Taming Moduli Problems in Algebraic Geometry Daniel Halpern-Leistner

1 November 1, 2016

We will now complete the proof of the Hilbert Mumford criterion in the affine case:

Theorem 1.1 (Hilbert-Mumford). Let X = Spec(R) and let G act on X.

- (1) $x \in X^{ss}(\mathcal{L})$ if and only if $\mu(x,\lambda) \ge 0$ for all λ such that $\lim_{t\to 0} \lambda(t) \cdot x$ exists.
- (2) $x \in X_{(0)}^s(\mathcal{L})$ if and only if $\mu(x,\lambda) > 0$ for all such λ . Here the notation $X_{(0)}^s$ beams the set of $x \in X^s$ such that the stabilizer G_x is finite.

We will in fact only prove (1), leaving it as an exercise for the reader to adapt the argument on [?, page 53] to our setting.

Proof. First, reformulate semistability. Let

$$V = \operatorname{Spec}\left(\bigoplus_{n} \mathcal{L}^{n}\right) = \operatorname{Tot}_{X}(\mathcal{L}^{\vee}).$$

Then we claim that $x \in X$ is \mathcal{L} -semistable if and only if for some point x^* in $V \setminus \{0\}$ over $x \in X$, the closure of $G \cdot x^*$ in V does not intersect the zero section. Indeed, notice that an $f \in \Gamma(X, \mathcal{L}^n)^G$ such that $f(x) \neq 0$ determines a function on V with $f(x^*) \neq 0$, but $f(\{0\}) = 0$. For the converse, use the fact that any two disjoint closed subsets of V which are G-equivariant can be separated by $F \in \Gamma(\mathcal{O}_V)^G$.

We want to show that if the closure of the orbit of x^* meets the zero section, then there is a one-parameter subgroup $\lambda : \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t) \cdot x^* \in \{\text{zero section}\}$ (and for such a λ , one will have $\mu(x,\lambda) < 0$.) If the closure meets the zero section, then we can find a diagram of the form

$$\operatorname{Spec}(k((t^{1/m}))) \longrightarrow \operatorname{Spec}(k((t))) \longrightarrow \{G \cdot x^*\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k[|t^{1/m}|]) \longrightarrow \operatorname{Spec}(k[|t|]) \xrightarrow{f} \overline{\{G \cdot x^*\}}$$

such that 0 in $\operatorname{Spec}(k[|t|])$ maps to a point in the zero section. After passing to an etale extension, we can find a lift

$$\operatorname{Spec}(k((t^{1/m}))) \xrightarrow{\phi} G \to \{G \cdot x^*\}$$

of the top map above. We are trying to product a one-parameter subgroup $\lambda: \mathbb{G}_m \to G$. There is a structure theorem for the group G(k((t))) due to Iwahori asserting the following: For any reductive G, there

is a correspondence of sets

$$\operatorname{Hom}(\mathbb{G}_m,G)/_{conj}G\longleftrightarrow G(k[|t|])\setminus G(k((t)))/G(k[|t|]),$$

which is described by [didn't quite catch this part]. As a consequence, there are $g_1, g_2 \in G(k[|t|])$ such that

- (i) $g_1|_{k((t))} \cdot \phi \cdot g_2|_{k((t))} = \langle \lambda \rangle$
- (ii) the left-hand side extends to $g_1 \cdot f \cdot g_2$

We now state a short version of the main theorem of GIT.

Theorem 1.2. Let $q: \mathfrak{X} \to Y$ be a finite type GMS map, with Y a quasi-compact algebraic space over an algebraically closed field of characteristic zero, and let $\mathcal{L} \in Pic(\mathfrak{X})$. Say $x \in \mathfrak{X}(k)$ is semistable if for all $f: \mathbb{A}^1/\mathbb{G}_m \to \mathfrak{X}$ with $f(1) \simeq x$, we have

$$wt_{\{0\}}(f^*(\mathcal{L})) \geqslant 0.$$

Then $\mathfrak{X}^{ss}(\mathcal{L}) \subset \mathfrak{X}$ is open and the map

$$\mathfrak{X}^{ss}(\mathcal{L}) \to \underline{\operatorname{Proj}}_{Y} \left(\bigoplus_{n \geqslant 0} q_{*}(\mathcal{L}^{n}) \right)$$

is a GMS, and \mathcal{L}^N descends to a relatively ample bundle for N >> 0.

This theorem follows from a result of Alper-Hall-Rydh. They prove informally the following: near any point in any geometric stack \mathfrak{X} whose automorphism group is linearly reductive, we can find an etale neighborhood of the form $\operatorname{Spec}(R)/G$.

Remark 1.3. If Y is not a scheme, then it's not clear that this notion of semistability agrees with the notion from Alper. However, this notion is slightly more general.

Step 1. Any map $\mathbb{A}^1/\mathbb{G}_m \to \mathfrak{X}$ corresponds to a point $y \in Y(k)$ and a map to the fiber \mathfrak{X}_y . This implies that the notion of semistability above is etale local over Y.

Step 2. Does this Hilbert-Mumford criterion agree with the one we proved? Is every map $\mathbb{A}^1/\mathbb{G}_m \to \operatorname{Spec}(R)/G$ induced by an equivariant map $\mathbb{A}^1 \to \operatorname{Spec}(R)$? The answer is yes. The case for $G = GL_n$ will be an exercise in the homework.

Proposition 1.4. There is a correspondence between isomorphism classes of maps $\mathbb{A}^1/\mathbb{G}_m \to X/G$ with pairs (λ, x) such that $\lim_{t\to 0} \lambda(t) \cdot x$ exists modulo the relation $(\lambda, x) \sim (\lambda, px) \sim (g\lambda g^{-1}, g \cdot x)$ where $g \in G$ and $p \in P_{\lambda} = \{block \ upper \ triangular \ matrices \ w.r.t. \ eigenspaces \ of \ \lambda\}.$

Theorem 1.5. If \mathfrak{X} is finite type with affine diagonal and has a GMS $q: \mathfrak{X} \to Y$, then there is a linearly reductive group G and a cartesian diagram of the form

$$Spec(R)/G \longrightarrow \mathfrak{X}$$

$$\downarrow \qquad \qquad \downarrow q$$

$$Spec(R^G) \xrightarrow{tale \ suri.} Y$$

Suppose in particular that $X \hookrightarrow \mathbb{P}^n$ is a subvariety which is acted upon by G, then define the semistable points in the following manner. Let $X^{ss}(\mathcal{O}_X(1))$ be the set of points x for which there is an n > 0 and an $f \in \Gamma(X, \mathcal{O}_X(n))^G$ such that $f(x) \neq 0$. Each of these X_f 's is a G-equivariant affine scheme, which cover X^{ss} . The theorem is the following.

Theorem 1.6. The map

$$X^{ss}/G \to Proj\left(\bigoplus_{n\geqslant 0}\Gamma(X,\mathcal{O}_X(n)^G)\right)$$

is a good moduli space.

This is a special case of the affine GIT, because we can consider the affine cone $C(X) \subset \mathbb{A}^{n+1}$ over X with an action of $G \times \mathbb{G}_m$. Can choose the line bundle $\mathcal{L} = \mathcal{O}_{C(X)} \otimes \mathbb{C}(1)$. With this choice,

$$C(X)^{ss}(\mathcal{L})/G \times \mathbb{G}_m \simeq X^{ss}/G.$$

In fact, the same type of reasoning works for X which is even projective-over-affine. The Hilbert-Mumford criterion is identical to that of the affine case in this case as well.