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True/False. Please circle TRUE if the statement is always true, or FALSE if it fails in at least
one example. You do not need to justify your answer, and I will not read what you write in the
spaces below. [5 points each]

(a) The subset I of R consisting of irrational numbers is a field (under the usual algebraic opera-
tions for real numbers).

True False

(b) If V is a vector space over a field and v ∈ V is a nonzero vector, v + v must be nonzero.

True False

(c) The set of polynomials

{a0 + a1x+ · · ·+ anx
n ∈ R[x] : ai = 0 for all odd numbers i}

is a subspace of the R-vector space R[x] of all real polynomials.

True False

(d) It’s possible for there to be an R-linear transformation T : R9 → R9 with ker(T ) = img(T ).

True False

(e) For any integer k, the quotient space R[x]/Uk is finite-dimensional over R, where Uk is the
subspace of polynomials that vanish to order k + 1 at x = 0:

Uk =

{
f(x) ∈ R[x] : f(0) = 0,

df

dx
(0) = 0, . . . ,

dkf

dxk
(0) = 0

}
.

True False
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Question 1. Let V be a vector space over a field F , and let W ⊆ V be a subspace.

(a) Suppose both W and V/W are finite-dimensional. Prove that V is also finite-dimensional.
(Warning: you can’t use formulas about dimension since we only stated those under the
assumption V was already finite-dimensional!) [20 points]
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(b) If V is infinite-dimensional, then we must be in one of the following three cases:

(1) W is finite-dimensional and V/W is infinite-dimensional.

(2) W is infinite-dimensional and V/W is finite-dimensional.

(3) W is infinite-dimensional and V/W is infinite-dimensional.

For each of these three possibilities, write down an explicit example satisfying it with V = F [x]
(and W a subspace you choose). Justify that your spaces W and V/W are finite- or infinite-
dimensional as appropriate in each case. [15 points]
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Question 2. Let V,W be finite-dimensional and nontrivial (i.e. V,W 6= 0) vector spaces over a
field F . Recall that the Linear Extension Theorem told us that if B was a basis of V , then any
function T0 : B →W extended to exactly one linear transformations T : V →W .

(a) Suppose that E is a spanning set of V that is not linearly independent, and T0 : E →W is a
function. Which of “none”, “exactly one”, or “more than one” are possibilities for the number of
extensions of T0 to a linear transformation T : V →W? Justify your answer (show examples
of the ones you say are possibilities, and prove that the others cannot happen). [20 points]
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(b) Suppose that D is a linearly independent set of V that does not span, and T0 : D → W is a
function. Which of “none”, “exactly one”, or “more than one” are possibilities for the number of
extensions of T0 to a linear transformation T : V →W? Justify your answer (show examples
of the ones you say are possibilities, and prove that the others cannot happen). [20 points]
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Definition 1. A field is a set F together with two binary operations1 + and · which satisfy

1. (Associativity of addition): For any a, b, c ∈ F we have (a+ b) + c = a+ (b+ c).

2. (Commutativity of addition): For any a, b ∈ F we have a+ b = b+ a.

3. (Additive identity): There exists an element 0 ∈ F such that for every a ∈ F , we have
a+ 0 = a.

4. (Additive inverses): For each a ∈ F there exists an element −a ∈ F such that a+ (−a) = 0.

5. (Distributivity of multiplication over addition): For any a, b, c ∈ F we have (a+ b)c = ac+ bc.

6. (Associativity of multiplication): For any a, b, c ∈ F we have (ab)c = a(bc).

7. (Commutativity of multiplication): For any a, b ∈ F we have ab = ba.

8. (Multiplicative identity): There exists an element 1 ∈ F (which is not equal to 0) such that
for every a ∈ F , we have a · 1 = a.

9. (Multiplicative inverses): For each nonzero a ∈ F there exists an element a−1 ∈ F such that
a · a−1 = 1.

Definition 2. A vector space over a field F is a set V together with two operations2 + : V ×V → V
and · : F × V → V which satisfy

1. (Associativity of addition): For any u, v, w ∈ V we have (u+ v) + w = u+ (v + w).

2. (Commutativity of addition): For any v, w ∈ V we have v + w = w + v.

3. (Additive identity): There exists an element 0 ∈ V such that for every v ∈ V , we have
v + 0 = v.

4. (Additive inverses): For each v ∈ V there exists an element −v ∈ V such that v + (−v) = 0.

5. (Distributivity of scalar multiplication over vector addition): For for any a ∈ F and v, w ∈ V
we have a(v + w) = av + aw.

6. (Distributivity of scalar multiplication over scalar addition): For for any a, b ∈ F and v ∈ V
we have (a+ b)v = av + bv.

7. (Compatibility of multiplications): For any a, b ∈ F and v ∈ V we have (ab)v = a(bv).

8. (Compatibility of the multiplicative identity): For any v ∈ V we have 1v = v.

1Saying that + and · are binary operations implicitly assumes that they are well-defined, and that the sum and
product of two elements of F is again in F .

2Saying that + and · are binary operations implicitly assumes that they are well-defined, and that the sum and
scalar product is again a vector in V .



Math 4310 Prelim I (03/04/2016) 7

This page is for scratch work.

Don’t forget to transfer your final work to the page where the question is posed!
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This page is for scratch work.

Don’t forget to transfer your final work to the page where the question is posed!


