Taming Moduli Problems in Algebraic Geometry Daniel Halpern-Leistner

1 November 10, 2016

Recall the set-up from last time.

Example 1.1. Let SL_3 act on $\mathbb{P}(\operatorname{Sym}^3\mathbb{C}^3)$, the space of degree 3 curves in \mathbb{P}^2 . What are the semistable points?

First, consider T-semistability. A maximal torus is isomorphic to \mathbb{G}_m^2 . One such torus is diag $(t_1, t_1^{-1}t_2, t_2^{-1})$.

Consider the character of the T-representation $\operatorname{Sym}^3\mathbb{C}^3$. [There is a diagram of points corresponding to the action on the standard eigenbasis for $\operatorname{Sym}\mathbb{C}^3$ in $M_{\mathbb{R}}$ which I could not draw in real time.] A map $\lambda:\mathbb{G}_m\to T$ can be thought of as a co-direction in the diagram. Take a point p and consider its coordinates $(\alpha_1,\ldots,\alpha_n)$ with respect to the eigenbasis. Then for λ , the limit point $\lim_{t\to 0}\lambda(t)\cdot p$ is the projection of p onto the lowest weight eigenspace in which p has a connzero coefficient. Define the subset $\operatorname{St}(p)$ to be the convex hull in $M_{\mathbb{R}}$ of weights for which $\alpha_i\neq 0$. It follows that p is T- semistable if and only if $\operatorname{St}(p)$ contains the origin.

The Hilbert Mumford criterion implies that

- (i) p is T-semistable if and only if the state polytope $St(p) \subset M_{\mathbb{R}}$ contains the origin.
- (ii) p is G-semistable if and only if $g \cdot p$ is T semistable for all $g \in G$. Indeed, we saw this last time.

Moreover, more is true, after fixing a Weyl-invariant inner product $|\cdot|$ (e.g. the Killing form) on the cocharacter lattice N. Given a state polytope $\operatorname{St}(p) \subset M_{\mathbb{R}}$, there is a unique $\lambda \in N_{\mathbb{R}}$ (up to scale) which minimizes

$$\nu(p,\lambda) = \frac{1}{|\lambda|} \mu(p,\lambda) = \max_{\chi \in \operatorname{St}(p)} \langle -\frac{\lambda}{|\lambda|}, \chi \rangle.$$

The function

$$\lambda \mapsto \max_{\chi \in \operatorname{St}(p)} \langle \lambda, \chi \rangle$$

is convex upward on $N_{\mathbb{R}}$. If one restricts to the unit sphere in $N_{\mathbb{R}}$, the function is continuous and strictly convex upward.

Lemma 1.2. There is a unique closest point $\chi \in St(p)$ to the origin, and the λ which minimizes $\nu(p,\lambda)$ is dual to χ under $|\cdot|$.

Proof. Exercise.
$$\Box$$

As a result, there is a unique $\lambda \in N_{\mathbb{R}}$ which minimizes

$$\nu(p,\lambda) = \frac{1}{|\lambda|} \operatorname{wt}_{\lambda}(\mathcal{O}(1)_{p_0}).$$

Note that this quantity does not depend on the choice of torus T, only depending on $|\cdot|$ and $\mathcal{O}(1)$.

Kempf's theorem says the following: There is a λ , unique up to conjugation by $g \in P_{\lambda}$, which minimizes $\nu(p,\lambda)$ for any unstable p.

Remark 1.3. Recall that maps $\mathbb{A}^1/\mathbb{G}_m \to X/G$ up to isomorphism are equivalent to test data (p,λ) up to equivalence

Theorem 1.4 (Kempf). Let G be a reductive group. Let X be a projective-over-affine variety over k with linearized G action. Let $\mathcal{L} \in NS_G(X)$ be a line bundle. Fix a Weyl-invariant inner product on $N = \operatorname{cochar}(T)$. Assume that $\mathcal{L}|_X$ is NEF. Then

- (i) For each unstable point $p \in X^{us}$, there is a unique map $f : \mathbb{A}^1/\mathbb{G}_m \to X/G$ with an isomorphism $f(1) \simeq p$ which minimizes $\nu(f) = \nu(p,\lambda)$, up to ramified covering $(p,\lambda) \mapsto (p,\lambda^n)$.
- (ii) If p specializes to q, then $M(q) \leq M(p)$, where $M(p) = \min_{(p,\lambda)} \nu(p,\lambda)$. (That is, the set of points $\{p \in X : M(p) \leq c\}$ is closed for any c < 0.)
- (iii) Up to conjugation, only finitely many λ appear as optimal destabilizers in (i).

Remark 1.5. Recall that maps $\mathbb{A}^1/\mathbb{G}_m \to X/G$ up to isomorphism are equivalent to test data (p,λ) up to equivalence $(p,\lambda) \sim (p,g\lambda g^{-1})$ for $g \in P_\lambda$ and $(p,\lambda) \sim (g \cdot p,g\lambda g^{-1})$ for any $g \in G$.

We will prove the theorem in the case where X is affine. The non-affine case when \mathcal{L} is G-ample can be reduced to the affine case.

Proof. The idea of the proof is to use an object known as the "spherical building" Sph(G) of G. The object Sph(G) is a large topological space constructed in the following manner

- (1) For any maximal torus T, let S_T denote the unit sphere in $\operatorname{cochar}(T)_{\mathbb{R}}$.
- (2) For any Borel subgroup $T \subset B \subset G$, we get a top dimensional cone (Weyl chamber) in $\operatorname{cochar}(T)_{\mathbb{R}}$. Intersecting this cone with the unit sphere gives a polyhedral sector $\Delta_B \subset S_T$. (One can do the same procedure for other parabolic subgroups $T \subset P \subset G$ and the cone will be lower dimensional.)
- (3) We glue S_T to $S_{T'}$ along Δ_B for each borel $B \supset T, T'$.

Then $\operatorname{Sph}(G)$ is the resulting glued space. (One can also think of the spherical building as all sectors Δ_P glued together along the inclusions $\Delta_{P'} \subset \Delta_P \supset \Delta_{P''}$ for $P'' \supset P \subset P'$. We can think of Δ_P as parameterizing dominant $\lambda : \mathbb{G}_m \to P$ up to conjugation and ramification $\lambda \mapsto \lambda^n$.)

With these conventions, the function

$$\nu(p,\lambda) = \frac{1}{|\lambda|} \operatorname{wt}_{\lambda}(\mathcal{L}_{p_0}), \qquad p_0 = \lim_{t \to 0} \lambda(t)p$$

extends to a continuous function on a subset $\operatorname{Deg}(p)$ of $\operatorname{Sph}(G)$, which parameterizes $\lambda: \mathbb{G}_m \to G$ such that $\lim_{t\to 0} \lambda(t) \cdot p$ exists. Kempf's theorem says that there is a unique minimizer of $\nu: \operatorname{Deg}(p) \to \mathbb{R}$.