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Abstract. We use Morse theory to prove that the Lefschetz Hyper-
plane Theorem holds for compact smooth Deligne-Mumford stacks over
the site of complex manifolds. For Z ⊂ X a hyperplane section, X can
be obtained from Z by a sequence of deformation retracts and attach-
ments of high-dimensional finite disc quotients. We use this to derive
more familiar statements about the relative homotopy, homology, and
cohomology groups of the pair (X,Z). We also prove some prelimi-
nary results suggesting that the Lefschetz Hyperplane Theorem holds
for Artin stacks as well. One technical innovation is to reintroduce an
inequality of  Lojasiewicz which allows us to prove the theorem without
any genericity or nondegeneracy hypotheses on Z.

1. Introduction

Consider an n-dimensional compact complex manifold X with a positive
line bundle L and a global section s with zero locus Z ⊂ X. The Lefschetz
hyperplane theorem (henceforth LHT) states that up to homotopy equiva-
lence X is obtained from Z by attaching cells of dimension n or larger, or
equivalently that πi(X,Z) = 0 for i < n. By the homological LHT we refer5

to the weaker statement that Hi(X,Z) = H i(X,Z) = 0 for i < n.
The LHT can fail for singular varieties, although it still holds for projec-

tive varieties as long as X−Z is a local complete intersection. See the book
[GM88] for an exhaustive treatment of the classical LHT and its generaliza-
tions to singular varieties.10

To motivate the introduction of stacks, we let X = X̄ be the coarse moduli
space of a Deligne-Mumford(DM) stack X. X has local quotient singulari-
ties, so Poincaré-Lefschetz duality holds rationally for the pair (X,Z). Then
the fact that X − Z is affine and so Hi(X − Z) = 0 for i > n implies that
Hi(X,Z;Q) = H i(X,Z;Q) = 0 for i < n. It is natural to ask if this rational15

result is the shadow of an integral result for X itself. We will answer this
question in the affirmative, but to prove it we will need to develop some
basic tools of differential topology for stacks.

In Section 2 we show how the ideas of Bott’s Morse theoretic proof of
the LHT [Bot59] extend to the setting of DM stacks. We prove our main20

version of the LHT, which states that a stack can be constructed from a
hyperplane section by a series of deformation retracts and attachments of
high-dimensional disc quotients. Then we show how the usual statements

1
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about relative homotopy groups and integral homology groups follow. The
homotopy groups of a stack are defined to be the homotopy groups of its25

classifying space – this is discussed in more detail below.
In Section 3 we go back and carefully develop Morse theory of DM stacks.

The main lemmas of Morse theory have been proven for the underlying space
of a DM stack in [Hep09a], but we observe that the proofs work for the stack
itself. In this paper, a cell attachment refers to an honest 2-categorical30

colimit. This is the strongest notion of gluing discussed in [Noo05] – it
doesn’t exist unless one is gluing along embedded substacks, and even then
some care is required. Thus the main technical hurdle in Section 3 is showing
that a Morse function on X really does give a cell decomposition in the
strongest sense.35

Finally, in Section 4 we discuss a purely algebraic proof of the homologi-
cal LHT for certain smooth stacks which are not DM. The argument applies
to real differentiable stacks admitting smooth proper maps from a compact
complex manifold, for instance global quotients of Kähler manifolds by com-
pact Lie groups. We also present some calculations which suggest that the40

homological LHT holds for a much larger class of Artin stacks, although the
simple algebraic argument does not apply.

Another important point in this note is a classical result on the stability
of gradient descent flow. In Bott’s original paper, he assumes that the zero
locus of s is “non-degenerate” in order to apply Morse theory. Here we show45

that Bott’s proof of the LHT works without any assumptions on the section.
The key observation is that the gradient flow of a function is stable as long
as it is close enough to a real analytic function near its critical loci. These
ideas were developed in the work of  Lojasiewicz[ Loj84], but to the author’s
knowledge they are not widely applied in the Morse theory literature. We50

discuss some of  Lojasiewicz’s results in Appendix A and refer to these ideas
often throughout the paper.

We refer to the references [BX03, BX11, Hei05, Noo05] for the foundations
of differentiable and topological stacks. The term Deligne-Mumford(DM)
stack will denote a stack over the site of complex manifolds admitting a55

surjective representable étale map from a complex manifold X0 → X such
that ∆ : X→ X× X is finite. Such stacks are presentable by a proper étale
groupoid X ' [X1 ⇒ X0]. Using a presentation, one can forget the complex
or differentiable structure of X0, X1 and thus define forgetful functors from
stacks over complex manifolds to differentiable stacks to topological stacks.60

We will use these forgetful functors as implicitly as they are used for complex
manifolds. We will denote the coarse moduli space of X by X̄. In Section
4, we will discuss differentiable Artin stacks, which we take to mean a stack
over the site of smooth manifolds admitting a smooth submersion from a
manifold.65

The technical foundation for Morse theory of DM stacks has been laid by
Hepworth in [Hep09a]. In that paper he develops Morse functions, Riemann-
ian metrics, integration of vector fields, the strong topology on C∞(X), and
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the main theorem of Morse theory for the underlying space X̄. We will build
on these foundations, showing that Morse theory gives cell decompositions70

for the underlying stack and not just its coarse moduli space.
I’d like to thank my thesis adviser, Constantin Teleman, for suggesting

this project to me and for many useful conversations throughout.

2. Hyperplane theorem for DM stacks

Let X be an n-dimensional Deligne-Mumford stack over the site of com-75

plex manifolds and L a holomorphic line bundle on X with hermitian struc-
ture h of type k (defined below). s ∈ Γ(X,L) will be a section of L, and
Z ⊂ X will denote the zero locus of s. We assume furthermore that X̄, the
coarse moduli space of X treated as a topological stack, is compact.

Choose an étale atlas X0 → X such that L|X0 admits a nowhere vanishing
holomorphic section σ. Then the (1, 1)-form

Θ0 = ∂∂ log h(σ, σ) ∈ Ω1,1(X0)

descends to a hermitian global section of Ω1,1
X , the curvature form Θ. In local80

analytic coordinates we can write Θ as Hαβdz
α ∧dz̄β, and following [Bot59]

we call (L, h) type k if the hermitian matrix Hαβ is positive on a space of
(complex) dimension k at every point. We call a hermitian line bundle of
type-n positive. On compact complex manifolds, type k line bundles are
(n− k)-ample in the sense of [Tot10], although the converse is not known.85

This notion is the right one from the perspective of descent. Ωp,q is a
sheaf on the Artin site of complex manifolds, so the construction of Θ above
works when X0 → X is a surjective submersion and not necessarily étale. In
addition, the property of being positive definite on a k-dimensional subspace
is Artin-local, i.e. if ϕ : X → Y is a surjective submersion, then a hermitian90

form on Y is type k if and only if its pullback to X is type k. Thus we can
define a type k holomorphic line bundle on a smooth Artin stack.

Lemma 1. Let X be a smooth DM stack of dimension n which can be pre-
sented as a global quotient and whose coarse moduli space is projective. Then
a line bundle L is positive if and only if Lk descends to an ample line bundle95

on X̄ for some k.

Proof. The paper [Bai57] proves that a sufficiently high power of a positive
line bundle defines a projective embedding X̄ ↪→ CPN .

Conversely, assume X = [X/G] for a smooth quasiprojective X and re-
ductive G.1 L is positive if and only if Lk is positive for any k > 0, so we100

may assume that L is pulled back from a very ample invertible sheaf on
X̄. There is a smooth G-equivariant compactification X ⊂ X̂ such that L
extends to a G-ample bundle on X̂ and X = X̂ss(L) [Tel00]. Let K ⊂ G be

1This property is fairly common. For algebraic stacks it is equivalent to X having
enough locally free sheaves [?].
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a maximal compact subgroup and Φ : X̂ → k∗ the moment map correspond-
ing to the linearization L. Φ−1(0) is a manifold with locally free K action,105

and X ' [Φ−1(0)/K], and a K-invariant positive Hermitian structure on L
descends to a positive Hermitian structure on X (see [GS82], Section 3). �

Furthermore, if q : X → X̄ is the projection to the coarse moduli space,
then q∗OX = OX̄, so an invertible sheaf on X̄ has the same global sections
when pulled back to X.110

Corollary 2.1. Let Z ⊂ X be the zero locus of a section of a positive line
bundle, then topologically Z = q−1(H) for some hyperplane section H ⊂ X̄.

One can think of the generalization of the LHT to type k line bundles as
a “large fiber” generalization as discussed in [GM88].

Definition 2.2. Let φ : X → X′ is a map of stacks. Choose complex
manifolds X0 and X ′0 fitting into the commutative diagram

X0
φ0 //

surjective
submersion ��

X ′0

étale
��

X
φ // X′

We define the minimal rank of φ to be minx∈X0 rankC(Dxφ0 : TxX0 →115

Tφ0(x)X
′
0). It does not depend on the choice of X0 and X ′0.

A map having minimal rank r implies that all fibers have codimension
at least r. Of course the converse does not hold: a finite map need not be
étale, for instance.

Example 2.3. If X → X ′ is a G-equivariant map of complex manifolds with120

G action, then the minimal rank of X/G→ X ′/G is the same as X → X ′.

If L is a positive invertible sheaf on X′, and φ : X→ X′ has minimal rank
r, then φ∗L is type r on X. Hence if H ⊂ X̄′ is a hyperplane section, then the
LHT implies that the relative homotopy groups πi(X, φ

−1(H)), interpreted
as the relative homotopy groups of the classifying spaces, vanish for i < r.125

Now we will prove the LHT by analyzing the ‘‘Morse’’ function f =
h(s, s) ∈ C∞(X). We refer to [Hep09a] for a discussion of smooth func-
tions on smooth DM stacks. In particular, he defines the strong topology
on C∞(X) and proves that Morse functions are dense. Define the closed

topological substack Xε] = f−1[0, ε] and the open differentiable substack130

Xε) = f−1[0, ε). Note that X0] = f−1({0}) = Z is precisely the vanishing
locus of s.

Fixing a Riemannian metric on X, we first show that f satisfies a  Lojasiewicz
inequality near its global minimum. This property of f guarantees that the
gradient descent flow of f retracts Xε] onto Z for sufficiently small ε, but we135

will not make this precise until Section 3.
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Claim 2.4. For a sufficiently small ε > 0, there are constants C > 0 and
ρ ∈ (0, 1) such that

|f |ρ ≤ C|∇f | (L)

on the substack Xε].

Proof. Note that it suffices to verify this inequality on X̄ε]. By compactness
of Z̄ it suffices to verify (L) around each p ∈ Z̄. Choose an étale coordinate
patch U → X containing p ∈ Z̄ such that L|U is trivial. Then fU = h(s, s) =140

h · |s|2 is the product of a nonvanishing smooth function h with the real
analytic function |s|2, and thus by Theorem A.5 below the inequality (L)
holds in a neighborhood of p. �

Next we will perturb f to be Morse without affecting its values on Xε/2],
so that our new function will continue to satisfy (L). Let g : X → [0, 1] be145

a smooth function such that g|Xε/2] = 0 and g|X−Xε) = 1.

Claim 2.5. There is a small open neighborhood U ⊂ C∞(X) containing 0
such that for any η ∈ U , the new function f ′ = f + gη has the properties

• f ′ has no critical points on Xε] − Xε/2)

• f ′ is positive on X− Xε/2)
150

• the hermitian form ∂∂ log f ′ is positive on a space of dimension k at
every point in X− Xε/2).

Proof. Multiplication by g induces a continuous map C∞X → C∞X, so
it suffices to prove that the set of η′ for which f + η′ satisfies the above
properties is open in C∞X and contains 0.155

Now choose a map V → X and an open subset X0 ⊂ V such that X0 → X
is surjective étale and cl(X0) → X is proper. Then C∞(X) is identified as
a vector space with invariant functions in C∞(X0), and one can show that
for such an atlas the strong topology on C∞(X) is the subspace topology
in C∞(X0). All three properties are open conditions on the derivatives of160

(f + η)|X0 up to order 2, and they are satisfied by f , so the claim follows.
�

Morse functions form a dense open subset of C∞(X) [Hep09a], so there
is some η ∈ U , where U ⊂ C∞X is defined in Claim 2.5, such that f + η
is Morse. Consider the new function f ′ = f + gη. f ′ will satisfy all of the165

properties of Claim 2.5, and in addition it will be Morse on the substack
X − Z, because f ′ contains no critical points in Xε] − Z and f ′ agrees with
f + η on X − Xε). From this point on we replace our function f with the
new function f ′.

Next we consider the index of the critical points of f away from Z. For170

a critical point c, the tangent space TcX and the Hessian Hcf are defined
in [Hep09a] using the groupoid U ×X U ⇒ U , where U → X is an étale
coordinate patch containing c. The tangent space splits (non-canonically)
as a representation of Autc, TcX ' TcX− ⊕ TcX+ on which Hcf is negative
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definite and positive definite respectively. The index, indc is the isomorphism175

class of the representation TcX− of Autc.
Of course in a coordinate patch around c, the classical observation that

the Hessian is negative definite on a space of dimension k still applies.

Claim 2.6. [Bot59] At every critical point c ∈ X̄ − Z̄, the index represen-
tation has dim(indc) ≥ k.180

Thus we have a function f : X → R that is Morse on the open substack
X− Z and such that Z ⊂ X is a stable global minimum of f . Now from the
results of Morse theory in Section 3, we have the main theorem:

Theorem 2.7. As a topological stack, X can be obtained from Z by a fi-
nite sequence of deformation retracts and gluings of [Dr/G] along [Sr−1/G],185

where r ≥ k. Here we can assume for each cell attachment that G = Autc
acting linearly on the unit disc in TcX− for some c ∈ X̄− Z̄.

Remark 2.8. We only need L to be type k on the complement X − Z.
Geometrically, if Z is the preimage of a hyperplane section H ⊂ X̄′ under a
map φ : X → X′, we only need k to be the minimal rank of the restriction190

X− Z→ X′ −H. In particular φ can have large fibers over H.

We will define more carefully what a deformation retract and a cell at-
tachment are in Section 3 below, but suffice it so say that many corollaries
about the various topological invariants follow.

Singular homology and cohomology are defined from the singular chain195

bi-complex of a simplicial manifold presenting X. The reader is referred to
[Beh04] and [BX03] for an in-depth discussion and the equivalence between
this and other notions of cohomology (i.e. de Rham or sheaf cohomology).
One thing that’s not described in [Beh04] is that H i and Hi are homotopy
functors, but this follows from the usual argument, the key fact being the200

Poincaré lemma: by a local-to-global spectral sequence the projection p :
X× I → X induces an isomorphism in homology and cohomology.

The homotopy groups are defined as πi(X) = πi(BX) for a classifying
space BX. We follow Noohi’s treatment in [Noo08], in which the classifying
space is characterized up to weak equivalence by a universal property. He205

uses the “Haefliger-Milnor” construction to show the existence of classifying
spaces in general, but in this note all stacks will admit presentations in which
X1 and X0 are both metrizable – they are hoparacompact in the language
of [Noo08] – in which case BX is the geometric realization of the simplicial
manifold Xp = X0×X · · ·×XX0 (see [Seg68]) defined using an atlas X0 → X.210

We recall the properties of BX from [Noo08]. First there is an epimor-
phism ϕ : BX→ X which is a universal weak equivalence, meaning that the
base change along any map T → X is a weak equivalence. This implies that
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ϕ induces isomorphisms on homology and cohomology, in other words the
homology of BX agrees with the double complex homology defined above.2215

Also the construction BX is a functor from the category of (hoparacom-
pact) stacks to the homotopy category of paracompact spaces. Finally, for
Z ⊂ X an embedding, we can construct BZ such that BZ ⊂ BX is a subspace.
Thus we define the relative homotopy groups πi(X,Z) := πi(BX,BZ). We
omit base points from our notation, but the following theorem applies for220

any base point in BZ.

Corollary 2.9. We have πi(X,Z) = 0 for i < k. Hence from the long exact
sequence of a pair πi(Z) → πi(X) is an isomorphism for i < k − 1 and
surjective for i = k − 1.

Proof. For a triple of topological stacks Z ⊂ X ⊂ X′ we have a long exact
sequence

· · · → πi(X,Z)→ πi(X
′,Z)→ πi(X

′,X)→ · · ·
so if πi(X

′,X) = πi(X,Z) = 0, then πi(X
′,Z) = 0 as well. Thus the corollary225

follows by induction on the sequence of cell attachments and deformation
retracts described in Theorem 2.7, once we verify that πi(X

′,X) = 0 for
i < k when X ⊂ X′ is a disc attachment or deformation retract.

For a deformation retract, the inclusion BX→ BX′ is a homotopy equiv-
alence, so πi(X

′,X) = 0 for all i.230

Next let X′ = X ∪[S/G] [D/G] be a 2-categorical colimit, where D is a
disc of dimension ≥ k, S its boundary sphere, and G a finite group acting
linearly on the pair (D,S). Let A ⊂ D be the complement of an open disc
of half the radius of D, and consider the substack X ∪[S/G] [A/G] ⊂ X′.

First observe that A → [A/G] and D → [D/G] are regular coverings,235

so πi([A/G]) → πi([D/G]) is an isomorphism for i < k − 1 and surjective
for i = k − 1; hence ([D/G], [A/G]) is k − 1-connected. The interiors of
X∪[S/G] [A/G] and [D/G] cover X′, so excision for homotopy groups implies
that (X′,X ∪[S/G] [A/G]) is k − 1-connected as well.

Finally, the equivariant map D → D compressing A onto the boundary240

sphere S is equivariantly homotopic to the identity through a homotopy
fixing S. Thus using the universal property of X ∪[S/G] [D/G] we have a
homotopy equivalence of pairs (X′,X ∪[S/G] [A/G]) ' (X′,X), so we deduce
πi(X

′,X) = 0 for i < k. �

Recall that H∗(BX,BZ) = H∗(X,Z) and likewise for H∗, so245

Corollary 2.10. For the relative homology and cohomology, with integer
coefficients, we have H i(X,Z) = Hi(X,Z) = 0 for i < k. As a consequence
H i(X)→ H i(Z) is an isomorphism for i < k− 1 and injective for i = k− 1.

2If Xp is a simplicial presentation for X and X ′p the pulled-back presentation of BX,
then X ′p → Xp is a weak equivalence for all p, so the spectral sequence Ep,q1 = Hq(Xp)⇒
Hp+q(X) implies that H∗(X)→ H∗(BX) is an isomorphism.
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2.1. Topology of the underlying space. For completeness we describe
the consequences for the topology of the underlying spaces Z̄ ⊂ X̄. In250

the introduction we mention that the homological LHT holds with rational
coefficients for Z̄ ⊂ X̄, but in fact we only need to invert the orders of the
automorphism groups of points of X.

Proposition 2.11. The underlying space X̄ can be obtained from Z̄, up to
homotopy equivalence, by attaching finitely many disc quotients Dr/G along255

the boundary Sr−1/G. Here, as before, r ≥ k and G = Autc acting linearly
on the unit disc Dr ⊂ TcX− ⊂ TcX.

Using the Morse function f constructed above, we know that X̄ε] deforma-
tion retracts onto Z̄ for sufficiently small ε. From this point the proposition
is a direct application of the Morse lemmas 7.5-7.7 in [Hep09a], using the260

estimate on the index of the critical points of f .

Corollary 2.12. Hi(X̄, Z̄;Z[1/N ]) = H i(X̄, Z̄;Z[1/N ]) = 0 for i < k as
long as N is a common multiple of the orders of the isotropy groups of X
(of which there are finitely many because X̄ is compact).

Proof. This follows from the fact that Hi(D/G,S/G;Z[1/N ]) = 0 for i <265

k, which is really fact about group homology. One could also deduce the
claim directly from Corollary 2.10 and the isomorphism H∗(X;Z[1/N ]) →
H∗(X̄;Z[1/N ]). �

3. Morse theory of Deligne-Mumford stacks

Now we will prove the main theorem of the Morse theory for DM stacks270

used in the proof of Theorem 2.7.

Theorem 3.1. Let f : X → R be a smooth nonnegative function on a
smooth Deligne-Mumford stack X achieving its global minimum on the closed
topological substack Z = f−1{0}. Assume that

• f̄ : X̄→ R is proper,275

• f satisfies a  Lojasiewicz inequality (L) at every p ∈ Z̄, and
• f is Morse on the open substack X−Z, with critical points p1, p2, . . . , pr.

Then X can be obtained from Z by a finite sequence of deformation retracts
and 2-categorical attachments of [Di/Autpi ] along [Si/Autpi ] where Di ⊂
TpiX− is a small disc with boundary Si.280

We fix a Riemannian metric g on X, and we will study the flow along the
vector field −∇f .3

Fact 3.2. [Hep09b] Given a vector field ξ on X with compact support, there
is a representable morphism Φ : X × R → X such that for any étale map

3On a DM stack a vector field corresponds to a consistent choice of vector field ξU on U
for all étale U → X. The tangent bundle of an Artin stack is more complicated [Hep09b]
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M → X, the base change

M ′

Φ′

��

// X× R

Φ
��

M // X

satisfies DΦ′( ∂∂t)M ′ = ξM . Furthermore there is an isomorphism eΦ :
Φ|X×{0} ⇒ idX, and the flow morphism Φ is uniquely determined by eΦ.

The map Φ is a group action of R up to 2-isomorphism, and so it induces285

an R action on the underlying space X̄ and an R action up to homotopy on
the classifying space BX.

We will use existence of flows to deconstruct the topology of X in three
steps. First we show that Xε] deformation retracts onto Z for sufficiently
small ε. Then we show that if the interval [a, b] contains no critical values290

of f , then Xb] deformation retracts onto Xa], and finally we show how the
topology changes as a crosses a critical value.

First of all what does a deformation retract mean for stacks? Say j : Z→
X is a closed immersion, then a deformation retract consists of a homotopy
h : X× I → X and a projection π : X→ Z, along with 2-morphisms295

Z× I
j×id //

pr1
��

X× I

h
��

X
id

55

h0
))

⇓ X

Z
j

//

6>

X X
h1
))

j◦π
55⇓ X

This definition is a categorification of the definition of deformation retract of
spaces (or what’s called a strong deformation retract by some authors), and
implies that j is a homotopy equivalence. Both the geometric realization
functor and the underlying space functor respect products, so if X deforma-
tion retract onto Z in the above sense, then X̄ deformation retracts onto Z̄300

and BX is homotopy equivalent to BZ.

Remark 3.3. A strict deformation retract of topological groupoids induces
a deformation retract of stacks in the above sense.

Remark 3.4. A morphism factoring through a substack does so uniquely
up to unique isomorphism, so the morphism π could be omitted from the305

definition of a deformation retract, instead just requiring that h1 : X → X
factor through Z ↪→ X.

Thus if h : X×I → X is a deformation retract of X onto Z, and X′ ⊂ X is a
substack (not necessarily closed) containing Z such that h|X′×I : X′× I → X
factors through X′, then X′ deformation retracts onto Z as well via this310

restricted h.

Remark 3.5. For an embedding of topological spaces j : Z → X, we can
form the mapping cylinder M(j) := X × {0} ∪ Z × [0, 1] ⊂ X × [0, 1]. If
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j : Z → X is an embedding of topological stacks, we choose a presentation
for X and form the mapping cylinder M(j) = [M(j1) ⇒M(j0)] ⊂ X× [0, 1].315

Morita equivalent presentations give Morita equivalent mapping cylinders
because the mapping cylinder construction for spaces respects fiber products
and epimorphisms. Furthermore, M(j) ∼= X×{0}∪Z×{0}Z×[0, 1] is a pushout
in the 2-category of topological stacks. Thus we can simplify our definition
of a deformation retract further as a map h : X×I → X such that h1 factors320

through Z, along with an isomorphism h|M(j)
∼= pr1 |M(j).

We are now ready to prove the

Lemma 2. For ε > 0 sufficiently small, Xε] contains no critical points of
f , and the gradient descent flow of f provides a deformation retract of Xε]

onto Z.325

Proof. The key idea is to find, for ε small enough, an atlas for Xε] that
is equivariant for the action of the semigroup [0,∞). Start with an étale
atlas a : X0 → X. f |X0 still satisfies the inequality (L) at every point in
Z0 = (fX0)−1{0}.

By Corollary A.4 there is an open subset U0 ⊂ X0 containing Z0 such330

that (−∇f)X0 is integrable to a flow Φ0 : U0 × [0,∞) → U0 which extends
uniquely to a deformation retract h0 : U0 × [0,∞]→ U0 onto Z0.

The étale map U0 → X is equivariant with respect to the action of the
semigroup [0,∞), so [0,∞) acts on U1 := U0 ×X U0 as well, and we would
like to lift the action to ∞, i.e. find a lift

U1 × [0,∞)
Φ1 //

� _

��

U1

(s,t)

��
U1 × [0,∞]

(s,t) //

∃!h1
11

U0 × U0 × [0,∞]
h0×h0 // U0 × U0

One shows the existence and uniqueness of h1 using the fact that, because
X is DM, U1 → U0 × U0 is a proper immersion.

It suffices to show existence and uniqueness of h1 in a neighborhood of335

each point (∞, p) ∈ [0,∞]×U1. If (x, y) ∈ U0×U0 is the image of (∞, p), then
there is a compact neighborhoodN of (x, y) such that (s, t)−1(N) is a disjoint
union of connected compact subsets, each mapped homeomorphically onto
its image by (s, t). Finally for a neighborhood of (∞, p) whose image in
U0 × U0 is contained in N there exists a unique lift.340

Thus we get a map of groupoids h : [0,∞] × (U1 ⇒ U0) → (U1 ⇒ U0)
providing a deformation retract of U1 ⇒ U0 onto the subgroupoid Z1 ⇒
Z0. By Remark 3.3 h, gives a deformation retract of the open substack
U = [U1 ⇒ U0] onto Z. Because Z̄ is compact, Xε] is contained in U for
sufficiently small ε, so by Remark 3.4 the result follows. �345

Next we study what happens when there are no critical points between a
and b.
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Proposition 3.6. If f has no critical points in X[a,b], then there is a defor-
mation retract of Xb] onto Xa].

Proof. Let ξ be a vector field with compact support such that ξ · f ≤ 0 and
ξ · f = −1 on X[a,b]. Let Φ : X × R → X be the flow of ξ and form the
composition

h : Xb] × [0, 1]
(id

Xb]
,max(0,t(f−a)))

−−−−−−−−−−−−−−→ Xb] × [0,∞)
Φ−→ X

f̄ decreases along the flow lines of Φ̄ and decreases with constant rate 1 in350

X̄[a,b], so it follows that h : Xb] × [0, 1] → X factors through Xb] and that

h1 factors through Xa].4 The isomorphism eΦ : Φ|X×{0} ⇒ idX induces an
isomorphism h|M(j) ' pr1 |M(j) because max(0, t(f−a)) = 0 on the substack

M(j) ⊂ Xb] × I. �

Remark 3.7. An argument identical to that in theorem 3.1 of [Mil63] or355

theorem 7.5 of [Hep09a] can also be used to show that Xa] ' Xb] as stacks.

Proposition 3.8. Let c ∈ R be a critical value of f , and assume that f
is Morse near f−1{c}. Denote the critical points in f−1{c} by p1, . . . , pr.
Then for ε sufficiently small there is a closed topological substack

Xc−ε] ⊂ X′ ⊂ Xc+ε]

such that Xc+ε] deformation retracts onto X′, and

X′ ' Xc−ε] ∪∐
i[Si/Autpi ]

∐
i

[Di/Autpi ],

where Di and Si are the disc and sphere of radius ε in the index represen-
tation of Autpi.

Proof. Again, the idea of the proof is identical to the discussion in [Mil63]
or [Hep09a], one just has to check that the argument gives a cell attachment360

of stacks and not just underlying spaces.
For each pi, identify an open substack containing pi with [Upi/Aut pi],

where Upi is a ball around the origin in TpiX, and coordinates have been
chosen in TpiX = TpiX+ ⊕ TpiX− such that the function f |Ui = c+ |u+|2 −
|u−|2. Choose an ε smaller than the radii of all of these Morse coordinate

patches, and define the closed substack of Xc+ε]

X′ = {f ≤ c− ε} ∪
⋃
i

{u+ = 0 and |u−|2 ≤ ε}

Where we have used the slightly informal notation {u+ = 0 and |u−|2 ≤ ε}
for the closed substack [Di/Autpi ].

Theorem 16.9 of [Noo05] gives a criterion for checking that X′ is in fact
a 2-categorical union. First of all, X′ is manifestly a gluing in the language365

of [ibid.], in that X′ \
∐
i[Si/Autpi ] ' Xc−ε] t

∐
i[(Di \ Si)/Autpi ]. The

4A map ψ : Y → X factors through Xb] if and only if f ◦ ψ : Y → R factors through
(−∞, b], so it suffices to check on the level of underlying spaces.
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second criterion – the existence of an atlas a : X ′0 → X′ such that the pair
of invariant subspaces a−1([Si/Autpi ]) ⊂ a−1([Di/Autpi ]) satisfies the local
left lifting property (LLLP) with respect to the class of covering maps – is
tautologically satisfied because every pair satisfies the LLLP with respect370

to local homeomorphisms.5 So we have really verified that a union of two
substacks of a DM stack is always a 2-categorical union.

The rest of the argument for proceeds exactly as in [Mil63] and [Hep09a].
One introduces an auxiliary function F such that: F agrees with f outside
of the Morse coordinate patches (on which F ≤ f), {F ≤ c + ε} = Xc+ε],375

and F (pi) < c − ε. Then one uses Proposition 3.6 to retract Xc+ε] onto
{F ≤ c − ε}, a substack which differs from Xc−ε only within the Morse
coordinate patches. Finally one constructs a manifestly Autpi equivariant
deformation retract of {F ≤ c−ε} onto X′ in each [Ui/Autpi ] which restricts

to the identity on Xc−ε] ∩ [Ui/Autpi ]. These can then be glued to give the380

global deformation retract of {F ≤ c− ε} onto X′. �

4. Homological Lefschetz theorem for Artin stacks

The LHT for Artin6 stacks is beyond the current reach of Morse theoretic
techniques. The theory of integration of vector fields on Artin stacks has
been worked out in [Hep09b], but Morse theory has not been developed yet.385

In this section we describe a local-to-global proof of the homological LHT
that applies to differentiable Artin stacks admitting a presentation by com-
pact manifolds.

In the complex category, proper Artin stacks are close to being gerbes,
so in order to have a version of the LHT with broader applications, we will390

leave the category of complex stacks. For instance, the following theorem
applies to a global quotient of a compact complex manifold by a compact
Lie group.

Theorem 4.1. Let L be a hermitian line bundle on a differentiable Artin
stack X, and let s be a section. Assume that there exists a proper submersion395

X0 → X from a compact complex manifold X0 such that the pullback L0 =
L|X0 is holomorphic of type k and the section s|X0 is holomorphic.

As before let Z ⊂ X be the topological substack on which s vanishes. Then
H i(X,Z) = Hi(X,Z) = 0 for i < k.

Proof. From the proper submersion X0 → X we get a closed, full, saturated400

sub-groupoid Z• ⊂ X• presenting Z ⊂ X. Let {Xp} and {Zp} denote the
respective simplicial nerves.

We can form the smooth function f = |s|2 on X, and as before Z is
precisely the zero locus of f . In particular Zp is the zero locus of f |Xp =

5Although it is not necessary here, one could even find an atlas a : X ′0 → X′ for which
a−1([Di/Autpi ]) = Di and likewise for Si

6An Artin stack is just a differentiable stack admitting a surjective submersion from a
manifold
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(f |X0)|Xp . Additionally Zp is the preimage of Z0 under any of the p + 1405

simplicial maps Xp → X0.
Now the function f |X0 is the norm squared of a section of a hermitian

line bundle of type k. Thus as in Section 2 above we can perturb f |X0 to a
function which we call φ0 which

• satisfies a  Lojasiewicz inequality near its global minimum Z0,410

• is Morse(-Bott) away from Z0 with critical points of index ≥ k.

Define the functions φp = φ0|Xp using the 0th simplicial face map Xp → X0

to restrict to Xp. Note that φ0 is no longer invariant (does not necessarily
descend to a smooth function on X), so we must be explicit about which
simplicial maps we use. Both bulleted properties are preserved when one re-415

stricts along a surjective submersion, so the φp are functions with  Lojasiewicz
global minima Zp = φ−1

p {0} that are Morse-Bott away from Zp with critical
manifolds of index ≥ k. It follows from non-degenerate Morse theory that
Hi(Xp, Zp) = H i(Xp, Zp) = 0 for all i < k.

From the bicomplex computing H∗(X,Z) we have a homological spectral420

sequence
E1
p,q = Hq(Xp, Zp)⇒ Hp+q(X,Z) (1)

so the vanishing of Hi(Xp, Zp) implies Hi(X,Z) = 0 for i < k. A similar
spectral sequence implies the result for cohomology. �

Example 4.2. This theorem applies to global quotients even when the
group does not act holomorphically. For instance let G = Z/2Z acting on425

CPl by complex conjugation [z0 : · · · : zl] 7→ [z̄0 : · · · : z̄l]. By identifying
Cl+1 = C⊗Rl+1, real subspaces of Rl+1 induce complex subspaces of Cl+1,
and thus we have an embedding RPl ⊂ CPl as the fixed locus of G.

Complex conjugation acts equivariantly onOCPl(1), and an invariant holo-
morphic section corresponds to a form with real coefficients s = r0z0 +430

· · · rlzl. The zero locus of s is a hypersurface H ⊂ CPl induced by a real
hypersurface in Rl+1, and by a real coordinate change we may assume that
H = {[0 : ∗ : · · · ∗]}.

Let p = [1 : 0 : · · · : 0] ∈ CPl. Then CPl − {p} deformation retracts
equivariantly onto H, so we have

H i
G(CPl, H) = H i

G(CPl,CPl − {p}) = H i
G(Cl,Cl − {0})

' H i−l(B[∗/Z/2]; Ω)

In this last expression, we have used the Thom isomorphism for the bundle
[Cl/G] → [∗/G], and Ω is a local system on B[∗/G] which depends on the435

orientability of this bundle. Thus we have H i
G(CPl, H) = 0 for i < l.

Example 4.3. Non-holomorphic group actions also arise naturally as sub-
groups of the group of unit quaternions acting by left multiplication on
P(Hl), where choose either i, j, or k as the complex structure on Hl.

Example 4.4. Let X be a projective variety of dimension n and X→ X a440

gerbe for a compact group G, and let Z ⊂ X be a hyperplane section. The
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theorem implies that the cohomology of X agrees with the cohomology of
the restricted gerbe Z→ Z in degree < n− 1.

In this case we can also see this by comparing the Leray-Serre spectral se-
quence Ep,q2 = Hp(X;Hq(BG))⇒ Hp+q(X) and the corresponding sequence445

for Z→ Z. The result follows because, by the classical LHT, the restriction
map on the E2 page Hp(X;Hq(BG))→ Hp(Z;Hq(BG)) is an isomorphism
for p < n− 1.

Unlike Theorem 4.1, the Leray-Serre argument in the example above does
not requireG to be compact, which suggests that Theorem 4.1 might hold for450

a much larger class of Artin stacks. We also observe that the homological
LHT also applies to global quotients by reductive groups, giving further
evidence for a more general statement than Theorem 4.1.

Corollary 4.5. Let G be a compact Lie group and let the complexification
GC act on a compact complex manifold X, and let (L, h) be a GC-equivariant455

hermitian line bundle of type k with invariant global section s vanishing on
Z ⊂ X, then Hi([X/GC], [Z/GC]) = H i([X/GC], [Z/GC]) = 0 for i < k.

Proof. GC deformation retracts onto G, and so the pair (X × (GC)×p, Z ×
(GC)×p) deformation retracts onto (X × (G)×p, Z × (G)×p) for any num-
ber of factors p. Thus by the spectral sequence (1), Hi([X/G], [Z/G]) →460

Hi([X/GC], [Z/GC]) is an isomorphism, and Hi([X/G], [Z/G]) = 0 for i < k
by Theorem 4.1. �

Appendix A. Stability of gradient descent flow

We have used Morse theory to prove the LHT without requiring the sec-
tion of the line bundle to be non-degenerate as in [Bot59]. In Lemma 2,465

we reduce the problem of showing that (X.Z) is a neighborhood deforma-
tion retract to the purely local statement that the gradient descent flow of a
function near its minimum is stable. The key technique is due to  Lojasiewicz
[ Loj63,  Loj65,  Loj84], and we review it here. He proved that real analytic
functions satisfy the inequality (L), and applied it to show that analytic470

subvarieties of Rn are neighborhood deformation-retracts. Many authors
have extended his work, for instance in [KMP00].

Definition A.1. Let X be a Riemannian manifold and f a smooth function
on X. We sat that f satisfies a  Lojasiewicz inequality at a point p if there
are constants ρ ∈ (0, 1) and C > 0 such that

|f − f(p)|ρ ≤ C|∇f | (L)

in some neighborhood of p

As a consequence of (L), f takes the value f(p) at any critical point near
p. In particular if Z is the global minimal set of f and (L) holds at every475

point of Z, then Z is isolated from the rest of the critical locus of f .

Proposition A.2. If f achieves its global minimum along Z ⊂ X and (L)
holds at p ∈ Z, then there is an open set U ⊂ X containing p such that
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(1) the flow φt(x) of −∇f is defined for all x ∈ U and all t ≥ 0, and
φt(x) ∈ U .480

(2) The map U × [0,∞) → U given by (x, t) 7→ φt(x) extends uniquely
to a continuous map U × [0,∞]→ U . In particular the flow of −∇f
deformation retracts U onto U ∩ Z.

Remark A.3. The proposition is equally valid for a local minimum. Also,
the argument below shows that any gradient like vector field for f will have485

the same stability property.

Proof. For simplicity we will assume that f ≥ 0 and f(p) = 0. Let φt(x0)
be an integral curve starting at x0 ∈ X. As long as φt(x0) stays in a region
in which (L) holds, an arc length integral gives a uniform bound

dist(x0, φt(x0)) ≤ C

1− ρ
f(x0)1−ρ for t ≥ 0 (2)

Start with a relatively compact open ball Br′ of radius r′ around p on490

which the inequality (L) holds. Now we can find a smaller ball Br ⊂ Br′
such that the difference in radii r′ − r is larger than Cf(x0)1−ρ/(1 − ρ)
for any point x0 ∈ Br. It follows from (2) that any flow line starting in
Br stays within Br′ under the (positive time) flow of −∇f , and thus by
the escape lemma [Lee03] the flow is defined on Br for all t ≥ 0. We let495

U =
⋃
t≥0 φt(Br).

Inequality (L) implies that f(φt(x0)) → 0 as t → ∞. Combining this
with (2) shows that φt(x0) is Cauchy as t → ∞ and remains in a compact
region, so φ∞(x) = limt→∞ φt(x) is a well defined function on U . In fact
(2) shows that (x, t) 7→ φt(x) is uniformly continuous as t→∞, and so the500

gradient descent flow extends uniquely to a continuous map U× [0,∞]→ U .
Finally, φs(φ∞(x)) = limt→∞ φs+t(x) = φ∞(x), so φ∞(U) ⊂ Z and the map
constructed above is a deformation retract of U onto U ∩ Z.

�

An immediate corollary of Proposition A.2 is the global statement that505

Corollary A.4. Let f be a smooth nonnegative function on X with global
minimum Z = f−1{0} ⊂ X. If the inequality (L) holds at each p ∈ Z, then
there is an open neighborhood U of Z on which the negative gradient flow
extends uniquely to a map U × [0,∞] → U which is a deformation retract
of U onto Z.510

In addition if Z is compact then Xε] deformation retracts onto Z for
sufficiently small ε.

We have shown above that the  Lojasiewicz inequality implies a stable
gradient flow, but we are left with the question of which functions satisfy
(L). First of all, functions satisfying (L) have the following properties.515

(1) if h is a smooth function with h(p) 6= 0 and f satisfies (L) with
f(p) = 0, then so does hf
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(2) Let f and g satisfy (L) with f(p) = g(p) = 0. If the angle between
∇f and ∇g is bounded away from π near p then f + g satisfies (L),7520

and if the angle between ∇f2 and ∇g2 is bounded away from π then
fg satisfies (L).

(3) if π : X → Y is an open mapping near p ∈ X and f ◦ π satisfies (L)
at p then f satisfies (L) at π(p) ∈ Y . If π is submersive at p, then525

the converse is true as well. Letting π be the identity map shows
that (L) is independent of the metric.

(4) if π : X → Y is proper and surjective onto a neighborhood of q ∈ Y
and f ◦ π satisfies (L) at every point in the fiber π−1{q}, then f530

satisfies (L) at q.

One might wonder in light of property (2) above if arbitrary algebraic
combinations of functions will still satisfy (L), but this turns out to be
false. For instance if ρ : R → R vanishes to all orders at 0, then f(x) =
(1 + ρ)x − x = ρx does not satisfy (L) at 0 even though (1 + ρ)x and x535

do. Thus while inequality (L) has convenient dynamical properties, it lacks
algebraic properties. It is thus surprising that many functions do satisfy the
 Lojasiewicz inequality:

Theorem A.5. Let f be smooth function on X which in some choice of
local coordinates is a non-vanishing smooth function times a real analytic540

function which vanishes at p, then f satisfies property (L) at p.

Proof. Using real analytic resolution of singularities there is a proper sur-
jective analytic map π : Y → X such that f ◦ π = h(y)yα1

1 · · · yαnn where
y1, . . . , yn are local analytic coordinates on Y and h is a smooth function
which does not vanish near π−1{p}. Applying property (2) above, or by545

a direct calculation, one shows that the monomial yα1
1 · · · yαnn satisfies (L)

along its zero locus, and thus by property (1) so does f ◦ π. Finally by
property (4) f satisfies (L) at p. �
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