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Let X be a smooth proper algebraic variety with a C∗-action. The Atiyah-Bott localization
theorem compares the topology of the fixed locus XC∗ with the topology of X. There are at least
three versions of the localization theorem, which we state here in topological K-theory rather than
in cohomology:

(1) The restriction map Ki
C∗(X)→ Ki

C∗(X
C∗) is a map of finite KC∗(pt)-modules whose kernel

and cokernel is torsion, i.e. it becomes an isomorphism after inverting finitely many elements
of the ground ring,

(2) There is a decomposition of the identity 1X =
∑

α(σα)∗

(
1Zα

e(NZαX)

)
in KC∗(X), where

σα : Zα ↪→ X are the connected components of the fixed locus and e(−) denotes the Euler
class, and

(3) The K-theoretic index localizes on the fixed loci Zα, i.e. χ(X,E) =
∑

α χ(Zα,
EZα

e(NZαX)) for

any equivariant class E ∈ KC∗(X).

For any of these statements, one must invert some elemements of the base ring KC∗(X) and work
with localized K-theory.

There is, however, an isomorphism Ki
C∗(X) ' Ki

C∗(X
C∗) as modules over KC∗(X) which does

not require localization. When the fixed loci Zα consist of individual points, one constructs this
isomorphism quite explicitly by proving that the closures of the Bialynicki-Birula strata of X form a
basis for KC∗(X) as a free KC∗(pt)-module. This version of the localization theorem can be elevated
to a theorem on the derived category of equivariant coherent sheaves on X as an application of
the main structure theorem of [?HL]. Using the Bialynicki-Birula stratification, one can construct
“extension functors” from Db(XC∗/C∗) to Db(X/C∗) which induce an equivalence on algebraic (and
also topologogical) K-theory.1

The difficulty in finding a categorification of (1-3) above rests mainly in the question of what
procedure on the level of categories corresponds to “inverting elements of KC∗(pt).” In this note,
we explain one approach, which is closer in spirit to completion than to localization. We construct
a “completed” category Db(X/C∗)∧ containing Db(X/C∗) as a full subcategory. Db(X/C∗)∧ is a
carefully chosen subcategory of the category of quasi-coherent complexes. Db(X/C∗)∧ is small

1In our notation if G is an algebraic group and X is a G-scheme, then the quotient X/G will always denote the
quotient stack. In particular Db(X/G) denotes the derived category of G-equivariant coherent sheaves on X.
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enough that objects still have finite dimensional hypercohomology, but large enough that versions
of (1),(2), and (3) can be formulated and proved in K0(D

b(X/G)∧).

0.1. What’s in this paper. We actually work in a more general context. Instead of working with
the Bialynicki-Birula stratification of a C∗-action, we work with an arbitrary algebraic group G and
a smooth scheme X with a stratification

X = Xss ∪
⋃
α

Sα

which is G-equivariant and induced a Θ-stratification of X/G (referred to as a KN-stratification
in [?HL]). Xss ⊂ X is the open “semistable” locus. The strongest statements are for the situation
when Xss = ∅. We formulate and prove a version of the “non-abelian” localization theorem of
Witten,Kirwan, and Jeffrey, whose K-theoretic version in the guise of (3) was formulated by Teleman
and Woodward.

Stratifications of this kind typically arise in geometric invariant theory. For a first read of this
note, the reader can keep the following example in mind: λ : C∗ → G is a one parameter subgroup
which is central in G, and X is a smooth variety such that the Bialynicki-Birula strata with respect
to λ cover X. Then Xss = ∅ and X =

⋃
α Sα can be taken as the Bialynicki-Birula stratification,

which will be G-equivariant in this case. The “centers” of the strata Zss
α ⊂ Sα, discussed below, are

just the connected components of the fixed loci Xλ(C∗).
In addition, we work over an arbitrary field.

1. Baric structures and completion

Recall [?achar] that a baric structure on a stable dg-category D is a collection of semiorthogonal
decompositions D =

〈
D<w,D≥w

〉
such that D<w ⊂ D<w+1, or equivalently D≥w ⊂ D≥w−1. By

definition this means that RHom(A,B) = 0 for A ∈ D≥w and B ∈ D<w, and for every object E ∈ D

we have an exact triangle

β≥w(E)→ E → β<w(E)→,
with β≥w(E) ∈ D≥w and β<w(E) ∈ D<w. The semiorthogonality implies that this exact triangle is
unique and functorial, hence our introduction of the baric truncation functors β≥w and β<w.

Given a baric structure on an essentially small stable dg-category D, one obtains a baric strcuture
on the formal ind-completion Ind(D) =

〈
Ind(D)<w, Ind(D)≥w

〉
defined uniquely in such a way that

both factors are co-complete, and the baric truncations functors commute with filtered colimits.

Definition 1.1. Given an essentially small stable dg-category D with a baric structure, we define
the right baric completion to be the full subcategory of E ∈ Ind(D) such that β≥w(E) ∈ D for all w.

The completion D∧ has the following equivalent characterizations:
{lem:characterize}

Lemma 1.2. Assume that the baric structure on D is right bounded, meaning D =
⋃
wD≥w. Then

D∧ ⊂ Ind(D) can be characterized alternatively as the category of objects which can be written as a
filtered colimit F = colimi Pi with Pi ∈ D satisfying either

(1) ∀w ∈ Z, β≥w(Pi)→ β≥w(Pj) is an equivalence for i sufficiently large and all i < j, or
(2) ∀w ∈ Z, Cone(Pi → F ) ∈ Ind(D)<w for i sufficiently large.

Proof. The fact that a filtered colimit of Pi ∈ D satisfying either of these conditions will have
β≥w(F ) ∈ D is an immediate consequence of the fact that β≥w commutes with filtered colimits and
β≥w(Pi) stabilizes for i� 0.

Conversely, note that for any F ∈ Ind(D) we have a canonical diagram · · · → β≥w(F ) →
β≥w−1(F )→ · · · coming from the canonical map β≥w(β≥w−1(F ))→ β≥w−1(F ) and the canonical
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isomorphism β≥w(β≥w−1(F )) ' β≥w(F ). For any P ∈ D the induced map

RHom(P, colimw β
≥w(F ))→ RHom(P, F )

is an equivalence because P is a compact object of Ind(D) (so we may commute RHom(P,−) with
filtered colimits), and P ∈ D≥w for sufficiently low w, which implies that RHom(P, β≥w(F )) '
RHom(P, F ) for all sufficiently low w. It follows, because Ind(D) is generated by P ∈ D that
colimw β

≥w(F )→ F is an equivalence for any F ∈ Ind(D). Now if F ∈ D∧, then each β≥w(F ) ∈ D

by definition, so the presentation F ' colimw β
≥w(F ) is an explicit presentation satisfying (1) and

(2). �

2. Baric structures on equivariant derived categories

Let X/G = Xss∪
⋃
α Sα/G be a Θ-stratification of a smooth quotient stack – we call Xus =

⋃
α Sα

the unstable locus. All we will need to know about these strata is that each contains a smooth locally
closed “center” Zss

α ⊂ Sα which is fixed (pointwise) by a distinguished one paramater subgroup
λα and equivariant with respect to the centralizer Lα of λα. We denote σα : Zss

α /Lα → X/G and
ια : Sα → X.

We choose, once and for all, an integer sα ∈ Z and a positive integer mα ∈ Z for each index α in
the stratification. Any G-equivariant complex restricted to Zss

α decomposes canonically into a direct
sum of complexes whose homology sheaves are concentrated in a single λα-weight. We define

Db(X/G)≥w := {F ∈ Db(X/G)|∀α,H∗(F |Zss
α

) has weights ≥ mαw + sα}

Db
Xus(X/G)<w :=

{
F ∈ Db(X/G)

∣∣∣∣ Supp(F ) ⊂ Xus and
∀α,H∗(F |Zss

α
) has weights < mαw + sα + ηα

}
where “weights” of a coherent sheaf on Zss

α /Lα always refers to λα-weights, and ηα is defined to
be the weight of det(N∨SαX)|Zss

α
. Then categorical Kirwan surjectivity [?HL, ???] provides a baric

structure

Db(X/G) =
〈

Db
Xus(X/G)<w,Db(X/G)≥w

〉
. (1) {eqn:baric}

For any perfect complex, the weights of F |Zss
α

are bounded above and below. It follows that the

baric structure (1) is always right bounded, i.e. D =
⋃
D≥w, and is left bounded, i.e. D =

⋃
D<w,

if and only if Xss = ∅ and hence Xus = X.

Example 2.1. A special case of this is when X = Zss
α and λα is central in G. If we let mα = 1,

then the baric structure (1) is just the direct sum decomposition of Db(Zss
α /Lα) into subcategories

of complexes whose homology has constant λα-weight.

Example 2.2. Another example is when X = S consists of a single Θ-stratum, in which case
Db(S/G) receives a baric sructure. Among the properties established in [?HL] is that for a closed

Θ-stratum S ↪→ X, the functors ι∗ : Db(S/G)→ Db(X/G) and σ∗ : Db(S/G)→ Db(Zss/L) are both
compatible with the baric structures which we’ve discussed.2

Because X/G is a quotient stack in characteristic 0, we have QC(X/G) = Ind(Db(X/G)), so it
inherits a baric structure as well

QC(X/G) =
〈
QC(X/G)<w,QCXus(X/G)≥w

〉
for all w ∈ Z. The truncation functors β≥w : QC(X/G) → QC(X/G)≥w and β<w : QC(X/G) →
QCXus(X/G)<w commute with colimits by definition. The baric truncation functors can be

computed by writing every F ∈ QC(X/G) as a filtered colimit F = colimi Pi with Pi perfect. Then
β≥w(F ) = colimi β

≥w(Pi) and β<w = colimi β
<w(Pi).

2By this we mean a functor C→ D which maps C≥w to D≥w and C<w to D<w.
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Definition 2.3. We define the Db(X/G)∧ ⊂ QC(X/G) to be the right baric completion of Db(X/G)
with respect to the baric structure (1). It consists of complexes such that β≥w(F ) ∈ Db(X/G) for
all w ∈ Z.

The general Lemma 1.2 implies that Db(X/G) can be characterized alternatively as the category
of complexes which can be written as a filtered colimit of perfect complexes F = colimi Pi satisfying
either

(1) ∀w ∈ Z, β≥w(Pi)→ β≥w(Pj) is an equivalence for i sufficiently large and all i < j, or
(2) ∀w ∈ Z, Cone(Pi → F ) ∈ QCXus(X/G)<w for i sufficiently large.

One consequence of this is that the subcategory Db(X/G)∧ ⊂ QC(X/G) does not depend on the
initial choice of integers sα or mα used to define the baric structure on Db(X/G).

Lemma 2.4. Db(X/G)∧ is a stable (i.e. pre-triangulated) dg-subcategory of QC(X/G). It contains
Db(X/G), it is a symmetric monoidal subcategory, and it is idempotent complete.

Proof. Most of these properties are immediate from the definition and the fact that β≥w is an exact
functor of pre-triangulated dg-categories. Let us prove that Db(X/G)∧ is symmetric monoidal: if F
is perfect, then for any E ∈ QC(X/G)

β≥w(F ⊗ E) ' β≥w(F ⊗ β≥v(E)) (2){eqn:trick}

for v < n for some integer n which only depends on the highest weights of F |Zss
α

. This is because
the weights of F |Zss

α
are bounded above for each α, so we can choose a sufficiently large integer n

such that F ⊗ β<v(E) ∈ QCXus(X/G)<v+n for all E ∈ QC(X/G). Thus (2) results from applying
β≥w to the exact triangle F ⊗ β≥v(E)→ F ⊗ E → F ⊗ β<v(E)→.

To deduce that E ⊗ F ∈ Db(X/G)∧ for E,F ∈ Db(X/G)∧, we apply (2) twice. In particular
we use that the highest weights of the perfect complexes β≥w(F )|Zss

α
do not depend on w for w

sufficiently large. We compute

β≥w(F ⊗ E) ' colimv β
≥w(β≥v(F )⊗ E) ' colimv β

≥w(β≥v(F )⊗ β≥u(E))

where u is sufficiently low and does not depend on v. Now commuting the colimit and β≥w once
more, we can identify this with

' β≥w(F ⊗ β≥u(E)) ' β≥w(β≥z(F )⊗ β≥u(E))

where now z is sufficiently low. This will be perfect by hypothesis, hence F ⊗ E ∈ Db(X/G)∧. �

Recall that we say the Θ-strafitication of X/G is complete if Xss/G and Zss
α /G admit projective

good quotients for all α.

Lemma 2.5. If the Θ-stratification of X/G is complete, then for any E ∈ Db(X/G) and F ∈
Db(X/G)∧, the complex RHomX/G(E,F ) has finite dimensional total cohomology.

Proof. It suffices to prove this for E = OX . This is a consequence of the quantization commutes with
reduction theorem [?HL, Theorem 3.29], which implies that RΓ(F ) = RΓ(β≥w(F )) for w sufficiently
low. �

3. The pushforward theorem

Note that if j : U ⊂ X is an open union of strata, then Db(U/G) also has a baric structure
induced by the strata which lie in U . It follows from the exactness of the restriction functor
j∗ : Db(X/G)→ Db(U/G) and the definitions of the categories Db(U/G)≥w and Db

Uus(U/G)<w that
j∗ is compatible with the baric structure. Our main result is the following:
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{thm:main}
Theorem 3.1. Let j : U ⊂ X be an open complement of a union of strata. Then j∗ : QC(U/G)→
QC(X/G) maps Db(U/G)∧ to Db(X/G)∧, where the former is defined with respect to the strata

which lie in U .

Proof. It suffices by a simple inductive argument to assume that the complement of U consists
of a single closed stratum i : S ↪→ X. First of all, note that RΓS(OX) ∈ QC(X/G) actually
lies in Db(X/G)∧ – this is [?HL, Lemma 3.37], and it is proved by considering RΓS(OX) as a
colimit of Koszul complexes. It follows from the exact triangle RΓSOX → OX → j∗(OU ) → that
j∗(OU ) ∈ Db(X/G)∧.

Take F ∈ QC(U), and write F = colimw β
≥w
U (F ), so that we have β≥wU (F ) ∈ Db(X/G) by

hypothesis. Then by the categorical Kirwan surjectivity, we can fix any particular s ∈ Z and
uniquely and functorially lift the complex β≥wU (F ) to a perfect complex Fw ∈ Db(X/G) such that
the weights of Fw|Zss lie in the window [mw+ s,mw+ s+ η) for each w. The quantization theorem
[?HL, Theorem 3.29] implies that the restriction map

RHomX/G(Fw, Fw−1)→ RHomU/G(β≥wU (F ), β≥w−1U (F )),

so we can lift the filtered system · · · → β≥wU (F ) → β≥wU (F ) → · · · uniquely to a filtered system

· · · → Fw → Fw−1 → · · · in Db(X/G). Let us define F̃ := colimw Fw ∈ QC(X/G).
Note that the cone Cone(Fw → Fw−1) is supported set theoretically on Xus. Furthermore the

weights of Cone(Fw → Fw−1)|Zss
α

get lower and lower as w → −∞: for the Zss
α contained in U , this

is because Cone(β≥wU (F )→ β≥w−1U (F )) ' β<wU (β≥w−1U (F )), and for the Zss in the stratum we are
adding this follows from the weight bounds on Fw and Fw−1 individually. Thus for any fixed v,
β≥v(Fw) stabilizes for w sufficiently low, and hence F̃ ∈ Db(X/G)∧. Finally, by construction we have

a canonical equivalence F̃ |U ' F , so F̃ ⊗ j∗(OU ) ' j∗(F ) ∈ Db(X/G)∧ because j∗(OU ) ∈ Db(X/G)∧

and the subcategory is closed under tensor products. �

Definition 3.2. Consider the closed subsets X>α =
⋃
β>α Sβ ⊂ X. For any stratum Sα ⊂ X, we

define the object RΓSα(OX) ∈ QC(X/G) to be the local cohomology complex for the close subset
Sα ↪→ X \X>α pushed forward to X along the open immersion X \X>α.

{cor:filtration}
Corollary 3.3. For all α, RΓSαOX ∈ Db(X/G)∧, as are RΓX>αOX . All of these objects are
idempotent for the symmetric monoidal structure. The the structure sheaf OX thus has a filtration
in Db(X/G)∧

RΓX>NOX → RΓX>N−1
OX → · · · → RΓX>−1

OX → OX

whose associated graded is OXss ⊕
⊕

αRΓSαOX .

Note that if j : U ⊂ X is a G-equivariant open subset and Y = X \ U its close complement, then
one has a semiorthogonal decomposition

QC(X/G) = 〈QC(U/G),QCY (X/G)〉 , (3) {eqn:tautological_SOD}

where the first factor is the essential image of the fully faithful functor j∗, and the second factor
is the subcategory of complexes supported (set theoretically) on Y . For F ∈ QC(X/G) the exact
triangle of this semiorthogonal decomposition is the local cohomology exact triangle RΓY (F )→
F → j∗(F |U )→.

Corollary 3.4. If U ⊂ X is an open union of strata, then the semirthogonal decomposition (3)
induces a semiorthogonal decomposition of Db(X/G)∧ as well.

Proof. This is immediate from Theorem 3.1, which implies that the local cohomology exact triangle
RΓX\U (F )→ F → j∗(F |U )→ lies in Db(X/G)∧. �
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4. Baric completion and K-theory

One can describe the effect of right baric completion on K-theory in general. For a stable dg-
category with baric structure D =

〈
D<w,D≥w

〉
we introduce the notation D[w] = D≥w∩D<w+1, and

let β[w](F ) = β≥wβ<w+1(F ) ' β<w+1β≥w denote the canonical projection onto this subcategory.

Lemma 4.1. Let D =
〈
D<w,D≥w

〉
be a baric structure which is left bounded, i.e. such that

D =
⋃
wD<w.3 Then the functor∏

β[w] : D∧ →
⊕
w≥0

D[w] ⊕
∏
w<0

D[w]

induces an isomorphism in K-theory

K0(D
∧) '

⊕
w≥0

K0(D
[w])⊕

∏
w<0

K0(D
[w])

Proof. The boundedness hypothesis guarantees that the functor
∏
β[w] actually has image in the

full subcategory C :=
⊕

w≥0D
[w]
⊕∏

w<0D
[w] as claimed. K0 commutes with arbitrary direct sums

and products, so K0(C) agrees with the right hand side of the above equality.

It thus suffices to show that
∏
β[w] induces an isomorphism on K-theory. We can define a

one-sided inverse functor φ : C→ D∧ mapping {Aw} 7→
⊕

w Aw. We have (
∏
w β

[w]) ◦ φ ' idC, so
the same holds after applying K0. Conversely for any F ∈ D∧ and any w, we consider the exact
triangle β≥w(F )→ F → β<w(F )→ and the exact triangles β[w−i](F )→ β<w−i+1(F )→ β<w−i(F )
for i ≥ 1. The direct sum of these exact triangles converges to an exact triangle in D∧, so we have

[F ⊕
⊕
i≥1

β<w−i+1(F )] = [
⊕
i≥1

β<w−i+1(F )] + [β≥w(F )⊕
⊕
i≥1

β[w−i](F )]

So choosing w � 0 large enough so that β≥w(F ) = 0, we have [F ] = [
⊕

i≥1 β
[w−i](F )] ∈ K0(D

∧),

and hence φ ◦ (
∏
β[w]) ' idK0(D∧). �

In our setting, the baric structure of Db(X/G) will be left bounded if and only if Xss = ∅. Let us
fix an invertible sheaf L ∈ Pic(X/G) such that the weight of L|Zss

α
is < 0 for all α.

Example 4.2. If the stratification of X arises from geometric invariant theory, the G-ample bundle
used to define the stratification will satsify this condition.

Example 4.3. If the stratification of X is the Bialynicki-Birula stratification associated to a central
one parameter subgroup of G, then we can let L = OX ⊗ χ where χ is a character of G which pair
negatively with this one-parameter-subgroup.

Given such an invertible sheaf, we regard both K0(X/G) and K0(Z
ss
α /Lα) as Z[u±]-modules,

where u acts by L⊗ (−). We also use L to fix our choice of parameters mα = −wt(L|Zss
α

) in the

definition of our baric structure of Db(X/G) and Db(Zss
α /Lα).

{thm:K_theory}
Theorem 4.4. Assume that Xss = ∅ and choose L and mα as above. Then for any w we have a
canonical equivalence4

K0(D
b(X/G)[w])((u))→ K0(D

b(X/G)∧),

mapping
∑

i[Ei]u
i 7→ [

⊕
i L
⊗i ⊗ Ei]. Futhermore if K0(Db(Zss

α /Lα)[w]) is finitely generated for all
α, then we have a canonical equivalence

K0(D
b(X/G))⊗Z[u±] Z((u))→ K0(D

b(X/G)∧)

3This is equivalent to β≥w(F ) = 0 for w � 0.
4The notaion M((u)) denotes the group M [[u]][u−1], which differs from M ⊗ Z((u)) if M is not finitely generated.
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given by the same formula.

Remark 4.5. It is possible to rephrase the condition on Zss
α /Lα in the theorem: Zss

α /Lα is a
Gm-gerbe over Zss

α /L
′
α, where L′α = Lα/λ(α). The Brauer group class of this gerbe is torsion. The

condition in the statement of the theorem is equivalent to asking that the category of twisted perfect
complexes on Zα/L

′
α, twisted by any power of this gerbe, has finitely generated K0.

Example 4.6. Let λ : Gm → G be a one parameter subgroup which is central in G, and let G
act on a smooth variety X such that the Bialynicki-Birula stratification on X is exhaustive, and
K0(Xλ(Gm)) is a finitely generated abelian group – for instance it could consist of isolated points, or
it could admit a stratification by affine spaces. Then Theorem 4.4 implies that

K0(D
b(X/G)∧) ' K0(D

b(X/G))⊗Z[u±] Z((u)).

Before proving this theorem let us say a bit more about the structure of the category Db(X/G)[w].
{prop:fixed_points}

Proposition 4.7. If Xss = ∅, then Db(X/G)[w] has a finite semiorthogonal decomposition

Db(X/G)[w] = 〈A0
0, . . . ,A

m0−1
0 ,A0

1, . . . ,A
m1−1
1 , . . . ,A0

N , . . . ,A
mN−1
N 〉,

where the functor of restriction to Zss
α /Lα followed by projection onto the weight mαw + i + sα

summand defines an equivalence

Ai
α ' {F ∈ Db(Zss

α /Lα)|H∗(F ) is concentrated in weight mαw + i+ sα}
for i = 0, . . . ,mα − 1. These equivalence combined with the inclusion into Db(Zss

α /Lα) defines a
functor

Db(X/G)[w]
gr−→
⊕
α,i

Ai
α →

⊕
α

Db(Zss
α /Lα)[w]

which induces an isomorphism in K-theory.

Proof. The semiorthogonal decomposition is a consequence of [?HL, ???]. We refer the reader to
that paper for an explicit description of the categories Ai

α. Informally, the objects in Ai
α arise from

pulling back complexes concentrated in constant weight along a canonical map πα : Sα/G→ Zss
α /Lα,

then pushing forward to X \X>α and extending uniquely over the strata Sβ using grade restriction

rules. On the other hand, Db(Zss
α /Lα)[w] consists by definition of complexes whose homology has

weights concentrated in the interval [mαw+ sα, . . . ,mαw+mα − 1 + sα]. Hence this category has a
semiorthogonal decomposition (in fact a direct sum decomposition) whose summands are identified
canonically with the Ai

α. The result follows from the fact that K-theory takes semiorthogonal
decompositions to direct sums. �

Remark 4.8. One can define the inverse of the equivalenceK0(Db(X/G)[w]) '
⊕

αK0(Db(Zss
α /Lα)[w])

a bit more explicitly by unravelling the main theorem of [?HL]. The image of the pullback functor

π∗α : Db(Zss
α /Lα)[w] → Db(Sα/G)[w] generates and induces an equivalence on K-theory. We compose

π∗α with the pushforward functor (ια)∗ : Db(Sα/G)→ Db((X \X>α)/G)[w], followed by the functorial

extension functor Db((X \X>α)/G)→ Db(X/G)[w] determined by a grade restriction rule to define
a functor ⊕

α

Db(Zss
α /Lα)[w] → Db(X/G)[w].

This is an equivalence on K-theory, and in fact the image freely generates K0(D
b(X/G)) as a

Z[u±]-module.

Remark 4.9. A word of caution: The restriction functor σ∗ : Db(X/G)→
⊕

α Db(Zss
α /Lα) is not

compatible with the baric structures on the respective categories. For a complex F ∈ Db(X/G)<w

the weights of F |Zss
α /Lα

by definition are < mαw + sα + ηα, whereas Db(Zss
α /Lα)<w consists of
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complexes whose weights are < mαw + sα. As a consequence σ∗α does not map Db(X/G)[w] to

Db(Zss
α /Lα)[w], and this functor is not suitable for comparing the K-theory of these two categories.

We will, however, study the restriction map in ?? below.

Proof of Theorem 4.4. The choice of mα = −wt(L|Zss
α

) implies that L ⊗ (−) is an equivalence

Db(X/G)≥w → Db(X/G)≥w−1 and likewise for Db(X/G)<w and Db(X/G)[w]. The first claim is
thus an immediate consequence of the lemma above.

For the second claim, Proposition 4.7 implies that K0(D
b(X/G)[w]) is finitely generated if

K0(D
b(Zss

α /Lα)[w]) is finitely generated for all α. One can use the fact that the baric struc-
ture on Db(X/G) is bounded along with the observation above to show that K0(D

b(X/G)) '
K0(Db(X/G)[w])⊗Z[u±], where the equivalence maps

∑
i[Ei]u

i 7→ [
⊕
L⊗i⊗Ei]. If K0(Db(X/G)[w])

is a finitely generated abelian group, then the canonical map

K0(D
b(X/G)[w])⊗ Z[u±]⊗Z[u±] Z((u)) ' K0(D

b(X/G)[w])⊗ Z((u))→ K0(D
b(X/G)[w])((u))

is an equivalence, hence the claim. �

5. Expressions involving the centers of the strata

We work in the same context as the previous section, so Xss = ∅, and L ∈ Pic(X/G) is an
appropriately chosen invertible sheaf. The usual formulation of Atiyah-Bott localization involves
statements involving the centers Zssα /Lα of the strata. The key observation is the following

{lem:units}
Lemma 5.1. Let E be a locally free sheaf on Zss

α /Lα whose weight 0 piece is trivial. Then

e(E) :=
∑

i(−1)i[
∧iE∗] ∈ K0(D

b(Zss
α /Lα)∧) is a unit.

Proof. First decompose E = E+ ⊕E− into summands of positive and negative weight respectively.
Because e(E) = e(E+) ·e(E−), it suffices to prove the lemma for each individually. (E+)∗ has strictly
negative weights, and hence the object Sym((E+)∗) :=

⊕
n≥0 Symn((E+)∗) lies in Db(Zss

α /Lα)∧.

The usual formal computation showing that Sym((E+)∗)⊗
∧

((E+)∗) ∼ OZss
α
∈ K0(D

b(Zss
α /Lα)∧)

is actually rigorous because these complexes are well-defined in the completed category. On the

other hand e(E−) = (−1)rank(E
−) det(E−)∨ ⊗ e((E−)∗). The invertible sheaf is a unit, and now the

previous argument shows that e(E−) is a unit as well with

e(E−)−1 = (−1)rank(E
−) det(E−)⊗ Sym(E−)

�

Remark 5.2. It follows from this that we can define e(E) for any complex E ∈ Db(Zss
α /Lα) whose

homology vanishes in weight 0. To do this, we choose a presentation as a finite complex of locally
free sheaves → · · ·E1 → E0 → · · · . Because the homology vanishes in weight 0 we may discard the
weight zero piece of each locally free sheaf Ei in this presentation, so we may assume that E0

i = 0.

Then we define e(E) =
∏
i e(Ei)

(−1)i . This is the unique extension of e to a group homomorphism

K0(D
b(Zss

α /Lα) 6=0)→ K0(D
b(Zss

α /Lα)∧)×.

Proposition 5.3. The restriction functor σ∗ induces an equivalence

K0(D
b(X/G)∧) '

⊕
α

K0(D
b(Zss

α /Lα)∧) ' K0(D
b(Zss

α /Lα)[w])((u)).

Proof. Note that even though the restriction functor σ∗α : Db(X/G)→ Db(Zss
α /Lα) is not compatible

with the baric structures, it is compatible with the baric structures up to a finite shift in weights,
and hence it maps Db(X/G)∧ to Db(Zss

α /Lα)∧.
8



We apply Theorem 4.4 directly to the stack
⊔
α Z

ss
α /Lα itself to obtain an isomoprhism⊕

α

K0(D
b(Zss

α /Lα)∧) '
⊕
α

K0(D
b(Zss

α /Lα)[w])((u)).

Then we compose this with the isomoprhism of Proposition 4.7 and Theorem 4.4⊕
α

K0(D
b(Zss

α /Lα)[w])((u)) ' K0(D
b(X/G)[w])((u)) ' K0(D

b(X/G)∧).

Finally we compose this with the restriction functor to
⊕

α Db(Zss
α /Lα)∧. If one traces through

these maps, one finds that the composition
⊕

αK0(D
b(Zss

α /Lα)∧) →
⊕

αK0(D
b(Zss

α /Lα)∧) is

multiplication by
⊕
e(NSαX). Hence by Lemma 5.1 the restriction functor K0(D

b(X/G)∧) →⊕
αK0(Db(Zss

α /Lα)∧) differs from a known equivalence by multiplication by a unit, and it is therefore
also an equivalence. �

We now reformulate our version of the localization theorem in the more familiar terms of [?AB].
{prop:pushforward}

Proposition 5.4. The pushforward functor (σα)∗ : QC(Zss
α /Lα)→ QC(X/G) maps Db(Zss

α /Lα)∧

to Db(X/G)∧.

Proof. Because the functor (ια)∗ : Db(Sα/G) → Db(X/G) is compatible with the baric structure,
if suffices to show that the pushforward (σα)∗ : QC(Zss

α /Lα)→ QC(Sα/G) maps Db(Zss
α /Lα)∧ to

Db(Sα/G)∧. It suffices to show that (σα)∗ maps Db(Zss
α /Lα)<w to Db(Sα/G)<w+n for some fixed

integer n, independent of w.
In order to study this, we use a different presentation of the stack Sα/G ' Y ss

α /Pα, where
Y ss
α → Zss

α is the Bialynicki-Birula stratum associated to the distinguished one parameter subgroup
λα, and Pα ⊂ G is the parabolic subgroup associated to λα. Then the section σα : Zss

α /Lα → Y ss
α /Pα

factors as closed immersion Zss
α /Lα ↪→ Y ss

α /Lα followed by the projection Y ss
α /Lα → Y ss

α /Pα.
The stack Y ss

α /Lα is also a Θ-stratum with center Zss
α /Lα, so Db(Y ss

α /Lα) has a baric structure
according to the weights of F |Zss

α
. The conormal bundle of Zss

α in Y ss
α has negative weights, so the

pushforward functor Db(Zss
α /Lα)→ Db(Y ss

α /Lα) maps Db(Zss
α /Lα)<w → Db(Y ss

α /Lα)<w.
The map Y ss

α /Lα → Y ss
α /Pα is representable and affine, admitting a presentation by the map

(Pα/Lα)× Y ss
α /Pα → Y ss

α /Pα. The scheme Pα/Lα is isomorphic to an copy of affine space which is
attracted to a single fixed point under the action of λα(t) as t→ 0. It follows that under the grading
induced by λα we have OPα/Lα = k ⊕

⊕
w<0Aw. Using this one can show that the pushforward

QC(Y ss
α /Lα)→ QC(Y ss

α /Pα) maps QC(Y ss
α /Lα)<w to QC(Y ss

α /Pα)<w, and it also maps Db(Y ss
α /Lα)

to Db(Y ss
α /Pα)∧. This implies (using the criteria of Lemma 1.2) that the pushforward functor maps

Db(Y ss
α /Lα)∧ to Db(Y ss

α /Pα)∧. �

Proposition 5.5. The complex e(NZss
α
X) is a unit in K0(Db(Zss

α /Lα)∧), and in K0(Db(X/G)∧)
we have,

[RΓSαOX ] = (σα)∗

(
e(OZss

α
⊗ gλα 6=0)

e(NZss
α
X)

)
.

where gλα 6=0 denotes the direct summand of g on which λα acts with non-zero weight.

Remark 5.6. Note that the tangent complex of the stack X/G is a two term complex OX⊗g→ TX,
and the tangent complex of Zss

α /Lα is a two term complex OZss
α
⊗ gλα=0 → TZss

α . Therefore

e(OZss
α
⊗ gλα 6=0)/e(NZss

α
X) = e(Tσα [−1])−1, where Tσα is the relative tangent complex of the map

σα : Zα/Lα → X/G, and hence Tσα [−1] is the “virtual normal bundle” of the map σα. When
λα is central, and in particular when G is abelian, g = gλα=0, so this formula simplifies to
(σα)∗(e(NZss

α
X)−1), which is closer to the usual form of the Atiyah-Bott localization formula.
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Proof. By Theorem 3.1 it suffices to prove the claim for a single closed Θ-stratum ι : S ↪→ X. Using
the description of the local cohomology complex as a colimitRΓS(OX) = colimn RHomX(OX/I

n
S ,OX),

one can deduce that it has a bounded below filtration whose associated graded is

RHomX(ι∗(Sym(N∨SX)),OX) ' ι∗(RHomS(Sym(N∨SX), ι!(OX))

' ι∗ (det(NSX)⊗ Sym(NSX)[−c])

where c = codim(S,X). Thus factoring the map from the center of the strata as σ : Zss/L
σ−→

Y ss/P ' S/G ι−→ X/G, is suffices to show that

σ∗

(
e(OZss ⊗ gλ 6=0)

e(NZssX)

)
= det(NSX)⊗ Sym(NSX)[−c] ∈ K0(D

b(S/G)∧) (4){eqn:simp_1}

The computation at the end of the proof of Lemma 5.1 shows identifies the restriction det(NSX|Zss)⊗
Sym(NSX|Zss)[−c] with e(NSX|Zss)−1, because NSX|Zss is a locally free sheaf concentrated in

negative weights by construction. On the other hand, we have a short exact sequence 0→ g<0 →
(NZssX)<0 → NSX|Zss → 0, so

e(NZssX)−1 = e((NZssX)>0)−1e(OZss ⊗ g<0)−1e(NSX|Zss)−1.

By the projection formula, in order to verify (4) it suffices to show that

σ∗
(
e((NZssX)>0)−1e(OZss ⊗ g>0)

)
= OS ∈ K0(D

b(S/G)∧),

which we now verify.
By the projection formula it suffices to show: 1) that the pushforward Db(Zss/L)∧ → Db(Y ss/L)∧

maps e((NZssX)>0)−1 to OY ss ∈ K0(D
b(Y ss/L)∧), then 2) that the pushforward Db(Y ss/L)∧ →

Db(Y ss/P )∧ maps e(OY ss ⊗ g>0) to OY ss ∈ K0(D
b(Y ss/P )∧):

Step 1: The map π : Y ss → Zss is a locally trivial fibration of affine spaces with the section
given by σ : Zss → Y ss. Under scaling action of the distinguished one parameter subgroup λ,
π∗OY ss is negatively graded with weight 0 piece isomorphic to OZss . Using the equivalence between
the category of equivariant quasi-coherent sheaves on Y ss and quasi-coherent equivariant sheaves
of π∗OY ss-modules on Zss, we see that the filtration of OY ss by λ-weights has as its associated
graded σ∗(Sym(N∨ZssY ss)), so these classes are equal in K0(D

b(Y ss/L)∧).5 On the other hand
N∨ZssY ss ' ((NZssX)>0)∨, so Sym(N∨ZssY ss) = e((NZssX)>0)−1 by Lemma 5.1.

Step 2: As discussed in the proof of Proposition 5.4, the map Y ss/L→ Y ss/P is affine – it is the
relative Spec of the sheaf of algebras OY ss⊗kOP/L ∈ QC(Y ss/P ). The object OY ss⊗g>0 ∈ Db(Y ss/L)

is the pullback of the complex of the same name in Db(Y ss/P ), so by the projection formula it
suffices to show that

[OY ss ⊗k OP/L]⊗ e(OY ss ⊗ g>0) = [OY ss ] ∈ K0(D
b(Y ss/P )∧).

Evidently, all of these classes are pulled back from Db(pt /P )∧, so it suffices to verify the iden-
tity [OP/L]e(g>0) = [k] ∈ K0(D

b(pt /P )∧). So OP/L has a filtration whose associated graded is

Sym((g>0)∗), which implies [OP/L] = e(g>0)−1 and thus our identity.

�

Our final statement of Atiyah-Bott localization is thus

5The latter sum converges because the weights of Symn(N∨ZssY ss) approach −∞ as n→∞.
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Corollary 5.7. We have a decomposition of the unit [OX ] ∈ K0(Db(X/G)∧) as a finite sum of
idempotents

[OX ] =
∑
α

[RΓSα(OX)] =
∑
α

(σα)∗

(
e(OZss

α
⊗ gλα 6=0)

e(NZss
α
X)

)
,

where σα : Zss
α /Lα → X/G are the centers of the strata.
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