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True/False. Please circle TRUE if the statement is always true, or FALSE if it fails in at least
one example. You do not need to justify your answer, and I will not read what you write in the
spaces below.

(a) Any matrix A ∈M3(R) has an eigenvector in Rn. True False

(b) If V is a finite-dimensional inner product space, a vector v ∈ V is uniquely determined by the
values of the function w 7→ 〈v, w〉 (for all w ∈W ). True False

(c) Every matrix A ∈Mn(Q) has a Jordan canonical form J ∈Mn(Q). True False

(d) There is a unique alternating multilinear function ω : (Rn)n → R satisfying ω(e1, . . . , en) = 3.

True False

(e) Any solutions to the system of linear differential equations dy1/dx = 2y1 + y2 and dy2/dx =
y1 + 2y2 must consist of linear combinations of exponential functions eλx for λ ∈ R.

True False
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Short answer. What are the dimensions of the following vector spaces? (Your answer should
either be “infinity” or a nonnegative integer). You do not need to justify your responses. We will
only grade your final answer, circled or written in the space provided.

(a) V1 = C2 as an R-vector space. dim(V1) =

(b) V2 = {A ∈M4(R) : tr(A) = 0} as an R-vector space. dim(V2) =

Here tr is the trace function, taking A to the sum of its diagonal entries.

(c) V3 = {f ∈ Fp[x] : f(a) = 0 for all a ∈ F17} (i.e. the set of all dim(V3) =

polynomials over the finite field F17 that have value zero everywhere),
as an F17-vector space.

(d) V4 = F17[x]/V3 (a quotient space involving the subspace defined dim(V4) =

in part (c)), as an F17-vector space.

(e) V5 is a subspace of R9, such that there’s another subspace W satisfying dim(V5) =

dim(V5) = dim(W ), dim(V5 +W ) = 7, and dim(V5 ∩W ) = 3.
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Question 1.

(a) Prove that given n scalars λ1, . . . , λn in a field F , the formula

det


1 λ1 λ21 · · · λn−11

1 λ2 λ22 · · · λn−12

1 λ3 λ23 · · · λn−13
...

...
...

. . .
...

1 λn λ2n · · · λn−1n

 =
∏

1≤i<j≤n
(λj − λi).

holds, where the product is over all pairs of integers (i, j) satisfying 1 ≤ i < j ≤ n. You
probably want to proceed by induction on n. (This is called the Vandermonde determinant).
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(b) Suppose that V is an n-dimensional vector space over F , and T : V → V is diagonalizable
with n distinct eigenvalues λ1, . . . , λn and associated basis of eigenvectors v1, . . . , vn. Prove
that b = v1 + · · ·+ vn is a cyclic vector, i.e. that {b, T (b), . . . , Tn−1(b)} spans V .

(c) Conversely, show that if T : V → V is diagonalizable and has a repeated eigenvalue then
T is not cyclic. (Remember that this means you have to rule out every possible vector from
being a cyclic vector).
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Question 2. Consider the symmetric matrix

A =

 4 2 1
2 4 −1
1 −1 1

 ∈M3(R).

Compute and factor the characteristic polynomial of A, find a diagonal matrix D similar to A,
and an orthogonal matrix U such that A = UDU>. (Remember an orthogonal matrix must have
orthonormal columns!)
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Question 3. Consider the matrix

A =


2 0 0 −1
0 2 0 −1
−1 1 2 −1
−1 1 0 1

 ∈M4(C),

which has characteristic polynomial

cA(x) = (x− 2)3(x− 1).

(a) Compute a Jordan canonical form J for A, and the change-of-basis matrix P such that A =
PJP−1.
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(b) Write down the minimal polynomial mA(x) for the matrix A, and justify why it is the min-
imal polynomial. Use the minimal polynomial to write a formula expressing A−1 as a linear
combination of I, A, and A2. (You don’t need to actually compute out the matrix A−1 from
this formula).

(c) Compute a square root of J , compute P−1, and write out the three matrices P ,
√
J , and

P−1. If you multiplied them together you would get a square root P
√
JP−1 of A, but the

multiplication is pretty ugly so you do not need to do it.
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Question 4.

(a) Write down the Jordan canonical forms representing similarity classes of nilpotent 4 × 4
matrices in M4(C). (So every 4× 4 nilpotent matrix should be similar to exactly one of the
matrices you listed!).

(b) Which of the JCFs from part (a) have a square root, i.e. for which of the J that you wrote
down does there exist A ∈ M4(C) with A2 = J? (Remember, the theorem from class about
square root existing doesn’t apply to nilpotent matrices! But for each matrix you wrote down,
you should either be able to find such an A or prove that none exists).
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This page is for scratch work.

Don’t forget to transfer your final work to the page where the question is posed!
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This page is for scratch work.

Don’t forget to transfer your final work to the page where the question is posed!


