A CATEGORIFICATION OF THE ATIYAH-BOTT LOCALIZATION FORMULA

DANIEL HALPERN-LEISTNER

CONTENTS

0.1	. What's in this paper	1
1.	Baric structures and completion	2
2.	Baric structures on equivariant derived categories	3
3.	The pushforward theorem	4
4.	Baric completion and K-theory	5
5.	Expressions involving the centers of the strata	8

Let X be a smooth proper algebraic variety with a \mathbb{C}^* -action. The Atiyah-Bott localization theorem compares the topology of the fixed locus $X^{\mathbb{C}^*}$ with the topology of X. There are at least three versions of the localization theorem, which we state here in topological K-theory rather than in cohomology:

- (1) The restriction map $K^i_{\mathbb{C}^*}(X) \to K^i_{\mathbb{C}^*}(X^{\mathbb{C}^*})$ is a map of finite $K_{\mathbb{C}^*}(\text{pt})$ -modules whose kernel and cokernel is torsion, i.e. it becomes an isomorphism after inverting finitely many elements of the ground ring,
- (2) There is a decomposition of the identity $1_X = \sum_{\alpha} (\sigma_{\alpha})_* \left(\frac{1_{Z_{\alpha}}}{e(N_{Z_{\alpha}}X)}\right)$ in $K_{\mathbb{C}^*}(X)$, where $\sigma_{\alpha} : Z_{\alpha} \hookrightarrow X$ are the connected components of the fixed locus and e(-) denotes the Euler class, and
- (3) The K-theoretic index localizes on the fixed loci Z_{α} , i.e. $\chi(X, E) = \sum_{\alpha} \chi(Z_{\alpha}, \frac{E_{Z_{\alpha}}}{e(N_{Z_{\alpha}}X)})$ for any equivariant class $E \in K_{\mathbb{C}^*}(X)$.

For any of these statements, one must invert some elements of the base ring $K_{\mathbb{C}^*}(X)$ and work with localized K-theory.

There is, however, an isomorphism $K^i_{\mathbb{C}^*}(X) \simeq K^i_{\mathbb{C}^*}(X^{\mathbb{C}^*})$ as modules over $K_{\mathbb{C}^*}(X)$ which does not require localization. When the fixed loci Z_α consist of individual points, one constructs this isomorphism quite explicitly by proving that the closures of the Bialynicki-Birula strata of X form a basis for $K_{\mathbb{C}^*}(X)$ as a free $K_{\mathbb{C}^*}(\text{pt})$ -module. This version of the localization theorem can be elevated to a theorem on the derived category of equivariant coherent sheaves on X as an application of the main structure theorem of [?HL]. Using the Bialynicki-Birula stratification, one can construct "extension functors" from $D^b(X^{\mathbb{C}^*}/\mathbb{C}^*)$ to $D^b(X/\mathbb{C}^*)$ which induce an equivalence on algebraic (and also topologogical) K-theory.¹

The difficulty in finding a categorification of (1-3) above rests mainly in the question of what procedure on the level of categories corresponds to "inverting elements of $K_{\mathbb{C}^*}(\text{pt})$." In this note, we explain one approach, which is closer in spirit to completion than to localization. We construct a "completed" category $D^b(X/\mathbb{C}^*)^{\wedge}$ containing $D^b(X/\mathbb{C}^*)$ as a full subcategory. $D^b(X/\mathbb{C}^*)^{\wedge}$ is a carefully chosen subcategory of the category of quasi-coherent complexes. $D^b(X/\mathbb{C}^*)^{\wedge}$ is small

¹In our notation if G is an algebraic group and X is a G-scheme, then the quotient X/G will always denote the quotient stack. In particular $D^b(X/G)$ denotes the derived category of G-equivariant coherent sheaves on X.

enough that objects still have finite dimensional hypercohomology, but large enough that versions of (1),(2), and (3) can be formulated and proved in $K_0(D^b(X/G)^{\wedge})$.

0.1. What's in this paper. We actually work in a more general context. Instead of working with the Bialynicki-Birula stratification of a \mathbb{C}^* -action, we work with an arbitrary algebraic group G and a smooth scheme X with a stratification

$$X = X^{\rm ss} \cup \bigcup_{\alpha} S_{\alpha}$$

which is G-equivariant and induced a Θ -stratification of X/G (referred to as a KN-stratification in [?HL]). $X^{ss} \subset X$ is the open "semistable" locus. The strongest statements are for the situation when $X^{ss} = \emptyset$. We formulate and prove a version of the "non-abelian" localization theorem of Witten,Kirwan, and Jeffrey, whose K-theoretic version in the guise of (3) was formulated by Teleman and Woodward.

Stratifications of this kind typically arise in geometric invariant theory. For a first read of this note, the reader can keep the following example in mind: $\lambda : \mathbb{C}^* \to G$ is a one parameter subgroup which is central in G, and X is a smooth variety such that the Bialynicki-Birula strata with respect to λ cover X. Then $X^{ss} = \emptyset$ and $X = \bigcup_{\alpha} S_{\alpha}$ can be taken as the Bialynicki-Birula stratification, which will be G-equivariant in this case. The "centers" of the strata $Z^{ss}_{\alpha} \subset S_{\alpha}$, discussed below, are just the connected components of the fixed loci $X^{\lambda(\mathbb{C}^*)}$.

In addition, we work over an arbitrary field.

1. BARIC STRUCTURES AND COMPLETION

Recall [?achar] that a *baric structure* on a stable dg-category \mathcal{D} is a collection of semiorthogonal decompositions $\mathcal{D} = \langle \mathcal{D}^{< w}, \mathcal{D}^{\geq w} \rangle$ such that $\mathcal{D}^{< w} \subset \mathcal{D}^{< w+1}$, or equivalently $\mathcal{D}^{\geq w} \subset \mathcal{D}^{\geq w-1}$. By definition this means that $\operatorname{RHom}(A, B) = 0$ for $A \in \mathcal{D}^{\geq w}$ and $B \in \mathcal{D}^{< w}$, and for every object $E \in \mathcal{D}$ we have an exact triangle

$$\beta^{\geq w}(E) \to E \to \beta^{< w}(E) \to,$$

with $\beta^{\geq w}(E) \in \mathcal{D}^{\geq w}$ and $\beta^{< w}(E) \in \mathcal{D}^{< w}$. The semiorthogonality implies that this exact triangle is unique and functorial, hence our introduction of the *baric truncation functors* $\beta^{\geq w}$ and $\beta^{< w}$.

Given a baric structure on an essentially small stable dg-category \mathcal{D} , one obtains a baric structure on the formal ind-completion $\operatorname{Ind}(\mathcal{D}) = \langle \operatorname{Ind}(\mathcal{D})^{\leq w}, \operatorname{Ind}(\mathcal{D})^{\geq w} \rangle$ defined uniquely in such a way that both factors are co-complete, and the baric truncations functors commute with filtered colimits.

Definition 1.1. Given an essentially small stable dg-category \mathcal{D} with a baric structure, we define the *right baric completion* to be the full subcategory of $E \in \text{Ind}(\mathcal{D})$ such that $\beta^{\geq w}(E) \in \mathcal{D}$ for all w.

The completion \mathcal{D}^{\wedge} has the following equivalent characterizations: haracterize}

Lemma 1.2. Assume that the baric structure on \mathcal{D} is right bounded, meaning $\mathcal{D} = \bigcup_w \mathcal{D}^{\geq w}$. Then $\mathcal{D}^{\wedge} \subset \operatorname{Ind}(\mathcal{D})$ can be characterized alternatively as the category of objects which can be written as a filtered colimit $F = \operatorname{colim}_i P_i$ with $P_i \in \mathcal{D}$ satisfying either

(1)
$$\forall w \in \mathbb{Z}, \ \beta^{\geq w}(P_i) \to \beta^{\geq w}(P_j)$$
 is an equivalence for *i* sufficiently large and all $i < j$, or

(2) $\forall w \in \mathbb{Z}$, $\operatorname{Cone}(P_i \to F) \in \operatorname{Ind}(\mathcal{D})^{<w}$ for *i* sufficiently large.

Proof. The fact that a filtered colimit of $P_i \in \mathcal{D}$ satisfying either of these conditions will have $\beta^{\geq w}(F) \in \mathcal{D}$ is an immediate consequence of the fact that $\beta^{\geq w}$ commutes with filtered colimits and $\beta^{\geq w}(P_i)$ stabilizes for $i \gg 0$.

Conversely, note that for any $F \in \operatorname{Ind}(\mathcal{D})$ we have a canonical diagram $\cdots \to \beta^{\geq w}(F) \to \beta^{\geq w-1}(F) \to \cdots$ coming from the canonical map $\beta^{\geq w}(\beta^{\geq w-1}(F)) \to \beta^{\geq w-1}(F)$ and the canonical

isomorphism $\beta^{\geq w}(\beta^{\geq w-1}(F)) \simeq \beta^{\geq w}(F)$. For any $P \in \mathcal{D}$ the induced map

$$\operatorname{RHom}(P, \operatorname{colim}_w \beta^{\geq w}(F)) \to \operatorname{RHom}(P, F)$$

is an equivalence because P is a compact object of $\operatorname{Ind}(\mathcal{D})$ (so we may commute $\operatorname{RHom}(P, -)$ with filtered colimits), and $P \in \mathcal{D}^{\geq w}$ for sufficiently low w, which implies that $\operatorname{RHom}(P, \beta^{\geq w}(F)) \simeq$ $\operatorname{RHom}(P, F)$ for all sufficiently low w. It follows, because $\operatorname{Ind}(\mathcal{D})$ is generated by $P \in \mathcal{D}$ that $\operatorname{colim}_w \beta^{\geq w}(F) \to F$ is an equivalence for any $F \in \operatorname{Ind}(\mathcal{D})$. Now if $F \in \mathcal{D}^{\wedge}$, then each $\beta^{\geq w}(F) \in \mathcal{D}$ by definition, so the presentation $F \simeq \operatorname{colim}_w \beta^{\geq w}(F)$ is an explicit presentation satisfying (1) and (2). \Box

2. BARIC STRUCTURES ON EQUIVARIANT DERIVED CATEGORIES

Let $X/G = X^{ss} \cup \bigcup_{\alpha} S_{\alpha}/G$ be a Θ -stratification of a smooth quotient stack – we call $X^{us} = \bigcup_{\alpha} S_{\alpha}$ the unstable locus. All we will need to know about these strata is that each contains a smooth locally closed "center" $Z_{\alpha}^{ss} \subset S_{\alpha}$ which is fixed (pointwise) by a distinguished one parameter subgroup λ_{α} and equivariant with respect to the centralizer L_{α} of λ_{α} . We denote $\sigma_{\alpha} : Z_{\alpha}^{ss}/L_{\alpha} \to X/G$ and $\iota_{\alpha} : S_{\alpha} \to X$.

We choose, once and for all, an integer $s_{\alpha} \in \mathbb{Z}$ and a positive integer $m_{\alpha} \in \mathbb{Z}$ for each index α in the stratification. Any *G*-equivariant complex restricted to Z_{α}^{ss} decomposes canonically into a direct sum of complexes whose homology sheaves are concentrated in a single λ_{α} -weight. We define

$$D^{b}(X/G)^{\geq w} := \{F \in D^{b}(X/G) | \forall \alpha, \mathcal{H}_{*}(F|_{Z_{\alpha}^{ss}}) \text{ has weights } \geq m_{\alpha}w + s_{\alpha} \}$$
$$D^{b}_{X^{us}}(X/G)^{< w} := \left\{F \in D^{b}(X/G) \middle| \begin{array}{c} \operatorname{Supp}(F) \subset X^{us} \text{ and} \\ \forall \alpha, \mathcal{H}_{*}(F|_{Z_{\alpha}^{ss}}) \text{ has weights } < m_{\alpha}w + s_{\alpha} + \eta_{\alpha} \end{array} \right\}$$

where "weights" of a coherent sheaf on $Z_{\alpha}^{ss}/L_{\alpha}$ always refers to λ_{α} -weights, and η_{α} is defined to be the weight of $\det(N_{S_{\alpha}}^{\vee}X)|_{Z_{\alpha}^{ss}}$. Then categorical Kirwan surjectivity [?HL, ???] provides a baric structure

$$\mathbf{D}^{b}(X/G) = \left\langle \mathbf{D}^{b}_{X^{\mathrm{us}}}(X/G)^{< w}, \mathbf{D}^{b}(X/G)^{\geq w} \right\rangle.$$
(1) {eqn:baric}

For any perfect complex, the weights of $F|_{Z^{ss}_{\alpha}}$ are bounded above and below. It follows that the baric structure (1) is always right bounded, i.e. $\mathcal{D} = \bigcup \mathcal{D}^{\geq w}$, and is left bounded, i.e. $\mathcal{D} = \bigcup \mathcal{D}^{< w}$, if and only if $X^{ss} = \emptyset$ and hence $X^{us} = X$.

Example 2.1. A special case of this is when $X = Z_{\alpha}^{ss}$ and λ_{α} is central in G. If we let $m_{\alpha} = 1$, then the baric structure (1) is just the direct sum decomposition of $D^{b}(Z_{\alpha}^{ss}/L_{\alpha})$ into subcategories of complexes whose homology has constant λ_{α} -weight.

Example 2.2. Another example is when X = S consists of a single Θ -stratum, in which case $D^b(S/G)$ receives a baric structure. Among the properties established in [?HL] is that for a closed Θ -stratum $S \hookrightarrow X$, the functors $\iota_* : D^b(S/G) \to D^b(X/G)$ and $\sigma^* : D^b(S/G) \to D^b(Z^{ss}/L)$ are both compatible with the baric structures which we've discussed.²

Because X/G is a quotient stack in characteristic 0, we have $QC(X/G) = Ind(D^b(X/G))$, so it inherits a baric structure as well

$$\operatorname{QC}(X/G) = \left\langle \operatorname{QC}(X/G)^{< w}, \operatorname{QC}_{X^{\mathrm{us}}}(X/G)^{\geq w} \right\rangle$$

for all $w \in \mathbb{Z}$. The truncation functors $\beta^{\geq w} : \operatorname{QC}(X/G) \to \operatorname{QC}(X/G)^{\geq w}$ and $\beta^{< w} : \operatorname{QC}(X/G) \to \operatorname{QC}_{X^{\mathrm{us}}}(X/G)^{< w}$ commute with colimits by definition. The baric truncation functors can be computed by writing every $F \in \operatorname{QC}(X/G)$ as a filtered colimit $F = \operatorname{colim}_i P_i$ with P_i perfect. Then $\beta^{\geq w}(F) = \operatorname{colim}_i \beta^{\geq w}(P_i)$ and $\beta^{< w} = \operatorname{colim}_i \beta^{< w}(P_i)$.

²By this we mean a functor $\mathcal{C} \to \mathcal{D}$ which maps $\mathcal{C}^{\geq w}$ to $\mathcal{D}^{\geq w}$ and $\mathcal{C}^{< w}$ to $\mathcal{D}^{< w}$.

Definition 2.3. We define the $D^b(X/G)^{\wedge} \subset QC(X/G)$ to be the right baric completion of $D^b(X/G)$ with respect to the baric structure (1). It consists of complexes such that $\beta^{\geq w}(F) \in D^b(X/G)$ for all $w \in \mathbb{Z}$.

The general Lemma 1.2 implies that $D^b(X/G)$ can be characterized alternatively as the category of complexes which can be written as a filtered colimit of perfect complexes $F = \operatorname{colim}_i P_i$ satisfying either

- (1) $\forall w \in \mathbb{Z}, \ \beta^{\geq w}(P_i) \to \beta^{\geq w}(P_j)$ is an equivalence for *i* sufficiently large and all i < j, or
- (2) $\forall w \in \mathbb{Z}$, $\operatorname{Cone}(P_i \to F) \in \operatorname{QC}_{X^{\mathrm{us}}}(X/G)^{\leq w}$ for *i* sufficiently large.

One consequence of this is that the subcategory $D^b(X/G)^{\wedge} \subset QC(X/G)$ does not depend on the initial choice of integers s_{α} or m_{α} used to define the baric structure on $D^b(X/G)$.

Lemma 2.4. $D^b(X/G)^{\wedge}$ is a stable (i.e. pre-triangulated) dg-subcategory of QC(X/G). It contains $D^b(X/G)$, it is a symmetric monoidal subcategory, and it is idempotent complete.

Proof. Most of these properties are immediate from the definition and the fact that $\beta^{\geq w}$ is an exact functor of pre-triangulated dg-categories. Let us prove that $D^b(X/G)^{\wedge}$ is symmetric monoidal: if F is perfect, then for any $E \in QC(X/G)$

{eqn:trick}

$$\beta^{\geq w}(F \otimes E) \simeq \beta^{\geq w}(F \otimes \beta^{\geq v}(E)) \tag{2}$$

for v < n for some integer n which only depends on the highest weights of $F|_{Z^{ss}_{\alpha}}$. This is because the weights of $F|_{Z^{ss}_{\alpha}}$ are bounded above for each α , so we can choose a sufficiently large integer nsuch that $F \otimes \beta^{< v}(E) \in QC_{X^{us}}(X/G)^{< v+n}$ for all $E \in QC(X/G)$. Thus (2) results from applying $\beta^{\geq w}$ to the exact triangle $F \otimes \beta^{\geq v}(E) \to F \otimes E \to F \otimes \beta^{< v}(E) \to$.

To deduce that $E \otimes F \in D^b(X/G)^{\wedge}$ for $E, F \in D^b(X/G)^{\wedge}$, we apply (2) twice. In particular we use that the highest weights of the perfect complexes $\beta^{\geq w}(F)|_{Z^{ss}_{\alpha}}$ do not depend on w for wsufficiently large. We compute

$$\beta^{\geq w}(F \otimes E) \simeq \operatorname{colim}_{v} \beta^{\geq w}(\beta^{\geq v}(F) \otimes E) \simeq \operatorname{colim}_{v} \beta^{\geq w}(\beta^{\geq v}(F) \otimes \beta^{\geq u}(E))$$

where u is sufficiently low and does not depend on v. Now commuting the colimit and $\beta^{\geq w}$ once more, we can identify this with

$$\simeq \beta^{\geq w}(F \otimes \beta^{\geq u}(E)) \simeq \beta^{\geq w}(\beta^{\geq z}(F) \otimes \beta^{\geq u}(E))$$

where now z is sufficiently low. This will be perfect by hypothesis, hence $F \otimes E \in D^b(X/G)^{\wedge}$. \Box

Recall that we say the Θ -strafitication of X/G is *complete* if X^{ss}/G and Z^{ss}_{α}/G admit projective good quotients for all α .

Lemma 2.5. If the Θ -stratification of X/G is complete, then for any $E \in D^b(X/G)$ and $F \in D^b(X/G)^{\wedge}$, the complex $\operatorname{RHom}_{X/G}(E, F)$ has finite dimensional total cohomology.

Proof. It suffices to prove this for $E = \mathcal{O}_X$. This is a consequence of the quantization commutes with reduction theorem [?HL, Theorem 3.29], which implies that $R\Gamma(F) = R\Gamma(\beta^{\geq w}(F))$ for w sufficiently low.

3. The pushforward theorem

Note that if $j : U \subset X$ is an open union of strata, then $D^b(U/G)$ also has a baric structure induced by the strata which lie in U. It follows from the exactness of the restriction functor $j^* : D^b(X/G) \to D^b(U/G)$ and the definitions of the categories $D^b(U/G)^{\geq w}$ and $D^b_{U^{us}}(U/G)^{\leq w}$ that j^* is compatible with the baric structure. Our main result is the following: {thm:main}

Theorem 3.1. Let $j : U \subset X$ be an open complement of a union of strata. Then $j_* : QC(U/G) \to QC(X/G)$ maps $D^b(U/G)^{\wedge}$ to $D^b(X/G)^{\wedge}$, where the former is defined with respect to the strata which lie in U.

Proof. It suffices by a simple inductive argument to assume that the complement of U consists of a single closed stratum $i: S \hookrightarrow X$. First of all, note that $R\underline{\Gamma}_S(\mathfrak{O}_X) \in \mathrm{QC}(X/G)$ actually lies in $\mathrm{D}^b(X/G)^{\wedge}$ – this is [?HL, Lemma 3.37], and it is proved by considering $R\underline{\Gamma}_S(\mathfrak{O}_X)$ as a colimit of Koszul complexes. It follows from the exact triangle $R\underline{\Gamma}_S\mathfrak{O}_X \to \mathfrak{O}_X \to j_*(\mathfrak{O}_U) \to$ that $j_*(\mathfrak{O}_U) \in \mathrm{D}^b(X/G)^{\wedge}$.

Take $F \in QC(U)$, and write $F = \operatorname{colim}_w \beta_U^{\geq w}(F)$, so that we have $\beta_U^{\geq w}(F) \in D^b(X/G)$ by hypothesis. Then by the categorical Kirwan surjectivity, we can fix any particular $s \in \mathbb{Z}$ and uniquely and functorially lift the complex $\beta_U^{\geq w}(F)$ to a perfect complex $F_w \in D^b(X/G)$ such that the weights of $F_w|_{Z^{ss}}$ lie in the window $[mw + s, mw + s + \eta)$ for each w. The quantization theorem [?HL, Theorem 3.29] implies that the restriction map

$$\operatorname{RHom}_{X/G}(F_w, F_{w-1}) \to \operatorname{RHom}_{U/G}(\beta_U^{\geq w}(F), \beta_U^{\geq w-1}(F)),$$

so we can lift the filtered system $\dots \to \beta_U^{\geq w}(F) \to \beta_U^{\geq w}(F) \to \dots$ uniquely to a filtered system $\dots \to F_w \to F_{w-1} \to \dots$ in $D^b(X/G)$. Let us define $\tilde{F} := \operatorname{colim}_w F_w \in \operatorname{QC}(X/G)$.

Note that the cone $\operatorname{Cone}(F_w \to F_{w-1})$ is supported set theoretically on X^{us} . Furthermore the weights of $\operatorname{Cone}(F_w \to F_{w-1})|_{Z^{\mathrm{ss}}_{\alpha}}$ get lower and lower as $w \to -\infty$: for the Z^{ss}_{α} contained in U, this is because $\operatorname{Cone}(\beta_U^{\geq w}(F) \to \beta_U^{\geq w-1}(F)) \simeq \beta_U^{< w}(\beta_U^{\geq w-1}(F))$, and for the Z^{ss} in the stratum we are adding this follows from the weight bounds on F_w and F_{w-1} individually. Thus for any fixed v, $\beta^{\geq v}(F_w)$ stabilizes for w sufficiently low, and hence $\tilde{F} \in \mathrm{D}^b(X/G)^{\wedge}$. Finally, by construction we have a canonical equivalence $\tilde{F}|_U \simeq F$, so $\tilde{F} \otimes j_*(\mathcal{O}_U) \simeq j_*(F) \in \mathrm{D}^b(X/G)^{\wedge}$ because $j_*(\mathcal{O}_U) \in \mathrm{D}^b(X/G)^{\wedge}$ and the subcategory is closed under tensor products.

Definition 3.2. Consider the closed subsets $X_{>\alpha} = \bigcup_{\beta > \alpha} S_{\beta} \subset X$. For any stratum $S_{\alpha} \subset X$, we define the object $R\underline{\Gamma}_{S_{\alpha}}(\mathfrak{O}_X) \in QC(X/G)$ to be the local cohomology complex for the close subset $S_{\alpha} \hookrightarrow X \setminus X_{>\alpha}$ pushed forward to X along the open immersion $X \setminus X_{>\alpha}$.

Corollary 3.3. For all α , $R\underline{\Gamma}_{S_{\alpha}} \mathcal{O}_X \in D^b(X/G)^{\wedge}$, as are $R\underline{\Gamma}_{X_{>\alpha}} \mathcal{O}_X$. All of these objects are idempotent for the symmetric monoidal structure. The the structure sheaf \mathcal{O}_X thus has a filtration in $D^b(X/G)^{\wedge}$

$$R\underline{\Gamma}_{X_{>N}} \mathcal{O}_X \to R\underline{\Gamma}_{X_{>N-1}} \mathcal{O}_X \to \dots \to R\underline{\Gamma}_{X_{>-1}} \mathcal{O}_X \to \mathcal{O}_X$$

whose associated graded is $\mathcal{O}_{X^{ss}} \oplus \bigoplus_{\alpha} R \underline{\Gamma}_{S_{\alpha}} \mathcal{O}_X$.

Note that if $j: U \subset X$ is a G-equivariant open subset and $Y = X \setminus U$ its close complement, then one has a semiorthogonal decomposition

$$QC(X/G) = \langle QC(U/G), QC_Y(X/G) \rangle, \qquad (3) \quad \{eqn:tautolc$$

where the first factor is the essential image of the fully faithful functor j_* , and the second factor is the subcategory of complexes supported (set theoretically) on Y. For $F \in QC(X/G)$ the exact triangle of this semiorthogonal decomposition is the local cohomology exact triangle $R\underline{\Gamma}_Y(F) \rightarrow$ $F \rightarrow j_*(F|_U) \rightarrow$.

Corollary 3.4. If $U \subset X$ is an open union of strata, then the semirthogonal decomposition (3) induces a semiorthogonal decomposition of $D^b(X/G)^{\wedge}$ as well.

Proof. This is immediate from Theorem 3.1, which implies that the local cohomology exact triangle $R\underline{\Gamma}_{X\setminus U}(F) \to F \to j_*(F|_U) \to \text{lies in } D^b(X/G)^{\wedge}$.

{cor:filtrat

4. BARIC COMPLETION AND K-THEORY

One can describe the effect of right baric completion on K-theory in general. For a stable dgcategory with baric structure $\mathcal{D} = \langle \mathcal{D}^{< w}, \mathcal{D}^{\geq w} \rangle$ we introduce the notation $\mathcal{D}^{[w]} = \mathcal{D}^{\geq w} \cap \mathcal{D}^{< w+1}$, and let $\beta^{[w]}(F) = \beta^{\geq w} \beta^{< w+1}(F) \simeq \beta^{< w+1} \beta^{\geq w}$ denote the canonical projection onto this subcategory.

Lemma 4.1. Let $\mathcal{D} = \langle \mathcal{D}^{< w}, \mathcal{D}^{\geq w} \rangle$ be a baric structure which is left bounded, i.e. such that $\mathcal{D} = \bigcup_w \mathcal{D}^{< w}$.³ Then the functor

$$\prod \beta^{[w]}: \mathcal{D}^{\wedge} \to \bigoplus_{w \ge 0} \mathcal{D}^{[w]} \oplus \prod_{w < 0} \mathcal{D}^{[w]}$$

induces an isomorphism in K-theory

$$K_0(\mathcal{D}^{\wedge}) \simeq \bigoplus_{w \ge 0} K_0(\mathcal{D}^{[w]}) \oplus \prod_{w < 0} K_0(\mathcal{D}^{[w]})$$

Proof. The boundedness hypothesis guarantees that the functor $\prod \beta^{[w]}$ actually has image in the full subcategory $\mathcal{C} := \bigoplus_{w \ge 0} \mathcal{D}^{[w]} \bigoplus \prod_{w < 0} \mathcal{D}^{[w]}$ as claimed. K_0 commutes with arbitrary direct sums and products, so $K_0(\mathcal{C})$ agrees with the right hand side of the above equality.

It thus suffices to show that $\prod \beta^{[w]}$ induces an isomorphism on K-theory. We can define a one-sided inverse functor $\phi : \mathcal{C} \to \mathcal{D}^{\wedge}$ mapping $\{A_w\} \mapsto \bigoplus_w A_w$. We have $(\prod_w \beta^{[w]}) \circ \phi \simeq \mathrm{id}_{\mathcal{C}}$, so the same holds after applying K_0 . Conversely for any $F \in \mathcal{D}^{\wedge}$ and any w, we consider the exact triangle $\beta^{\geq w}(F) \to F \to \beta^{\leq w}(F) \to$ and the exact triangles $\beta^{[w-i]}(F) \to \beta^{\leq w-i+1}(F) \to \beta^{\leq w-i}(F)$ for $i \geq 1$. The direct sum of these exact triangles converges to an exact triangle in \mathcal{D}^{\wedge} , so we have

$$[F \oplus \bigoplus_{i \ge 1} \beta^{< w-i+1}(F)] = [\bigoplus_{i \ge 1} \beta^{< w-i+1}(F)] + [\beta^{\ge w}(F) \oplus \bigoplus_{i \ge 1} \beta^{[w-i]}(F)]$$

So choosing $w \gg 0$ large enough so that $\beta^{\geq w}(F) = 0$, we have $[F] = [\bigoplus_{i \geq 1} \beta^{[w-i]}(F)] \in K_0(\mathcal{D}^{\wedge})$, and hence $\phi \circ (\prod \beta^{[w]}) \simeq \operatorname{id}_{K_0(\mathcal{D}^{\wedge})}$.

In our setting, the baric structure of $D^b(X/G)$ will be left bounded if and only if $X^{ss} = \emptyset$. Let us fix an invertible sheaf $\mathcal{L} \in \operatorname{Pic}(X/G)$ such that the weight of $\mathcal{L}|_{Z_{\alpha}^{ss}}$ is < 0 for all α .

Example 4.2. If the stratification of X arises from geometric invariant theory, the G-ample bundle used to define the stratification will satisfy this condition.

Example 4.3. If the stratification of X is the Bialynicki-Birula stratification associated to a central one parameter subgroup of G, then we can let $\mathcal{L} = \mathcal{O}_X \otimes \chi$ where χ is a character of G which pair negatively with this one-parameter-subgroup.

Given such an invertible sheaf, we regard both $K_0(X/G)$ and $K_0(Z_{\alpha}^{ss}/L_{\alpha})$ as $\mathbb{Z}[u^{\pm}]$ -modules, where u acts by $\mathcal{L} \otimes (-)$. We also use \mathcal{L} to fix our choice of parameters $m_{\alpha} = -\operatorname{wt}(L|_{Z_{\alpha}^{ss}})$ in the definition of our baric structure of $D^b(X/G)$ and $D^b(Z_{\alpha}^{ss}/L_{\alpha})$.

Theorem 4.4. Assume that $X^{ss} = \emptyset$ and choose \mathcal{L} and m_{α} as above. Then for any w we have a canonical equivalence⁴

$$K_0(D^b(X/G)^{[w]})((u)) \to K_0(D^b(X/G)^{\wedge})$$

mapping $\sum_{i} [E_i] u^i \mapsto [\bigoplus_i L^{\otimes i} \otimes E_i]$. Futhermore if $K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{[w]})$ is finitely generated for all α , then we have a canonical equivalence

$$K_0(\mathrm{D}^b(X/G)) \otimes_{\mathbb{Z}[u^{\pm}]} \mathbb{Z}((u)) \to K_0(\mathrm{D}^b(X/G)^{\wedge})$$

hm:K_theory}

³This is equivalent to $\beta^{\geq w}(F) = 0$ for $w \gg 0$.

⁴The notaion M((u)) denotes the group $M[u][u^{-1}]$, which differs from $M \otimes \mathbb{Z}((u))$ if M is not finitely generated.

given by the same formula.

Remark 4.5. It is possible to rephrase the condition on $Z_{\alpha}^{ss}/L_{\alpha}$ in the theorem: $Z_{\alpha}^{ss}/L_{\alpha}$ is a \mathbb{G}_m -gerbe over $Z_{\alpha}^{ss}/L'_{\alpha}$, where $L'_{\alpha} = L_{\alpha}/\lambda(\alpha)$. The Brauer group class of this gerbe is torsion. The condition in the statement of the theorem is equivalent to asking that the category of twisted perfect complexes on Z_{α}/L'_{α} , twisted by any power of this gerbe, has finitely generated K_0 .

Example 4.6. Let $\lambda : \mathbb{G}_m \to G$ be a one parameter subgroup which is central in G, and let G act on a smooth variety X such that the Bialynicki-Birula stratification on X is exhaustive, and $K_0(X^{\lambda(\mathbb{G}_m)})$ is a finitely generated abelian group – for instance it could consist of isolated points, or it could admit a stratification by affine spaces. Then Theorem 4.4 implies that

$$K_0(\mathrm{D}^b(X/G)^\wedge) \simeq K_0(\mathrm{D}^b(X/G)) \otimes_{\mathbb{Z}[u^{\pm}]} \mathbb{Z}((u)).$$

Before proving this theorem let us say a bit more about the structure of the category $D^b(X/G)^{[w]}$.

Proposition 4.7. If $X^{ss} = \emptyset$, then $D^b(X/G)^{[w]}$ has a finite semiorthogonal decomposition

$$\mathbf{D}^{b}(X/G)^{[w]} = \langle \mathcal{A}_{0}^{0}, \dots, \mathcal{A}_{0}^{m_{0}-1}, \mathcal{A}_{1}^{0}, \dots, \mathcal{A}_{1}^{m_{1}-1}, \dots, \mathcal{A}_{N}^{0}, \dots, \mathcal{A}_{N}^{m_{N}-1} \rangle,$$

where the functor of restriction to $Z_{\alpha}^{ss}/L_{\alpha}$ followed by projection onto the weight $m_{\alpha}w + i + s_{\alpha}$ summand defines an equivalence

 $\mathcal{A}^{i}_{\alpha} \simeq \{F \in \mathrm{D}^{b}(Z^{\mathrm{ss}}_{\alpha}/L_{\alpha}) | \mathcal{H}_{*}(F) \text{ is concentrated in weight } m_{\alpha}w + i + s_{\alpha}\}$

for $i = 0, ..., m_{\alpha} - 1$. These equivalence combined with the inclusion into $D^{b}(Z_{\alpha}^{ss}/L_{\alpha})$ defines a functor

$$\mathrm{D}^{b}(X/G)^{[w]} \xrightarrow{\mathrm{gr}} \bigoplus_{\alpha,i} \mathcal{A}^{i}_{\alpha} \to \bigoplus_{\alpha} \mathrm{D}^{b}(Z^{\mathrm{ss}}_{\alpha}/L_{\alpha})^{[w]}$$

which induces an isomorphism in K-theory.

Proof. The semiorthogonal decomposition is a consequence of [?HL, ???]. We refer the reader to that paper for an explicit description of the categories \mathcal{A}^i_{α} . Informally, the objects in \mathcal{A}^i_{α} arise from pulling back complexes concentrated in constant weight along a canonical map $\pi_{\alpha} : S_{\alpha}/G \to Z^{ss}_{\alpha}/L_{\alpha}$, then pushing forward to $X \setminus X_{>\alpha}$ and extending uniquely over the strata S_{β} using grade restriction rules. On the other hand, $D^b(Z^{ss}_{\alpha}/L_{\alpha})^{[w]}$ consists by definition of complexes whose homology has weights concentrated in the interval $[m_{\alpha}w + s_{\alpha}, \ldots, m_{\alpha}w + m_{\alpha} - 1 + s_{\alpha}]$. Hence this category has a semiorthogonal decomposition (in fact a direct sum decomposition) whose summands are identified canonically with the \mathcal{A}^i_{α} . The result follows from the fact that K-theory takes semiorthogonal decompositions to direct sums.

Remark 4.8. One can define the inverse of the equivalence $K_0(D^b(X/G)^{[w]}) \simeq \bigoplus_{\alpha} K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{[w]})$ a bit more explicitly by unravelling the main theorem of [?HL]. The image of the pullback functor $\pi_{\alpha}^* : D^b(Z_{\alpha}^{ss}/L_{\alpha})^{[w]} \to D^b(S_{\alpha}/G)^{[w]}$ generates and induces an equivalence on K-theory. We compose π_{α}^* with the pushforward functor $(\iota_{\alpha})_* : D^b(S_{\alpha}/G) \to D^b((X \setminus X_{>\alpha})/G)^{[w]}$, followed by the functorial extension functor $D^b((X \setminus X_{>\alpha})/G) \to D^b(X/G)^{[w]}$ determined by a grade restriction rule to define a functor

$$\bigoplus_{\alpha} \mathcal{D}^{b}(Z_{\alpha}^{ss}/L_{\alpha})^{[w]} \to \mathcal{D}^{b}(X/G)^{[w]}.$$

This is an equivalence on K-theory, and in fact the image freely generates $K_0(D^b(X/G))$ as a $\mathbb{Z}[u^{\pm}]$ -module.

Remark 4.9. A word of caution: The restriction functor $\sigma^* : D^b(X/G) \to \bigoplus_{\alpha} D^b(\mathfrak{Z}_{\alpha}^{ss}/L_{\alpha})$ is not compatible with the baric structures on the respective categories. For a complex $F \in D^b(X/G)^{\leq w}$ the weights of $F|_{Z_{\alpha}^{ss}/L_{\alpha}}$ by definition are $\langle m_{\alpha}w + s_{\alpha} + \eta_{\alpha}$, whereas $D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\leq w}$ consists of

{prop:fixed_

complexes whose weights are $\langle m_{\alpha}w + s_{\alpha}$. As a consequence σ_{α}^* does not map $D^b(X/G)^{[w]}$ to $D^b(Z_{\alpha}^{ss}/L_{\alpha})^{[w]}$, and this functor is not suitable for comparing the *K*-theory of these two categories. We will, however, study the restriction map in **??** below.

Proof of Theorem 4.4. The choice of $m_{\alpha} = -\operatorname{wt}(\mathcal{L}|_{Z_{\alpha}^{ss}})$ implies that $L \otimes (-)$ is an equivalence $\mathrm{D}^{b}(X/G)^{\geq w} \to \mathrm{D}^{b}(X/G)^{\geq w-1}$ and likewise for $\mathrm{D}^{b}(X/G)^{\leq w}$ and $\mathrm{D}^{b}(X/G)^{[w]}$. The first claim is thus an immediate consequence of the lemma above.

For the second claim, Proposition 4.7 implies that $K_0(D^b(X/G)^{[w]})$ is finitely generated if $K_0(D^b(Z^{ss}_{\alpha}/L_{\alpha})^{[w]})$ is finitely generated for all α . One can use the fact that the baric structure on $D^b(X/G)$ is bounded along with the observation above to show that $K_0(D^b(X/G)) \simeq K_0(D^b(X/G)^{[w]}) \otimes \mathbb{Z}[u^{\pm}]$, where the equivalence maps $\sum_i [E_i]u^i \mapsto [\bigoplus L^{\otimes i} \otimes E_i]$. If $K_0(D^b(X/G)^{[w]})$ is a finitely generated abelian group, then the canonical map

$$K_0(\mathcal{D}^b(X/G)^{[w]}) \otimes \mathbb{Z}[u^{\pm}] \otimes_{\mathbb{Z}[u^{\pm}]} \mathbb{Z}((u)) \simeq K_0(\mathcal{D}^b(X/G)^{[w]}) \otimes \mathbb{Z}((u)) \to K_0(\mathcal{D}^b(X/G)^{[w]})((u))$$

is an equivalence, hence the claim.

{lem:units}

5. Expressions involving the centers of the strata

We work in the same context as the previous section, so $X^{ss} = \emptyset$, and $\mathcal{L} \in \operatorname{Pic}(X/G)$ is an appropriately chosen invertible sheaf. The usual formulation of Atiyah-Bott localization involves statements involving the centers $Z^{ss}_{\alpha}/L_{\alpha}$ of the strata. The key observation is the following

Lemma 5.1. Let *E* be a locally free sheaf on $Z_{\alpha}^{ss}/L_{\alpha}$ whose weight 0 piece is trivial. Then $e(E) := \sum_{i} (-1)^{i} [\bigwedge^{i} E^{*}] \in K_{0}(D^{b}(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge})$ is a unit.

Proof. First decompose $E = E^+ \oplus E^-$ into summands of positive and negative weight respectively. Because $e(E) = e(E^+) \cdot e(E^-)$, it suffices to prove the lemma for each individually. $(E^+)^*$ has strictly negative weights, and hence the object $\operatorname{Sym}((E^+)^*) := \bigoplus_{n\geq 0} \operatorname{Sym}^n((E^+)^*)$ lies in $\operatorname{D}^b(Z^{\mathrm{ss}}_{\alpha}/L_{\alpha})^{\wedge}$. The usual formal computation showing that $\operatorname{Sym}((E^+)^*) \otimes \bigwedge((E^+)^*) \sim \mathcal{O}_{Z^{\mathrm{ss}}_{\alpha}} \in K_0(\operatorname{D}^b(Z^{\mathrm{ss}}_{\alpha}/L_{\alpha})^{\wedge})$ is actually rigorous because these complexes are well-defined in the completed category. On the other hand $e(E^-) = (-1)^{\operatorname{rank}(E^-)} \det(E^-)^{\vee} \otimes e((E^-)^*)$. The invertible sheaf is a unit, and now the previous argument shows that $e(E^-)$ is a unit as well with

$$e(E^{-})^{-1} = (-1)^{\operatorname{rank}(E^{-})} \det(E^{-}) \otimes \operatorname{Sym}(E^{-})$$

Remark 5.2. It follows from this that we can define e(E) for any complex $E \in D^b(Z_{\alpha}^{ss}/L_{\alpha})$ whose homology vanishes in weight 0. To do this, we choose a presentation as a finite complex of locally free sheaves $\rightarrow \cdots E_1 \rightarrow E_0 \rightarrow \cdots$. Because the homology vanishes in weight 0 we may discard the weight zero piece of each locally free sheaf E_i in this presentation, so we may assume that $E_i^0 = 0$. Then we define $e(E) = \prod_i e(E_i)^{(-1)^i}$. This is the unique extension of e to a group homomorphism $K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\neq 0}) \rightarrow K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge})^{\times}$.

Proposition 5.3. The restriction functor σ^* induces an equivalence

$$K_0(\mathrm{D}^b(X/G)^{\wedge}) \simeq \bigoplus_{\alpha} K_0(\mathrm{D}^b(Z_{\alpha}^{\mathrm{ss}}/L_{\alpha})^{\wedge}) \simeq K_0(\mathrm{D}^b(Z_{\alpha}^{\mathrm{ss}}/L_{\alpha})^{[w]})((u)).$$

Proof. Note that even though the restriction functor $\sigma_{\alpha}^* : D^b(X/G) \to D^b(Z_{\alpha}^{ss}/L_{\alpha})$ is not compatible with the baric structures, it is compatible with the baric structures up to a finite shift in weights, and hence it maps $D^b(X/G)^{\wedge}$ to $D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge}$.

We apply Theorem 4.4 directly to the stack $\bigsqcup_{\alpha} Z_{\alpha}^{ss}/L_{\alpha}$ itself to obtain an isomorphism

$$\bigoplus_{\alpha} K_0(\mathrm{D}^b(Z_{\alpha}^{\mathrm{ss}}/L_{\alpha})^{\wedge}) \simeq \bigoplus_{\alpha} K_0(\mathrm{D}^b(Z_{\alpha}^{\mathrm{ss}}/L_{\alpha})^{[w]})((u))$$

Then we compose this with the isomorphism of Proposition 4.7 and Theorem 4.4

$$\bigoplus_{\alpha} K_0(\mathrm{D}^b(Z_{\alpha}^{\mathrm{ss}}/L_{\alpha})^{[w]})((u)) \simeq K_0(\mathrm{D}^b(X/G)^{[w]})((u)) \simeq K_0(\mathrm{D}^b(X/G)^{\wedge}).$$

Finally we compose this with the restriction functor to $\bigoplus_{\alpha} D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge}$. If one traces through these maps, one finds that the composition $\bigoplus_{\alpha} K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge}) \to \bigoplus_{\alpha} K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge})$ is multiplication by $\bigoplus e(N_{S_{\alpha}}X)$. Hence by Lemma 5.1 the restriction functor $K_0(D^b(X/G)^{\wedge}) \to \bigoplus_{\alpha} K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge})$ differs from a known equivalence by multiplication by a unit, and it is therefore also an equivalence.

We now reformulate our version of the localization theorem in the more familiar terms of [?AB].

Proposition 5.4. The pushforward functor $(\sigma_{\alpha})_* : \operatorname{QC}(Z_{\alpha}^{\operatorname{ss}}/L_{\alpha}) \to \operatorname{QC}(X/G)$ maps $\operatorname{D}^b(Z_{\alpha}^{\operatorname{ss}}/L_{\alpha})^{\wedge}$ to $\operatorname{D}^b(X/G)^{\wedge}$.

Proof. Because the functor $(\iota_{\alpha})_* : D^b(S_{\alpha}/G) \to D^b(X/G)$ is compatible with the baric structure, if suffices to show that the pushforward $(\sigma_{\alpha})_* : QC(Z_{\alpha}^{ss}/L_{\alpha}) \to QC(S_{\alpha}/G)$ maps $D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge}$ to $D^b(S_{\alpha}/G)^{\wedge}$. It suffices to show that $(\sigma_{\alpha})_*$ maps $D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\leq w}$ to $D^b(S_{\alpha}/G)^{\leq w+n}$ for some fixed integer n, independent of w.

In order to study this, we use a different presentation of the stack $S_{\alpha}/G \simeq Y_{\alpha}^{\rm ss}/P_{\alpha}$, where $Y_{\alpha}^{\rm ss} \to Z_{\alpha}^{\rm ss}$ is the Bialynicki-Birula stratum associated to the distinguished one parameter subgroup λ_{α} , and $P_{\alpha} \subset G$ is the parabolic subgroup associated to λ_{α} . Then the section $\sigma_{\alpha} : Z_{\alpha}^{\rm ss}/L_{\alpha} \to Y_{\alpha}^{\rm ss}/P_{\alpha}$ factors as closed immersion $Z_{\alpha}^{\rm ss}/L_{\alpha} \hookrightarrow Y_{\alpha}^{\rm ss}/L_{\alpha}$ followed by the projection $Y_{\alpha}^{\rm ss}/L_{\alpha} \to Y_{\alpha}^{\rm ss}/P_{\alpha}$.

The stack $Y_{\alpha}^{ss}/L_{\alpha}$ is also a Θ -stratum with center $Z_{\alpha}^{ss}/L_{\alpha}$, so $D^{b}(Y_{\alpha}^{ss}/L_{\alpha})$ has a baric structure according to the weights of $F|_{Z_{\alpha}^{ss}}$. The conormal bundle of Z_{α}^{ss} in Y_{α}^{ss} has negative weights, so the pushforward functor $D^{b}(Z_{\alpha}^{ss}/L_{\alpha}) \to D^{b}(Y_{\alpha}^{ss}/L_{\alpha})$ maps $D^{b}(Z_{\alpha}^{ss}/L_{\alpha})^{\leq w} \to D^{b}(Y_{\alpha}^{ss}/L_{\alpha})^{\leq w}$.

The map $Y_{\alpha}^{ss}/L_{\alpha} \to Y_{\alpha}^{ss}/P_{\alpha}$ is representable and affine, admitting a presentation by the map $(P_{\alpha}/L_{\alpha}) \times Y_{\alpha}^{ss}/P_{\alpha} \to Y_{\alpha}^{ss}/P_{\alpha}$. The scheme P_{α}/L_{α} is isomorphic to an copy of affine space which is attracted to a single fixed point under the action of $\lambda_{\alpha}(t)$ as $t \to 0$. It follows that under the grading induced by λ_{α} we have $\mathcal{O}_{P_{\alpha}/L_{\alpha}} = k \oplus \bigoplus_{w < 0} A_w$. Using this one can show that the pushforward $QC(Y_{\alpha}^{ss}/L_{\alpha}) \to QC(Y_{\alpha}^{ss}/P_{\alpha})$ maps $QC(Y_{\alpha}^{ss}/L_{\alpha})^{<w}$ to $QC(Y_{\alpha}^{ss}/P_{\alpha})^{<w}$, and it also maps $D^b(Y_{\alpha}^{ss}/L_{\alpha})$ to $D^b(Y_{\alpha}^{ss}/P_{\alpha})^{\wedge}$. This implies (using the criteria of Lemma 1.2) that the pushforward functor maps $D^b(Y_{\alpha}^{ss}/L_{\alpha})^{\wedge}$ to $D^b(Y_{\alpha}^{ss}/P_{\alpha})^{\wedge}$.

Proposition 5.5. The complex $e(N_{Z_{\alpha}^{ss}}X)$ is a unit in $K_0(D^b(Z_{\alpha}^{ss}/L_{\alpha})^{\wedge})$, and in $K_0(D^b(X/G)^{\wedge})$ we have,

$$[R\underline{\Gamma}_{S_{\alpha}}\mathfrak{O}_{X}] = (\sigma_{\alpha})_{*} \left(\frac{e(\mathfrak{O}_{Z_{\alpha}^{\mathrm{ss}}}\otimes\mathfrak{g}^{\lambda_{\alpha}\neq0})}{e(N_{Z_{\alpha}^{\mathrm{ss}}}X)}\right)$$

where $\mathfrak{g}^{\lambda_{\alpha}\neq 0}$ denotes the direct summand of \mathfrak{g} on which λ_{α} acts with non-zero weight.

Remark 5.6. Note that the tangent complex of the stack X/G is a two term complex $\mathcal{O}_X \otimes \mathfrak{g} \to TX$, and the tangent complex of $Z^{ss}_{\alpha}/L_{\alpha}$ is a two term complex $\mathcal{O}_{Z^{ss}_{\alpha}} \otimes \mathfrak{g}^{\lambda_{\alpha}=0} \to TZ^{ss}_{\alpha}$. Therefore $e(\mathcal{O}_{Z^{ss}_{\alpha}} \otimes \mathfrak{g}^{\lambda_{\alpha}\neq 0})/e(N_{Z^{ss}_{\alpha}}X) = e(T_{\sigma_{\alpha}}[-1])^{-1}$, where $T_{\sigma_{\alpha}}$ is the relative tangent complex of the map $\sigma_{\alpha} : Z_{\alpha}/L_{\alpha} \to X/G$, and hence $T_{\sigma_{\alpha}}[-1]$ is the "virtual normal bundle" of the map σ_{α} . When λ_{α} is central, and in particular when G is abelian, $\mathfrak{g} = \mathfrak{g}^{\lambda_{\alpha}=0}$, so this formula simplifies to $(\sigma_{\alpha})_*(e(N_{Z^{ss}_{\alpha}}X)^{-1})$, which is closer to the usual form of the Atiyah-Bott localization formula. {prop:pushfo

Proof. By Theorem 3.1 it suffices to prove the claim for a single closed Θ -stratum $\iota : S \hookrightarrow X$. Using the description of the local cohomology complex as a colimit $R\underline{\Gamma}_S(\mathfrak{O}_X) = \operatorname{colim}_n \underline{\mathrm{RHom}}_X(\mathfrak{O}_X/I_S^n, \mathfrak{O}_X)$, one can deduce that it has a bounded below filtration whose associated graded is

$$\underline{\operatorname{RHom}}_X(\iota_*(\operatorname{Sym}(N_S^{\vee}X)), \mathfrak{O}_X) \simeq \iota_*(\underline{\operatorname{RHom}}_S(\operatorname{Sym}(N_S^{\vee}X), \iota^!(\mathfrak{O}_X)))$$
$$\simeq \iota_*(\det(N_SX) \otimes \operatorname{Sym}(N_SX)[-c])$$

where $c = \operatorname{codim}(S, X)$. Thus factoring the map from the center of the strata as $\sigma : Z^{ss}/L \xrightarrow{\sigma} Y^{ss}/P \simeq S/G \xrightarrow{\iota} X/G$, is suffices to show that

$$\{\texttt{eqn:simp_1}\} \qquad \qquad \sigma_*\left(\frac{e(\mathcal{O}_{Z^{ss}} \otimes \mathfrak{g}^{\lambda \neq 0})}{e(N_{Z^{ss}}X)}\right) = \det(N_S X) \otimes \operatorname{Sym}(N_S X)[-c] \in K_0(\mathrm{D}^b(S/G)^\wedge) \tag{4}$$

The computation at the end of the proof of Lemma 5.1 shows identifies the restriction det $(N_S X|_{Z^{ss}}) \otimes$ Sym $(N_S X|_{Z^{ss}})[-c]$ with $e(N_S X|_{Z^{ss}})^{-1}$, because $N_S X|_{Z^{ss}}$ is a locally free sheaf concentrated in negative weights by construction. On the other hand, we have a short exact sequence $0 \to \mathfrak{g}^{<0} \to (N_{Z^{ss}}X)^{<0} \to N_S X|_{Z^{ss}} \to 0$, so

$$e(N_{Z^{\rm ss}}X)^{-1} = e((N_{Z^{\rm ss}}X)^{>0})^{-1}e(\mathcal{O}_{Z^{\rm ss}}\otimes\mathfrak{g}^{<0})^{-1}e(N_SX|_{Z^{\rm ss}})^{-1}.$$

By the projection formula, in order to verify (4) it suffices to show that

$$\sigma_*\left(e((N_{Z^{\mathrm{ss}}}X)^{>0})^{-1}e(\mathfrak{O}_{Z^{\mathrm{ss}}}\otimes\mathfrak{g}^{>0})\right)=\mathfrak{O}_S\in K_0(\mathrm{D}^b(S/G)^\wedge),$$

which we now verify.

By the projection formula it suffices to show: 1) that the pushforward $D^b(Z^{ss}/L)^{\wedge} \to D^b(Y^{ss}/L)^{\wedge}$ maps $e((N_{Z^{ss}}X)^{>0})^{-1}$ to $\mathcal{O}_{Y^{ss}} \in K_0(D^b(Y^{ss}/L)^{\wedge})$, then 2) that the pushforward $D^b(Y^{ss}/L)^{\wedge} \to D^b(Y^{ss}/P)^{\wedge}$ maps $e(\mathcal{O}_{Y^{ss}} \otimes \mathfrak{g}^{>0})$ to $\mathcal{O}_{Y^{ss}} \in K_0(D^b(Y^{ss}/P)^{\wedge})$:

Step 1: The map $\pi : Y^{ss} \to Z^{ss}$ is a locally trivial fibration of affine spaces with the section given by $\sigma : Z^{ss} \to Y^{ss}$. Under scaling action of the distinguished one parameter subgroup λ , $\pi_* \mathcal{O}_{Y^{ss}}$ is negatively graded with weight 0 piece isomorphic to $\mathcal{O}_{Z^{ss}}$. Using the equivalence between the category of equivariant quasi-coherent sheaves on Y^{ss} and quasi-coherent equivariant sheaves of $\pi_* \mathcal{O}_{Y^{ss}}$ -modules on Z^{ss} , we see that the filtration of $\mathcal{O}_{Y^{ss}}$ by λ -weights has as its associated graded $\sigma_*(\operatorname{Sym}(N_{Z^{ss}}^{\vee}Y^{ss}))$, so these classes are equal in $K_0(\operatorname{D}^b(Y^{ss}/L)^{\wedge})$.⁵ On the other hand $N_{Z^{ss}}^{\vee}Y^{ss} \simeq ((N_{Z^{ss}}X)^{>0})^{\vee}$, so $\operatorname{Sym}(N_{Z^{ss}}^{\vee}Y^{ss}) = e((N_{Z^{ss}}X)^{>0})^{-1}$ by Lemma 5.1.

Step 2: As discussed in the proof of Proposition 5.4, the map $Y^{ss}/L \to Y^{ss}/P$ is affine – it is the relative Spec of the sheaf of algebras $\mathcal{O}_{Y^{ss}} \otimes_k \mathcal{O}_{P/L} \in QC(Y^{ss}/P)$. The object $\mathcal{O}_{Y^{ss}} \otimes \mathfrak{g}^{>0} \in D^b(Y^{ss}/L)$ is the pullback of the complex of the same name in $D^b(Y^{ss}/P)$, so by the projection formula it suffices to show that

$$[\mathcal{O}_{Y^{\mathrm{ss}}} \otimes_k \mathcal{O}_{P/L}] \otimes e(\mathcal{O}_{Y^{\mathrm{ss}}} \otimes \mathfrak{g}^{>0}) = [\mathcal{O}_{Y^{\mathrm{ss}}}] \in K_0(\mathrm{D}^b(Y^{\mathrm{ss}}/P)^{\wedge}).$$

Evidently, all of these classes are pulled back from $D^b(pt/P)^{\wedge}$, so it suffices to verify the identity $[\mathcal{O}_{P/L}]e(\mathfrak{g}^{>0}) = [k] \in K_0(D^b(pt/P)^{\wedge})$. So $\mathcal{O}_{P/L}$ has a filtration whose associated graded is $Sym((\mathfrak{g}^{>0})^*)$, which implies $[\mathcal{O}_{P/L}] = e(\mathfrak{g}^{>0})^{-1}$ and thus our identity.

Our final statement of Atiyah-Bott localization is thus

⁵The latter sum converges because the weights of $\operatorname{Sym}^n(N_{Z^{ss}}^{\vee}Y^{ss})$ approach $-\infty$ as $n \to \infty$.

Corollary 5.7. We have a decomposition of the unit $[\mathcal{O}_X] \in K_0(D^b(X/G)^{\wedge})$ as a finite sum of idempotents

$$[\mathcal{O}_X] = \sum_{\alpha} [R\underline{\Gamma}_{S_{\alpha}}(\mathcal{O}_X)] = \sum_{\alpha} (\sigma_{\alpha})_* \left(\frac{e(\mathcal{O}_{Z_{\alpha}^{\mathrm{ss}}} \otimes \mathfrak{g}^{\lambda_{\alpha} \neq 0})}{e(N_{Z_{\alpha}^{\mathrm{ss}}} X)} \right),$$

where $\sigma_{\alpha}: Z_{\alpha}^{ss}/L_{\alpha} \to X/G$ are the centers of the strata.