Taming Moduli Problems in Algebraic Geometry Daniel Halpern-Leistner

1 October 4, 2016

Recall from last time that we described a stack X/G where the category \mathcal{F} consists of triples (U, E, f) where U is a scheme, E is a principal G-bundle over U, and $f: E \to X$ is a G-equivariant map.

Another way of thinking is as follows. To any groupoid scheme X_{\bullet} we can consider the category fibered in groupoids \underline{X}_{\bullet} , where the objects consist of pairs (U,ξ) where U is a scheme and $\xi \in X_0(U)$. The morphisms consist of pairs $(f,\gamma): (U,\xi') \to (V,\xi)$ where $\gamma \in X_1(U)$ satisfies $t(\gamma) = \xi'$ and $s(\gamma) = f^*(\xi)$. The fiber over $U \in$ Sch is the groupoid $X_1(U) \rightrightarrows X_0(U)$.

For any fibered category \mathcal{F} , there is a canonical stackification $\mathcal{F} \to \mathcal{F}^a$, where \mathcal{F}^a is a stack and the map is universal with respect to maps from \mathcal{F} to a stack. In our example, the stackification satisfies $(X_{\bullet})^a = (X/G)$.

We claim that \underline{X}_{\bullet} does not satisfy descent in general. Indeed, consider the example \cdot/G , namely the stackification $G \Rightarrow$ pt. For each scheme U, the functor \cdot/G maps U to the set of G-bundles over U. However, the functor $G \Rightarrow$ pt maps U to a single object groupoid with automorphism group G(U). There is a base-preserving functor

$$(G \rightrightarrows \operatorname{pt})(U) \to (\cdot/G)(U)$$

 $\operatorname{pt} \mapsto U \times G$

In general, there is a functor

$$(G \times X \rightrightarrows X)(U) \to (X/G)(U)$$

 $(f: U \to X) \mapsto (G \times U \xrightarrow{g \cdot f(U)} X)$

1.1 Fiber products

For groupoids C_1, C_2 over D, the homotopy fiber product is universal with respect to diagrams of the following kind

$$\begin{array}{c} A \longrightarrow C_2 \\ \downarrow & \qquad \downarrow f_2 \\ C_1 \xrightarrow{} f_1 \xrightarrow{} D \end{array}$$

where the diagram commutes up to natural transformation. The objects of $C_1 \times_D C_2$ consist of pairs (X, Y)of objects $X \in C_1$, $Y \in C_2$ together with an isomorphism $f_1(X) \to f_2(Y)$. Morphisms are maps $X_1 \to X_2$ and $Y_1 \to Y_2$ which commute with all necessary maps. We claim that for stacks $\mathfrak{X}_1, \mathfrak{X}_2$ over \mathfrak{Y} , the fiber product is still a stack.

There is a 2-Yoneda Lemma which states the following. For $X \in \text{Sch}$, can regard this as a category \underline{X} fibered in groupoids. Indeed, the objects are pairs (U, f) where $f : U \to X$. And morphisms are maps which commute with the maps to X. Then there is an equivalence of categories $\text{Map}_{\text{Sch}}(\underline{X}, \mathcal{F}) \simeq \mathcal{F}(X)$ for a category fibered in groupoids in \mathcal{F} .

The previous paragraph justifies referring to a stack as representable. We can also define the notion of representable map: Say that $f: \mathfrak{X} \to \mathfrak{Y}$ is representable if for any map $\underline{U} \to \mathfrak{Y}$, the pullback \mathcal{F}

is representable. For any property of morphisms of schemes which is local on the target, we can define such a property in the same way for spaces.

Theorem 1.1. The following are equivalent for a stack \mathfrak{X} .

- (i) $\mathfrak{X} \simeq (X_{\bullet})^a$ for a smooth groupoid scheme
- (ii) The diagonal functor $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$ is representable by algebraic spaces, and there is a smooth surjection from a scheme $U \to \mathfrak{X}$
- (iii) There is a representable smooth surjection $\underline{U} \to \mathfrak{X}$ from a scheme.

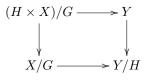
Furthermore, these are equivalent to conditions 1,2,3 with "fppf" replacing smooth.

Definition 1.2. Any stack \mathfrak{X} satisfying one of these three equivalent conditions is called **algebraic**.

Remark 1.3. Given $U \to \mathfrak{X}$, we get a groupoid $U_0 \times_{\mathfrak{X}} U_0 = U_1 \to U_0 = U$.

1.2 Constructing maps between stacks

Let $\psi: G \to H$ be a group homomorphism, let X be a G-scheme and Y an H-scheme. Then an equivariant map $f: X \to Y$ induces a functor of groupoid schemes $(G \times X \rightrightarrows X) \to (H \times Y \rightrightarrows)$, which in turn induces a map of stacks $f: X/G \to Y/H$. In particular, f is representable by algebraic spaces if and only if the fiber product



is an algebraic space, which is equivalent to saying that G acts freely on $H \times X$. For example, if G is a subgroup of H, then f is representable and $X/G \simeq (H \times_G X)/H$ (by Shapiro's lemma). The notation $H \times_G X$ means $(H \times X)/G$ where G acts as $g \cdot (h, x) = (hg^{-1}, gx)$. One can show that X/G is equivalent to $(G \times X)/(G \times G)$ and also that $X/G \times X/G$ is equivalent to $(X \times X)/(G \times G)$. And the diagonal map $X/G \to (X/G) \times (X/G)$ corresponds to the action map $(G \times X)/(G \times G) \to (X \times X)/(G \times G)$ described by $(g, x) \mapsto (x, g \cdot x)$.