
Math 4310 Handout - Isomorphism Theorems
Dan Collins

Now that we’ve talked about linear transformations, quotient spaces will (finally) start to show up more
naturally. I’ll start by going back and giving a careful proof of one of the theorems I mentioned in class:

Proposition 1. Let V be a finite-dimensional vector space and W a subspace. Then V/W is finite-
dimensional and dim(V/W ) = dimV − dimW .

Proof. Let w1, . . . , wm be a basis for W ; by the Basis Extension Theorem we can extend this to a basis
w1, . . . , wm, vm+1, . . . , vn for V (so n = dimV and m = dimW ). I claim that the cosets

vm+1 +W, . . . , vn +W ∈ V/W

form a basis for V/W ; since this is a list of n−m elements it will prove the theorem.
To prove that this is a basis, we need to show that it’s linearly independent and that it spans. For

spanning, suppose we have an arbitrary element v+W ∈ V/W , where we’ve written this with a representative
v picked out. By using that w1, . . . , wm, vm+1, . . . , vn is a basis for V we find we can (uniquely) write

v = a1w1 + · · ·+ amwm + am+1vm+1 + · · ·+ anvn.

Passing from this equality in V to one in the quotient set V/W , we have

v +W =
(
a1w1 + · · ·+ amwm + am+1vm+1 + · · ·+ anvn

)
+W

= a1(w1 +W ) + · · ·+ am(wm +W ) + am+1(vm+1 +W ) + · · ·+ an(vn +W ).

But since each wi is actually in W already, the coset wi+W is just the trivial coset W , i.e. the zero element
of the vector space V/W . So we actually have

v +W = am+1(vm+1 +W ) + · · ·+ an(vn +W ).

Since v +W is an arbitrary element of V/W this tells us the set vm+1 +W, . . . , vn +W spans.
We next need to check linear independence. So assume we have a dependence relation

bm+1(vm+1 +W ) + · · ·+ bn(vn +W ) = (bm+1vm+1 + · · ·+ bnvn) +W = 0 +W

in V/W . By definition of equality of cosets this means

bm+1vm+1 + · · ·+ bnvn ∈W,

and thus we can uniquely write this element as a linear combination b1w1 + · · · + bmwm in using that
{w1, . . . , wm} is a basis for W . But then the equality

b1w1 + · · ·+ bmwm = bm+1vm+1 + · · ·+ bnvn

rearranges to a dependence relation on the set w1, . . . , wm, vm+1, . . . , vn, which is a basis for V ; so all of the
coefficients bi have to be trivial.

The first isomorphism theorem. In class we’ve talked about the rank-nullity theorem: if T : V → W
is a linear transformation and V is finite-dimensional, we have an equation that we can write as

dim img(T ) = dimV − dimker(T ).

Here, ker(T ) is a subspace of V , so we can form the quotient space V/ ker(T ). If we look at the proposition
I proved above, we also find

dimV/ ker(T ) = dimV − dimker(T ).

So the rank-nullity theorem can be rephrased as saying “the image img(T ) and the quotient space V/ ker(T )
always have the same dimension”! An abstract result known as the first isomorphism theorem says something
even better, that img(T ) and V/ ker(T ) are actually isomorphic in a very natural way.
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Theorem 2 (First isomorphism theorem). Let V be a vector space and T : V →W a linear transformation.
Then T induces an isomorphism τ : V/ ker(T )→ img(T ) defined by

τ(v + ker(T )) = T (v).

Proof. First of all, we need to make sure this makes sense. Since we’re defining τ on the coset v+ker(T ) in
terms of the representative v, we need to check well-definedness, i.e. that if v+ker(T ) = v′+ker(T ) then the
values T (v) and T (v′) we’re trying to assign as outputs are equal. But v, v′ being in the same coset means
v′ − v is in ker(T ), and thus

T (v′) = T ((v′ − v) + v) = T (v′ − v) + T (v) = 0 + T (v) = T (v).

So the map is well-defined. And since all of the values T (v) lie inside of img(T ) by definition, we don’t have
any problems with the codomain either.

So τ is a well-defined function; to show it’s an isomorphism we need to show that it’s linear, that it’s
injective, and that it’s surjective. All of these are pretty straightforward. Linearity follows from linearity of
T :

τ
(
(v+ker(T ))+(v′+ker(T ))

)
= τ(v+v′+ker(T )) = T (v+v′) = T (v)+T (v′) = τ(v+ker(T ))+τ(v′+ker(T )),

τ
(
a(v + ker(T ))

)
= τ(av + ker(T )) = T (av) = a · T (v) = aτ(v + ker(T )).

For injectivity, we need to check that if τ(v + ker(T )) = 0 then v + ker(T ) = 0; but this is basically trivial
because if τ(v + ker(T )) = T (v) = 0 then v ∈ ker(T ) by definition. For surjectivity, any element of img(T )
can be written as T (v) for some v ∈ V and thus is equal to τ(v + img(T )).

We can think of the first isomorphism theorem as a “refined version” of the rank-nullity theorem: it
gives us an explicit, specific way of constructing an isomorphism V/ ker(T ) ∼= img(T ), and knowing this
isomorphism tells us dimV/ ker(T ) = dim img(T ) (which is a rephrasing of the rank-nullity theorem).

If we started with the rank-nullity theorem instead, the fact that dimV/ ker(T ) = dim img(T ) tells us
that there is some way to construct an isomorphism V/ ker(T ) = img(T ), but doesn’t tell us anything much
about what such an isomorphism would look like. The first isomorphism theorem does tell us what the
isomorphism is, and shows that it comes pretty directly from T itself.

The universal mapping property. If you go back to the proof of the first isomorphism theorem, really
most of the work is in showing that if we start with T : V → W , then we get a well-defined “induced map”
τ : V/ ker(T )→ img(T ). That sort of argument works in a bit more generality, which gives us the following
important result:

Theorem 3 (Universal mapping property for quotient spaces). Let F be a field, V,W vector spaces over
F , T : V → W a linear transformation, and U ⊆ V a subspace. If U ⊆ ker(T ), then there is a unique
well-defined linear transformation τ : V/U →W given by τ(v + U) = T (v).

If π : V → V/U is the canonical projection (i.e. the linear transformation given by π(v) = v +W ), this
can be rephrased as saying that there’s a unique well-defined linear transformation τ satisfying τ ◦ π = T .
We can think of this as saying T “factors through” the quotient space V/U : starting with a map V → W ,
we can actually split it up as two maps V → V/U →W .

Proof. This is basically the same proof as above (minus the last few lines). To see τ is well-defined on a coset
v + U we need to check that if v + U = v′ + U then T (v) = T (v′); but this follows because v + U = v′ + U
means v− v′ ∈ U and thus v− v′ ∈ ker(T ) because U is contained in the kernel. Then we have T (v− v′) = 0
by definition, and rearranging and using linearity gives T (v) = T (v′). Linearity is then a formal consequence
of linearity of T :

τ
(
(v + U) + (v′ + U)

)
= τ(v + v′ + U) = T (v + v′) = T (v) + T (v′) = τ(v + U) + τ(v′ + U),

τ
(
a(v + U)

)
= τ(av + U) = T (av) = a · T (v) = aτ(v + U).
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This gives us a systematic way of constructing linear transformations on quotient spaces: to get a linear
transformation V/U →W , we just need to start with a linear transformation V →W which is trivial on U
(i.e. has the kernel containing U). The terminology “universal mapping property” refers to any framework
like this: starting with a function T satisfying some certain properties, we can conclude there exists a unique
map τ defined in a certain way in terms of T .

Example 4. At this point, a fair question to ask is “why do I actually need to work with linear transforma-
tions defined on quotient spaces”? Like the question of “why do I actually need to work with quotient spaces”,
it’s hard to give an answer entirely within linear algebra itself: most of the important uses of quotient spaces
come up when you apply linear algebra to other subjects.

So I’ll give an example building off of the Extended Example 1 (of the space L2(I), of “square-integrable
functions [0, 1] → R) in the “quotient vector spaces” handout. In that example, we defined L2(I) to be the
space of integrable functions f : I → R such that

∫ 1

0
|f |2dx < ∞, and then as the quotient of this by the

subspace U of all functions that were “almost everywhere zero”.
To work with this space L2(I) in analysis, we want to be able to integrate functions on it! Say we fix

some function like sin(2πx), and we want to consider the linear functional of “integrating against it”:

f 7→
∫ 1

0

f(x) sin(2πx)dx.

This makes perfect sense for any f in the actual space of functions L2(I), and gives us a linear transformation
L2(I) → R. But what we’d really like is a linear transformation L2(I) → R. Fortunately, the universal
mapping property lets us do this! If f is in the subspace U of “almost everywhere zero” functions, then
f(x) sin(2πx) is also “almost everywhere zero”, so its integral is zero. Thus f 7→

∫ 1

0
f(x) sin(2πx)dx is trivial

on the subspace U , and the Universal Mapping Property tells us that we actually get a homomorphism
L2(I)→ R given by

[f ] = f + U 7→
∫ 1

0

f(x) sin(2πx)dx.

This is the functional that recovers one of the Fourier coefficients of f (which, again, makes sense: we’ve
said that Fourier series only make sense up to “equality almost everywhere”!)

The other isomorphism theorems. From the name “the first isomorphism theorem”, you can probably
guess that there’s a few more “isomorphism theorems” to go along with it. (The universal mapping property
can sometimes be grouped in with them as well). These other isomorphism theorems are a bit less important
to us in this class, but they’re indispensable if you’re going to be seriously working with quotient spaces.

The “second isomorphism theorem” concerns what happens when you have a vector space V and two
subspaces U,W , and you take a quotient (U +W )/W . Your first thought might be that you can “cancel
out the W s” and just be left with something isomorphic to U - this is close to correct, but you need to
compensate for any overlap between U and W .

Theorem 5 (Second isomorphism theorem). Let V be a vector space and U,W ⊆ V two subspaces. Then
there’s an isomorphism of quotient spaces

U

U ∩W
∼=
U +W

W

given by u+ (U ∩W ) 7→ u+W .

The “third isomorphism theorem” is about quotient spaces of quotient spaces, which are pretty unpleasant
to think about if you’re not already really comfortable with quotient spaces.

Theorem 6 (Third isomorphism theorem). Let V be a vector space, W a subspace of V , and U a subspace
of W . Then the quotient space W/U is itself a subspace of the quotient space V/U , and we have a canonical
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isomorphism
V/U

W/U
∼= V/W

by mapping (v + U) +W/U (a coset in V/U by the subspace W/U !) to v +W .

There’s one last theorem usually grouped with these, which is usually called the “correspondence theorem”
or “lattice isomorphism theorem” and tells you about all of the subspaces in a quotient. We take the notation
that Sub(V ) denotes the collection of all subspaces of V .

Theorem 7 (Corresponcence theorem). Let V be a vector space and W a subspace of V . Then there is a
bijective correspondence

Sub(V/W )↔ {U ∈ Sub(V ) :W ⊆ U ⊆ V },

given by taking a subspace U with W ⊆ U ⊆ V to the subspace U/W to V/W . This correspondence preserves
sums and intersections: if we add or intersect two subspaces U1/W and U2/W of V/W we get

U1

W
+
U2

W
=
U1 + U2

W

U1

W
∩ U2

W
=
U1 ∩ U2

W
.

This characterizes Sub(V/W ) in terms of a subset of Sub(V ). Actually, the set Sub(V ) of subspaces
naturally has a partial order (by inclusion), and it’s a lattice with respect to this partial order: any two
subspaces U1, U2 have a join U1 +U2 (a “least upper bound”) and a join U1 ∩U2 (a “greatest lower bound”).
The last part of the theorem tells us that the lattice structure Sub(V/W ) is compatible with the lattice
structure on the sublattice {U :W ⊆ U ⊆ V } of Sub(V ), hence the name “lattice isomorphism theorem”.

I’m omitting the proofs of these theorems in this section; trying to prove them yourself might be a good
way to get in better practice with quotient spaces! (In all of the cases I’ve told you exactly what the function
you need to look at is; what’s left to check is that it’s actually an isomorphism).
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