Math 4310 Final Exam Solutions

True/False. (a) True. Remember that having an eigenvector is the same as having an eigenvalue, i.e. that the characteristic polynomial $c_{A}(x)$ has a root; since $c_{A}(x)$ is a degree 3 polynomial, basic calculus tells us it must cross the x-axis.
(b) True. This is the uniqueness part of the Riesz representation theorem.
(c) False. The eigenvalues of A (and thus the Jordan canonical form) may lie outside of \mathbb{Q}.
(d) True. The function $\omega=3$ det is satisfies these properties, and conversely if ω satisfies them then $\frac{1}{3} \omega$ is multilinear, alternating, and normalized so must equal det.
(e) True. Since this system corresponds to a symmetric matrix, it is diagonalizable over \mathbb{R}, and if the eigenvalues are $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ then we know y_{1} and y_{2} must be linear combinations of $e^{\lambda_{1} x}$ and $e^{\lambda_{2} x}$. (In fact the eigenvalues are 1 and 3).

Short answer. (a) $\operatorname{dim}\left(V_{1}\right)=4$. Remember \mathbb{C} is 2 -dimensional as a real vector space and thus a product of two copies of \mathbb{C} is 4 -dimensional.
(b) $\operatorname{dim}\left(V_{2}\right)=15$. Here $M_{4}(\mathbb{R})$ is a 16 -dimensional vector space, and $\operatorname{tr}: M_{4}(\mathbb{R}) \rightarrow \mathbb{R}$ is a linear transformation with kernel equal to V_{2}. By the rank-nullity theorem (and noting that $\operatorname{img} \operatorname{tr}=\mathbb{R}$ so tr has rank 1) we get $\operatorname{dim}\left(V_{2}\right)=15$.
(c) $\operatorname{dim}\left(V_{3}\right)=\infty$. One way to see this is remembering that the polynomial $p_{0}(x)=x^{17}-x$ takes the value zero everywhere, and thus so does each polynomial $p_{k}(x)=x^{k}\left(x^{17}-x\right)$, and all of these are linearly independent.
(d) $\operatorname{dim}\left(V_{4}\right)=17$. To see this (which implies the answer to part (c)) we can use the first isomorphism theorem for the linear map $\mathbb{F}_{17}[x] \rightarrow\left(\mathbb{F}_{17}\right)^{17}$ which takes a polynomial to its values at each of the 17 elements of \mathbb{F}_{17}. This map has kernel V_{3}, so $\mathbb{F}_{17}[x] / V_{3}$ is isomorphic to the image, and it's not too hard to see it's surjective (this can be done by looking at Lagrange interpolation polynomials, for instance).
(e) $\operatorname{dim}\left(V_{5}\right)=5$. Remember we have a formula

$$
\operatorname{dim}\left(V_{5}+W\right)=\operatorname{dim}\left(V_{5}\right)+\operatorname{dim}(W)-\operatorname{dim}\left(V_{5} \cap W\right)
$$

plugging in what we have gives $7=2 \operatorname{dim}\left(V_{5}\right)-3$ which we then solve.

Problem 1. (a) Denote the matrix in question by V_{n}; assume that we know the desired identity for V_{n-1}. To compute the determinant of V_{n}, we start by subtracting the first row from each other row:

$$
\operatorname{det}\left(V_{n}\right)=\operatorname{det}\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
0 & \lambda_{2}-\lambda_{1} & \lambda_{2}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{2}^{n-1}-\lambda_{1}^{n-1} \\
0 & \lambda_{3}-\lambda_{1} & \lambda_{3}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{3}^{n-1}-\lambda_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \lambda_{n}-\lambda_{1} & \lambda_{n}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{n}^{n-1}-\lambda_{1}^{n-1}
\end{array}\right]
$$

Since the first column has just one nonzero entry we get

$$
\operatorname{det}\left(V_{n}\right)=\operatorname{det}\left[\begin{array}{cccc}
\lambda_{2}-\lambda_{1} & \lambda_{2}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{2}^{n-1}-\lambda_{1}^{n-1} \\
\lambda_{3}-\lambda_{1} & \lambda_{3}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{3}^{n-1}-\lambda_{1}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{n}-\lambda_{1} & \lambda_{n}^{2}-\lambda_{1}^{2} & \cdots & \lambda_{n}^{n-1}-\lambda_{1}^{n-1}
\end{array}\right]
$$

This matrix isn't quite V_{n-1}, so we're not done yet. However, we can fix that with column operations: if we add λ_{1} times the $(n-2)$-th column to the $(n-1)$-th column it turns the $\lambda_{i}^{n-1}-\lambda_{1}^{n-1}$ entries into
$\left(\lambda_{i}-\lambda_{1}\right) \lambda_{2}^{n-2}$, and then we can add λ_{1} times the $(n-3)$-th column to the $(n-2)$-th column, and so on. We get

$$
\operatorname{det}\left(V_{n}\right)=\operatorname{det}\left[\begin{array}{cccc}
\lambda_{2}-\lambda_{1} & \left(\lambda_{2}-\lambda_{1}\right) \lambda_{2} & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \lambda_{2}^{n-2} \\
\lambda_{3}-\lambda_{1} & \left(\lambda_{3}-\lambda_{1}\right) \lambda_{3} & \cdots & \left(\lambda_{3}-\lambda_{1}\right) \lambda_{3}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{n}-\lambda_{1} & \left(\lambda_{n}-\lambda_{1}\right) \lambda_{n} & \cdots & \left(\lambda_{n}-\lambda_{1}\right) \lambda_{n}^{n-2}
\end{array}\right]
$$

Factoring out $\lambda_{i}-\lambda_{1}$ from each row we get

$$
\operatorname{det}\left(V_{n}\right)=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda_{1}\right) \cdot \operatorname{det}\left[\begin{array}{cccc}
1 & \lambda_{2} & \cdots & \lambda_{2}^{n-2} \\
1 & \lambda_{3} & \cdots & \lambda_{3}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{n} & \cdots & \lambda_{n}^{n-2}
\end{array}\right]
$$

But this is an $(n-1) \times(n-1)$ Vandermonde determinant (with entries $\lambda_{2}, \ldots, \lambda_{n}$) so by induction we have

$$
\operatorname{det}\left(V_{n}\right)=\prod_{j=1}^{n}\left(\lambda_{j}-\lambda_{1}\right) \cdot \prod_{2 \leq i<j \leq n}\left(\lambda_{j}-\lambda_{i}\right)
$$

which combines to the formula we want.
(b) By definition, we have $T^{j}(b)=\sum_{i} T^{j}\left(v_{i}\right)=\sum_{i} \lambda_{i}^{j} b_{i}$. So if we put $b, T(b), \ldots, T^{n-1}(b)$ into coordinates for the basis $\left\{v_{1}, \ldots, v_{n}\right\}$, the coordinate vectors we get form the columns of the Vandermonde matrix

$$
\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
1 & \lambda_{3} & \lambda_{3}^{2} & \cdots & \lambda_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]
$$

Part (a) gives a formula for the determinant of this matrix, which is nonzero since we're assuming all of the λ_{i} 's are distinct. So the matrix is nonsingular, which means the columns are a basis of \mathbb{R}^{n}, and thus the vectors $b, T(b), \ldots, T(b)^{n-1}$ they represent are a basis of V.
(c) Since V is diagonalizable, let v_{1}, \ldots, v_{n} be a basis of eigenvectors, with $T\left(v_{i}\right)=\lambda_{i} v_{i}$. Moreover, since we're assuming there's a repeated eigenvalue, assume $\lambda_{1}=\lambda_{2}$.

We now want to show that an arbitrary vector

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

is not a cyclic vector. To do this, we note that v lies in the subspace

$$
W=L\left(a_{1} v_{1}+a_{2} v_{2}, v_{3}, \ldots, v_{n}\right) \subsetneq V
$$

and we claim $T[W] \subseteq W$; if this is true then certainly $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ must stay inside W as well, so v can't be cyclic! But this follows by seeing that T keeps each of the vectors in the spanning set inside W; we have $T\left(v_{i}\right)=v_{i} \in W$ for $3 \leq i \leq n$, and also

$$
T\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2} v_{2}=\lambda_{1}\left(a_{1} v_{1}+a_{2} v_{2}\right) \in W
$$

because $\lambda_{1}=\lambda_{2}$.

Problem 2. Computing out and factoring $\operatorname{det}(A-x I)$ results in

$$
c_{A}(x)=-x(x-3)(x-6)
$$

so we know the diagonal matrix is

$$
D=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

To find the matrix U, we just need to take its columns to be eigenvectors v_{1}, v_{2}, v_{3} with eigenvalues $6,3,0$, respectively, which are normalized with respect to the dot product on \mathbb{R}^{3}.

The vector v_{3} is something in the span of $\operatorname{ker}(A)$ itself; row-reduction lets us get that the kernel is spanned by $\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right]$ and normalizing we find

$$
v_{3}=\left[\begin{array}{c}
-1 / \sqrt{6} \\
1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right]
$$

Similarly, for v_{2} we need to find something that spans the kernel of $A-3 I$:

$$
A-3 I=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
1 & -1 & -2
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 / \sqrt{3} \\
-1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right] .
$$

For v_{1} we look at $A-6 I$:

$$
A-6 I=\left[\begin{array}{ccc}
-2 & 2 & 1 \\
2 & -2 & -1 \\
1 & -1 & -4
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right] .
$$

Putting these together in the right order we find that we can take:

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{3} & -1 / \sqrt{6} \\
1 / \sqrt{2} & -1 / \sqrt{3} & 1 / \sqrt{6} \\
0 & 1 / \sqrt{3} & 2 / \sqrt{6}
\end{array}\right]
$$

Problem 3. (a) Since we're told the characteristic polynomial, we know that the eigenvalues will be 1 and 2. The eigenvalue 1 has multiplicity 1 , so there will be a unique eigenvector for it; we'll call that v_{4}. It's easy enough to find by looking at $A-1 \cdot I$ and finding its kernel:

$$
A-I=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
-1 & 1 & 1 & -1 \\
-1 & 1 & 0 & 0
\end{array}\right] \quad v_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The eigenvalue 2 has multiplicity 3 , so we need to look at the kernel of $A-2 I$ and its powers to see what Jordan blocks we get. We have:

$$
A-2 I=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 \\
-1 & 1 & 0 & -1 \\
-1 & 1 & 0 & -1
\end{array}\right] \quad \operatorname{ker}(A-2 I)=L\left(e_{1}+e_{2}, e_{3}\right)
$$

From this we can see $\operatorname{dim} \operatorname{ker}(A-2 I)=2$, so there are two Jordan blocks; so at this point we know we have Jordan canonical form

$$
J=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Moreover, our change-of-basis matrix P will have columns [$v_{1} v_{2} v_{3} v_{4}$] where v_{4} is our eigenvector for $\lambda=1$ from before, and v_{1}, v_{2}, v_{3} are generalized eigenvectors for $\lambda=2$. In particular, for it to be of this form we need to have that v_{1} is something in $\operatorname{ker}(A-2 I)^{2}$ but not $\operatorname{ker}(A-2 I)$, that $v_{2}=(A-2 I) v_{1}$, and that v_{3} is an element of $\operatorname{ker}\left(A-2 I\right.$) (i.e. an eigenvector with eigenvalue 2) linearly independent from v_{2}.

So we need to find $\operatorname{ker}(A-2 I)^{2}$; this is a computation again:

$$
(A-2 I)^{2}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1 \\
1 & -1 & 0 & 1
\end{array}\right] \quad \operatorname{ker}(A-2 I)^{2}=L\left(e_{1}+e_{2}, e_{3}, e_{1}-e_{4}\right)
$$

We have plenty of choices of vectors in $\operatorname{ker}(A-2 I)^{2}$ but not in $\operatorname{ker}(A-2 I)$; let's pick $v_{1}=e_{1}-e_{4}$, so we then have

$$
v_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \quad v_{2}=(A-2 I) v_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Finally, we need to pick v_{3} in $\operatorname{ker}(A-2 I)=L\left(e_{1}+e_{2}, e_{3}\right)$ that's linearly independent from $v_{2}=e_{1}+e_{2}$; the obvious choice is $v_{3}=e_{3}$. Thus our change-of-basis matrix is

$$
P=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

(b) The minimal polynomial is $(x-2)^{2}(x-1)$; this is easiest to see from the Jordan canonical form. We need at least one factor of $(x-2)$ and of $(x-1)$ in our polynomial to kill off the diagonal elements, and since we have a Jordan block of size 2 it's not hard to see that $(A-2 I)^{2}(A-I)=0$ but $(A-2 I)(A-I) \neq 0$.

Expanding this out, the minimal polynomial is $m_{A}(x)=x^{3}-5 x^{2}+8 x-4$, so we know

$$
A^{3}-5 A^{2}+8 A-4 I=0
$$

Multiplying through by A^{-1} and rearranging we get the formula

$$
A^{-1}=\frac{1}{4}\left(A^{2}-5 A+8 I\right)
$$

(c) Since we have an expression $A=P J P^{-1}$, we can find a square root of A by finding a square root \sqrt{J} of J and taking $\sqrt{A}=P \sqrt{J} P^{-1}$. It's easy to find a square root of J; we take a square root of each of the diagonal elements, and then it's not hard to find what to fill in below the diagonal to get back the one nontrivial Jordan block we have:

$$
\sqrt{J}=\left[\begin{array}{cccc}
\sqrt{2} & 0 & 0 & 0 \\
\frac{1}{2 \sqrt{2}} & \sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

We then just need to multiply $P \sqrt{J} P^{-1}$. Computing P^{-1} out isn't too hard, and we get

$$
\sqrt{A}=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\sqrt{2} & 0 & 0 & 0 \\
\frac{1}{2 \sqrt{2}} & \sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & 0 & 1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right]
$$

Multiplying this would be a huge pain, of course.

Problem 4. (a) Nilpotent matrices are exactly the ones with all eigenvalues 0 , so this just amounts to writing down the possible combinations of Jordan block sizes that add up to 4 ; there are 5 of them:

$$
\begin{gathered}
J_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
J_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(b) The answer is trivially yes for J_{1} since it's the zero matrix; we can take the zero matrix to be a square root as well. It's also straightforward to show that the answer is no for J_{4} and J_{5}; both of those matrices satisfy $J^{2} \neq 0$, so if they had a square root A it would satisfy $A^{4} \neq 0$ but still be nilpotent, and we know no 4×4 nilpotent matrix can satisfy $A^{4} \neq 0$.

For J_{2} and J_{3} the answer turns out to be yes; we could cook up matrices that work, but it's probably more instructive to think in terms of the linear transformations. For instance J_{2} gives a linear transformation $T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ which satisfies $T\left(e_{2}\right)=T\left(e_{3}\right)=T\left(e_{4}\right)=0$ and $T\left(e_{1}\right)=e_{2}$. If S is a square root of that linear transformation, then we need $S\left(S\left(e_{1}\right)\right)=e_{2}$; to accomplish this we might as well define $S\left(e_{1}\right)=e_{3}$ and $S\left(e_{3}\right)=e_{2}$. Then we need $S\left(S\left(e_{3}\right)\right)=S\left(e_{2}\right)=0$ as well, which gives us $S\left(S\left(e_{2}\right)\right)=0$ for free. If we set $S\left(e_{4}\right)=0$, we've defined a linear transformation S by specifying it on a basis, and shown that it satisfies $S^{2}=T$ on this basis. So S is a square root of the linear transformation T, and thus the matrix of S is a square root of J_{2}.

The logic for J_{3} is similar: this one determines a linear transformation T with $T\left(e_{2}\right)=T\left(e_{4}\right)=0$, $T\left(e_{1}\right)=e_{2}$, and $T\left(e_{3}\right)=T\left(e_{4}\right)$. To get S satisfying $S^{2}=T$, we can set $S\left(e_{1}\right)=e_{3}, S\left(e_{2}\right)=0$, and $S\left(e_{3}\right)=e_{2}$ again, which makes S^{2} agree with T on e_{1}, e_{2}, e_{3}. Finally, we need $S\left(S\left(e_{4}\right)\right)=e_{3}$ as well. But we've already set $S\left(e_{2}\right)=e_{3}$, so if we define $S\left(e_{4}\right)=e_{2}$ then we have $S\left(S\left(e_{4}\right)\right)=e_{3}$, which is what we want! So this specifies an S which is a square root of T, and thus determines a square root of J_{3}.

