Math 4310 Prelim 1 Solutions

Problem 1. (a) False; since 0 is a rational number, $0 \notin \mathbb{I}$ and thus \mathbb{I} doesn't have an additive identity! (Among many other problems).
(b) False; if F has characteristic 2 (e.g. $F=\mathbb{F}_{2}$) then $v+v=2_{F} v=0 v=0$.
(c) True. It's easy to see it contains 0 and is closed under addition and scalar multiplication.
(d) False. The rank-nullity theorem in this case tells us $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{img}(T)=9$, so if $\operatorname{ker}(T)=\operatorname{img}(T)$ then we get $2 \operatorname{dim} \operatorname{ker}(T)=9$, which is impossible since dimensions have to be integers.
(e) True. The linear transformation $T: \mathbb{R}[x] \rightarrow \mathbb{R}^{k+1}$ given by $f \mapsto\left(f(0), \frac{d f}{d x}(0), \ldots, \frac{d^{k} f}{d x^{k}}(0)\right)$ has kernel U_{k}, and then the first isomorphism theorem tells us $\mathbb{R}[x] / U_{k} \cong \operatorname{img} T$ where $\operatorname{img} T$ is some subspace of \mathbb{R}^{k+1} and thus is finite-dimensional. (In fact $\operatorname{img} T=\mathbb{R}^{k+1}$).

Problem 1. (a) W being finite-dimensional means that it has a finite spanning set w_{1}, \ldots, w_{m}, and V / W being finite-dimensional means that it has a finite spanning set $v_{1}+W, \ldots, v_{n}+W$. We claim that $w_{1}, \ldots, w_{m}, v_{1}, \ldots, v_{n}$ is a finite spanning set for V (where we've taken the spanning set for W together with coset representatives for the spanning set for V).

To see this, suppose $v \in V$. Then $v+W$ is in V / W and can be written as a linear combination of the $v_{i}+W$'s:

$$
v+W=\sum_{i=1}^{n} a_{i}\left(v_{i}+W\right)=\left(\sum_{i=1}^{n} a_{i} v_{i}\right)+W
$$

By definition of V / W as a quotient space, this equality means that $v-\sum a_{i} v_{i} \in W$. But since the w_{i} 's span W, we have $v-\sum_{i=1}^{n} a_{i} v_{i}=\sum_{j=1}^{m} b_{j} w_{j}$ which rearranges to let us write our arbitrary $v \in V$ in the span of the v_{i} 's and w_{j} 's.
(b) For $V=F[x]$, we can take:

- $W=0$ (the trivial subspace) gives W finite-dimensional and $V / W \cong F[x]$ infinite-dimensional.
- $W=F[x]$ gives W infinite-dimensional and $V=F[x]$ finite-dimensional.
- If we let $W=L\left(x, x^{3}, x^{5}, \cdots\right)$ be the span of even-power monomials, then W and V / W are both infinite-dimensional: W is infinite-dimensional because it's the span of an infinite subset of a basis of $F[x]$, and moreover if we define $T: F[x] \rightarrow F[x]$ by $\sum a_{i} x^{i} \mapsto \sum a_{2 i} x^{i}$ we find that W is the kernel of T and T is surjective so the first isomorphism theorem gives $V / W \cong F[x]$ is infinite-dimensional.

Problem 2. (a) There are "none" or "exactly one". To see that there's at most one (i.e. that "more than one" is impossible) note that E contains a basis B; then if $T: V \rightarrow W$ is a linear extension of $T_{0}: E \rightarrow W$, it has to be a linear extension of the restriction $T_{0}: B \rightarrow W$, and there is exactly one such restriction.

For examples, let $V=W=\mathbb{R}$ and $E=\{1,2\}$. Then if $T_{0}: E \rightarrow \mathbb{R}$ is defined by $T_{0}(1)=1$ and $T_{0}(2)=2$ it has exactly one extension, $T(x)=x$. But if $T_{0}: E \rightarrow \mathbb{R}$ is defined by $T_{0}(1)=T_{0}(2)=1$ then it has no extensions: any linear extension T would have to satisfy

$$
1=T_{0}(2)=T_{0}(2 \cdot 1)=2 \cdot T_{0}(1)=2 \cdot 1=2
$$

which is a contradiction.
(b) There will always be "more than one". Since D is linearly independent but does not span, it can be extended to a basis $D^{\prime}=D \cup\left\{v_{1}, \ldots, v_{k}\right\}$ where $k \geq 1$. Then we can define many extensions of the function $T_{0}: D \rightarrow W$ to functions $T_{1}: D^{\prime} \rightarrow W$ (because we can choose $T_{1}\left(v_{1}\right)$ to be any vector in W we want), and each of these many extensions T_{1} has a unique extension further to a linear transformation $T: V \rightarrow W$ that extends T_{0}.

