet})$ as the category of Cartesian sections.)

Step 1. Consider the banal groupoid for an fppf map. For a map $U_0 \to X$, form the groupoid $U_1 = U_0 \times_X U_0 \Rightarrow U_0 \to X$, called the banal groupoid. We claim that given an fppf map $U_0 \to X$, the pullback functor $\operatorname{QCoh}(X) \to \operatorname{QCoh}(U_{\bullet})$ is an equivalence. This is called "fppf descent for quasi-coherent sheaves." Using the formal methods sketched below, we can reduce this to the case of a faithfully flat surjective map of affine schemes (or rings) $A \to B$. The statement becomes that the category A-Mod is equivalent to the category B-Mod along with an isomorphism $B \otimes_A M \simeq M \otimes_A B$ as $(B \otimes_A B)$ -modules satisfying a cocycle condition.

Step 2. The Morita morphism f gives a map $X_0 \to Y_0$ which is fppf and that the groupoid structure on X_0 is induced from Y_{\bullet} . We perform the following construction. Form the fibred product W_{00} as

$$\begin{array}{c} W_{00} \longrightarrow Y_{1} \stackrel{t}{\longrightarrow} Y_{0} \\ \downarrow & \downarrow^{s} \\ X_{0} \stackrel{f_{0}}{\longrightarrow} Y_{0} \end{array}$$

with all maps being fppf. The claim is that the rows and columns of the following diagram are all banal

groupoids

Here, W_{10} is the banal groupoid associated to the map $W_{00} \rightarrow Y_0$.

Step 3. Use step 2 to show that the pullback functors are equivalences $\frac{1}{2}$

$$\operatorname{QCoh}(X_{\bullet}) \to \operatorname{QCoh}(W_{\bullet\bullet}) \leftarrow \operatorname{QCoh}(Y_{\bullet})$$

by step 1.

Secretly we have seen a stack, namely, $QCoh \rightarrow Sch$. Intuitively, a stack is a functor $Sch^{op} \rightarrow Gpd$ from schemes to groupoids. However, notice that Gpd is a 2-category, so one has to be careful what one means by a functor of 2-categories, and indeed, this is difficult to formalize. A better way is to consider categories fibered in groupoids.

Definition 1.2. A category fibered in groupoids consists of a category \mathcal{F} together with a functor $b: \mathcal{F} \to \text{Sch}$ such that

(i) For any diagram

for schemes X, Y, there is a "Cartesian" arrow

(ii) (Existence of pullbacks) The fiber $\mathcal{F}(U) = b^{-1}(U)$ over any scheme U is a groupoid.

Remark 1.3. The notion of "Cartesian arrow" is determined by a formal universal property generalizing the property for pullbacks in QCoh.

Definition 1.4. A stack is a category \mathcal{F} fibered in groupoids such that for any surjective étale map of schemes $U_0 \to X$, the pullback functor is an equivalence of categories $\mathcal{F}(X) \to \mathcal{F}(U_1 \rightrightarrows U_0)$.

Example 1.5. We call this stack "point mod G," denoted \cdot/G . Here, the category \mathcal{F} consists of pairs (X, E) where $E \to X$ is a principal G-bundle, and maps are simply G-equivariant maps $E_0 \to E_1$ and the functor $\mathcal{F} \to Sch$ is just the forgetful functor.

Example 1.6. Quotient stacks Y/G. We are given an action of G on a scheme Y. The category \mathcal{F} consists of triples (X, E, f) where X is a scheme, E is a principal G-bundle over X, and $f : E \to Y$ is a G-equivariant map.