
TAMING MODULI PROBLEMS IN ALGEBRAIC GEOMETRY: EXERCISES

DANIEL HALPERN-LEISTNER

1. Equivariant geometry

1.1. Bialynicki-Birula strata. Let X ′ → X be an equivariant map of schemes with Gm-action,
and let Y ′ and Y be the corresponding Bialynicki-Birula schemes defined in class. Show that there
is a canonically induced map Y ′ → Y and that

(1) if X ′ ↪→ X is a closed immersion, then

Y ′ �
� j′ //

��

X ′

��
Y �
� j // X

is Cartesian, and
(2) if X ′ ⊂ X is an open immersion, then

Y ′
π′
//

��

X ′

��
Y

π // X

is Cartesian.

The maps π and j are the canonical projection from the BB stratum to the fixed locus, and the
canonical immersion from the BB stratum into the ambient variety which we defined in lecture.

1.2. On equivariant line bundles. This is a warmup for the next exercise. Let X be a G-scheme
over an algebraically closed field k. Let PicG(X) be the group of invertible sheaves on X/G. Then
pullback along the map X → X/G corresponds to the forgetful map PicG(X)→ Pic(X). Likewise
elements of Pic(pt /G) are one-dimensional representations of G, i.e. characters of G, and the
pullback functor Pic(pt /G) → Pic(X/G) is given by χ 7→ OX ⊗ χ. Determine conditions under
which

0→ Pic(pt /G)→ Pic(X/G)→ Pic(X)

is exact.

1.3. Normal projective G-varieties are G-projective. The goal is to prove that if G is a
connected reductive group, then every normal projective variety X admits a G-linearized ample
bundle. Familiarize yourself with the proof of this fact from Mumford, Kirwan, & Fogarty’s GIT
book (this is part of the exercise – understand the proof to the extent that you can explain it to a
fellow student).

Step 1 Show that every line bundle fixed, as a point in Pic(X/k), by the action of G admits a
G-equivariant structure after raising it to a suitably high power

Step 2 Using the fact that the underlying reduced subschemes of the components of Pic(X/k) are
abelian varieties, because X is normal and projective, show that G must act trivially on
Pic(X).
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I claim that you have enough information to prove the key claim in Step 2, on the rationality of
G, at least assuming k = k̄:

Let G be a connected reductive group over an algebraically closed field. Consider the fiber bundles
G → G/T → G/B. In the case of G = GL3, can you use this to show that G is uni-rational, i.e.
dominated by a rational variety. Of course, you already know that GL3 is rational, but can you
adapt the argument to prove the same for arbitrary reductive groups G? If I told you that any
principal B-bundle on a scheme is Zariski-locally trivial, can you use this to show that G is in fact
rational?

1.4. Descent. First some terminology:

• The banal groupoid associated to a map of schemes f : X → Y is the groupoid X ×Y X //// X

(we often omit the identity section and the multiplication map from the data of a groupoid,
only indicating the source and target maps in the notation).
• The simplicial nerve of a groupoid is the simplicial scheme X• where Xn consists of

“composable n-tuples of arrows.”
• The Cech nerve of a map f : X → Y is the simplicial nerve of the banal groupoid of f , so
Xn = X ×Y X ×Y · · · ×Y X with n+ 1-factors.

For descent of quasi-coherent sheaves, it suffices to consider the truncation of the simplicial nerve,
by which we mean the piece of the simplicial diagram in schemes consisting of only X0, X1, and X2.

The exercise:

(1) Verify the main claim in the proof of Morita invariance for the category of quasi-coherent
sheaves on a groupoid: that the diagram W•,• whose columns are the truncations of the
Cech nerve of the map W00 → Y0 and its base change to Y1, Y2 coincides with the diagram
formed by takind the truncated Cech nerve of the map W00 → X0 and its base change to
X1, X2.

(2) Use the method from class (see also Behrend’s notes on cohomology of stacks) to deduce
that quasi-coherent sheaves satisfy fppf descent using as an input the fact that modules
satisfy fppf descent for maps of rings.

(3) Use the method from class, and the fact that smooth maps admit sections étale locally on
the base, to deduce that any category fibered in groupoids over the category of schemes
which has descent for surjective étale maps also has descent for smooth surjective maps.

1.5. A pathological example of a quotient scheme. Show that C(1)n ⊕ C(−1)m {0} has a
quotient scheme by Gm which is not separated.

1.6. Some facts about quotient stacks.

(1) Prove the claim from class: if f : X → Y is a map from a G-scheme to an H-scheme which
is equivariant with respect to a homomorphism G→ H, then the natural square

H ×G X
prX //

(h,x) 7→h·f(x)
��

X/G

��
Y // Y/H

is Cartesian.
(2) Let X be a G-scheme and let Y→ X/G be a map of stacks which is representable by spaces

(respectively schemes). Then there is an algebraic space (respectively scheme) Y with a G
action and an isomorphism Y/G×Y under which the composition Y/G→ X/G is equivalent
to the map induced by a G-equivariant map Y → X.
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Remark 1.1. The second exercise suggests the following definition: a G-action on a stack X is the
data of a Cartesian diagram of stacks

X //

��

X′

��
pt // pt /G

.

This is a reasonable definition because a G action on a scheme X can be canonically recovered from
the corresponding diagram of this kind, where X = X and X′ = X/G.

1.7. The stack of coherent sheaves. We will need the following theorem of Grothendieck: if
X is a projective k-scheme and E is a coherent sheaf on X, then there is a projective k-scheme
Quot(E) (pronounced “quote”) such that a map T → Quot(E) is a T -flat coherent sheaf F on
T ×X along with a surjection OT � E � F.

(1) Show that there is an open subscheme of Un,m ⊂ Quot(OX(−n)⊕m) classifying families of
quotients OX(−n)⊕m � F such that H i(X,F (n)) = 0 for all i > 0.

(2) By definition the scheme Un,m comes with a universal coherent sheaf F on Un,m × X,
forgetting the surjection OX(−n)⊕m � F. This defines a map Un,m → Coh(X), where the
latter is the stack parameterizing flat families of coherent sheaves (discussed in lecture).
Given any map T → Coh(X), describe the fiber product X

X //

��

Un,m

��
T // Coh(X)

,

and show that X is an open subscheme of a vector bundle over T .
(3) Show that the map from the disjoint union

⊔
n,m Un,m → Coh(X) is surjective and smooth

(where we take the definition of a smooth map to only require the map to be locally finitely
presented, not finitely presented).

1.8. Rings of invariants. Here we walk through some basic facts about the ring of invariants for
a Gm-equivariant algebra R (all over a field k). The key fact you should use is the equivalence
between the category of Gm-modules and graded vector spaces, where the invariant subspace is the
degree 0 piece. This is a good exercise to help you understand the general discussion in MFK’s GIT
book, Chapter 1, “the affine case” (where Gm is replaced with a linearly reductive group).

(1) Show that any map Spec(R)/G→ Spec(A) factors uniquely through the projection Spec(R)/G→
Spec(RG).

(2) Show that the formation of ring of invariants commutes with base change along an arbitrary
map Spec(S)→ Spec(RG), i.e. (S ⊗RG R)G ' S.

(3) Use (2) to show that for any separated scheme X, any map Spec(R)/G→ X factors uniquely
through the map Spec(R)/G→ Spec(RG).

(4) Use (2) to show that for any ideal I ⊂ RG, we have (R ·I)∩RG = I, and use this to conclude
that RG is Noetherian if R is Noetherian.

(5) Show that a nonnegatively graded ring R =
⊕

n≥0Rn with R0 = k is finitely generated
if and only if it is Noetherian. Use this to show that for an arbitrary finitely generated
G-equivariant algebra RG is finitely generated (Hint: consider an equivariant surjection
Sym(V ) � R for some linear G-representation V .

(6) Show that for any two closed equivariant subvarieties X,Y ⊂ Spec(R) which do not intersect,
there is an invariant function f ∈ RG such that f |X = 1 and g|Y = 0.
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(7) Use (6) to show that every fiber of Spec(R)→ Spec(RG) contains a unique closed orbit.

1.9. Hilbert-Mumford criterion. Let V be a linear representation of a torus T , and let v ∈ V
be a vector. Let N and M denote the cocharacter and character lattice of T respectively, and
fix an inner product | • | on NR. We shall evaluate the Hilbert-Mumford criterion for the point
p = [v] ∈ P(V ). Let St(p) ⊂MR = M ⊗ R denote the “state polytope” of p, defined in lecture as
the convex hull of the characters χ ∈M for which the projection of v onto the χ-eigenspace of v is
non-zero.

(1) Show that

ν(λ, p) := max
χ∈St(p)

〈
− λ

|λ|
, χ

〉
,

regarded as a function of λ ∈ NR \ {0}, is minimized if and only if λ lies on the unique ray
connecting the origin to the point on St(p) closest to the origin with respect to the inner
product | • |.

(2) Show by example that the point p0 = limt→0 λ(t) ·p ∈ P(V ), where λ is the unique minimizer
from (1), depends on the inner product | • |, even though the question of whether p is
semi-stable does not depend on | • |.

1.10. Generalized filtrations.

1.10.1. Vector bundles on A1/Gm.

(1) Show that the category of vector bundles on A1/Gm and linear maps between them (not
just isomorphisms) is equivalent to the category of finite dimensional vector spaces (over the
fixed ground field k) along with a weighted descending filtration · · ·V p+1 ⊂ V p ⊂ · · · ⊂ V
such that V p = 0 for p� 0, where the maps in the latter category are linear maps V →W
mapping V p →W p for all p.

(2) Show that every vector bundle on A1/Gm is isomorphic to OA1 ⊗ V where V is some finite
dimensional representation of Gm.

(3) Establish an analogous description of the category of vector bundles on A2/G2
m in terms of

Z2-weighted filtrations.
(4) Use this description to prove the following key fact, used in the proof of Kempf’s theorem:

Given a G2
m-equivariant vector bundle on A2 \{(0, 0)}, there is an extension to an equivariant

bundle on A2 which is unique up to unique isomorphism.
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