Chapter 2

The Finite Element Method

In this chapter we wish to discuss methods for approximating solutions to a two-point boundary
value problem. We shall give a quick overview of the finite difference method, which is developed
from the strong form of the TPBVP, and then move on to the finite element method, which is derived
from the weak form of the TPBVP. We will reserve discussion of the use of the finite element method
in the minimization form of the problem until we deal with nonlinear equations later in the course.

2.1 The Finite Difference Method

We begin by giving a brief description of the finite difference method with no accompanying math-
ematical analysis. Although this course focuses on the finite element method, the finite difference
method was in widespread use before the finite element method gained acceptance, and it is still a
good method for use in some applications. Its use and mathematical analysis become problematic,
however, when it is used on problems with complicated geometry or boundary conditions—problems
which arise particularly often in engineering applications and for which the finite element method is
particularly well-suited.

As we stated above, the finite difference method is developed from the strong form of the TPBVP.
We begin with the definition of a derivative

. u(x+h) —u(x)
"(z) = lim ———F—— >,
u'(z) Lim 3
Actually, it works better if we begin with a centered difference instead of a right-hand difference:

o (z) = ’11% u(z + h/2) ;u(m — h/2)

Instead of taking a limit, however, we approximate the derivative of u at by some finite difference:
W(z) ~ w(z + h/2) —u(z — h/2)-
h
We next introduce a shorthand for this difference quotient. Let
u(z + h/2) —u(z — h/2)
h

Dpu(z) =

13

14 CHAPTER 2. THE FINITE ELEMENT METHOD

In order to set up the finite difference method for a two-point boundary value problem, we first
introduce a regular grid of points. Let n > 0 be an integer, and let z; = -, ¢ =0,...,n. Thus o =0
and z,, = 1. Let also h = %, so that ;41 — z; = h for all i. We then discretize the problem

—(au') = fin (0,1),
w0 = wl)=0 (2.1)

~—
|

by replacing derivatives with difference quotients:

—Dp(aDpu)(z;) f f(z;) foralli=1,..,n—1, (2.2)

u(0) u(1) =0.

In order to complete the discretization of (2.1), we replace the quantities u(z;) with unknowns
Uk, i =0,..,n—1, that is, we seek to find U} such that u(z;) ~ U}. Obviously, we should let
Ul = U = 0. We next rewrite the first portion of (2.2) as

—Dh(a($i)u($i+h/2);u($i_h/2)) — _ofzith/2)(u(zith)—u(zi)) a(af:1 h/2)(u(z;)—u(z;—h))
_alzith/2)(u(zit1)— U(zz)) a(zz h/2)(u(zs) —u(@i-1)) F(z5).
(2.3)
We then substitute U}* for u(z;) in (2.3) and set the resulting expression equal to f(z;) to obtain

Ca(@i+)(Um—vh)h—Qa(“DO U _ iy o,

Thus the finite difference method results in n — 1 equations in n — 1 unknowns U}, i = 1, ...,n (recall
that we have fixed U and U/ already). We thus may rewrite the problem in vector-matrix form. Let

= [U};U%; ..;U"] be the column vector of unknowns, and let F = [f(z1); f(z2);-; f(zrn_1)]-
Also, let a; = a(z; +), and let A be the matrix

(ag + a1) —a, 0 0 0
1 —aa (a1 + az) —as 0 0
2 0 ' ' 0
0 0 —an-—3 (an—3 + an—2) —Qnp—2
0 0 0 —Qp_2 (an—2 + an—1)

Then we may find the unknown vector U by solving the linear system AU = F. The unknowns U;
then serve as an approximation to u(z;), i =1,...,n — 1.

2.2 Galerkin’s Method

2.2.1 Fourier expansions

The finite element method is a special type of what is known as a Galerkin method, so called
because it was invented by the Russian engineer Galerkin about 1915. The basic idea of Galerkin’s
method is to replace an infinite-dimensional vector space of functions (A in our case) with a finite-
dimensional vector space of functions which is contained in the original infinite-dimensional space.

2.2. GALERKIN’S METHOD 15

One may think of solving the weak form of a TPBVP as something like solving an infinite set of
linear equations (a fact we demonstrate below), and Galerkin approximations may be computed
by solving a finite set of linear equations. Thus Galerkin’s method may somewhat imprecisely be
thought of as approximating the solution of an infinite set of linear equations with the solution of a
finite set of linear equations.

We use Fourier analysis to demonstrate how a TPBVP may be thought of as an infinite set of
linear equations. Let u € A. Then u has a Fourier expansion u(z) = uo+_ ;- (a; sin miz+b; cos wiz).
We consider the weak Neumann problem: Find u € A such that

L(u,v) = (f,v), veA (2.4)

Any v € A has a Fourier expansion of the form v(z) = vo + > ;- (¢; sinmiz + d; coswiz). For the
sake of convenience, we let Yo = 1, 2;—1(x) = sinwiz, a;(x) = cosmiz, va;—1 = ¢;, and vy; = d;.
Then we may rewrite the Fourier expansion of v as v(z) = Y .-, v;¢;(z). Roughly speaking, then,
the set {1;}i=0,1,2... is a basis for A. Thus if u satisfies

E(ua¢j) = (f; 'ij)ﬂ .7 Z 05 (25)
we find that
L(u,v) = L(u, 3520 0545) = 2500 viL(u, ¥5) = 252005 (F45) = (f, X520 vits) = (f,0)-

Thus (2.5) is (at least formally) equivalent with the weak form (2.4). Writing u = Y o, uithi, we
rewrite (2.5) as

L(u,0) = > L@, ¥) = (£,95), 3§20 (2:6)
=0

(2.6) is an infinite set of linear equations in an infinite number of unknowns u;, i > 0. We note
that if we can find the coefficients u;, i > 0, we have found v (or more precisely, we have found
the Fourier coefficients of u) and have thus solved the weak form of our equation. Thus the weak
solution of a two-point boundary value problem may essentially be found by solving an infinite set
of linear equations in an infinite number of unknowns.

2.2.2 A more general TPBVP
We shall now consider a TPBVP with lower-order terms, or more precisely, we consider the problem
—(a(2)w'(2))' + b(z)u'(z) + c(z) = f(z) in (0,1)

with Neumann or Dirichlet (or mixed) boundary conditions. We now write

1 1 1
L(u,v) z/ au'v' d$+/ bu' da:+/ cuv dz
0 0 0

and
Lypu(u,v) = L{u,v) — vov(0) + v1v(1), (2.7

where 19 = a(0)u'(0) and v = a(1)u'(1). Then a weak Dirichlet problem may be written as: Find
u € Apir such that
L(u,v) = (f,v) for all v € Ay,

16 CHAPTER 2. THE FINITE ELEMENT METHOD

while a weak Neumann problem may be written as: Find u € A such that
Lneu(u,v) = (f,v) for all v € A.

As long as b = 0, we may, as in Section 1.4, consider £ to be an inner product on A (or Ag). If b
is nonzero, L(u,v) # L(v,u) in general, so L is no longer an inner product. It still has most of the
same properties, however, and we shall basically treat it as an inner product. Similarly, with some
restrictions on the coefficients a, b, and ¢, ||u||eng = \/£(u,u) is a norm on Ay (or A) as before.

2.2.3 Galerkin’s method

Galerkin’s method involves approximating the infinite-dimensional space of admissible functions in
a weak problem (A, Ao, or Ap; in our case) with an N-dimensional space Sy, then rewriting the
weak problem with the finite-dimensional space taking the place of the infinite-dimensional space.
This leads to a finite-dimensional set of linear equations which may then be solved. We consider a
Neumann problem to start with. Let Sy C A be a finite-dimensional vector space having dimension
N. Then Galerkin’s method is to find uny € Sy such that

[,(UN,UN) = (f, UN) for all vy € Sn. (2.8)

(Note that this is a Neumann problem with boundary conditions »'(0) = «/(1) = 0.)
We then let {¢;}, i =1,...,N, be a basis for Siy. We assert that uy € Sy satisfies (2.8) if and
only if uy € Sy satisfies
L(un,¢;) = (f,¢;), j=1,...,N. (2.9)
If uy satisfies (2.8), it solves (2.9) as ¢; € Sy, i = 1,..., N. We wish to show that if uy satisfies
(2.9), then it also satisfies (2.8). Let vy € Sn. Since {¢; }i=1,...,n is a basis for Sy, vy = Zjvzl VjP;.
Then using this representation for vy and (2.9), we find

N N N
Llun,vn) = Lun, > vi;) = ZUJE(uN7¢j) = Zvj(f, ¢;) = (f,zvjdh') = (f,vN)-

=1

We next show that finding uyy is equivalent to solving an N x N set of linear equations. Clearly
(2.9) represents a set of N linear equations. Also, we may represent our unknown function uy as
unN = Zf;l u;P;, so that (2.9) may be rewritten as: Find a set of coefficients u;, i = 1,..., N, such
that

N
i=1

This is a set of N equations in the N unknowns {u;}i=1, . ~. We also may rewrite (2.10) in matrix-
vector notation, as we did in the case of the finite difference method. We let S be the matrix
having entries S;; = L(¢;,¢;). S is called the stiffness matriz. We also define the column vectors
U = [ug;uz;...;un] and F = [(f, ¢1); (f, #2);-.-; f(én)]. Then we seek to solve the matrix equation

SU=F

for the vector unknown U. We note that nothing we have said indicates that this equation has a
solution. (We do note that since it is a square system, any solutions that exist will be unique.) In
fact, a solution may or may not exist, that is, the matrix S may or may not be singular.

2.2. GALERKIN’S METHOD 17

We give two examples here of possible finite-dimensional spaces Sy. We save our most important
example, piecewise polynomial spaces, for our discussion of the finite element method.

Example 1: Trigonometric Polynomials. We previously considered Fourier series expansions. Instead
of considering full Fourier expansions, here we construct a finite-dimensional space of dimension
2N + 1 by taking Son41 = span{l,sinrwz,sin 27z, ...,sin N7z, cos 7z, cos 27z, ...,cos Nwz}. Thus
members of San41 will have the form von 1 = vo + Zf;l a; sin wix + b; cos mix, that is, they appear
as truncated Fourier series. San 41 is said to be a space of trigonometric polynomials.

Ezample 2: Polynomials. We may simply take Sy41 = span{l,x, ...,V }, so that members of Sy 1
have the form Vy = 3N vzt

One could certainly think of other finite-dimensional spaces of functions; these are just two of
the more basic examples, with their most obvious bases stated.

2.2.4 Error analysis of Galerkin’s method

We next consider a basic error estimate for Galerkin’s method, that is, we wish to say something
about the size of the error u — upy. Both the assumptions we make in the statement of our estimate
and the proof will be rather imprecise as our goal is to give a flavor of the main ideas involved, not
to give a completely rigorous proof.

Before stating an error estimate, we first comment further on the bilinear form L. It sometimes
happens that £(u,u) = 0 for some u in the admissible class appropriate for a given problem even
though u # 0. Consider, for example, the case where £(u,u) = fol (u")? dz, with Neumann boundary
conditions so that the appropriate admissible class is all of A. Then for ug = 1, L(u,u) = 0 but
u # 0. In this case, £ is not an inner product according to the definition given in exercise 2 of
chapter 1 (property (e) is not satisfied). In terms of solving differential equations, this means that
if L(u,v) = (f,v) for all v € A, it is also true that L(u + ug,v) = L(u,v) + L(ug,v) = (f,v) for
all v € A. That is, the differential equation £(u,v) = (f,v) for all v € A does not have a unique
solution. This means that we can’t expect Galerkin’s method to work well (which solution will be
approximated?), so we should try to rule this situation out. We shall do so by requiring that £(-,-)
be an inner product.

We also make a few comments about projections. We consider projections from a vector space
V having an inner product (-, -) onto a subspace X C V. Then the projection of a point € V onto
X is taken to be the unique point Pz satisfying (z — Pz,y) = 0 for all y € X. That is, Pz is the
point in X such that — Pz is orthogonal (or perpendicular) to X. We also note that projections
are distance-minimizing in the norm ||z|| = v/(z, z):

— Pzl = mi —
llo — Pal| = min [lz -yl

or stated slightly differently,
||z — Pz|| < ||z —y|| for all y € X. (2.11)

We leave the proof of this fact as an exercise.
We note that if

L(u,v) = (f,v)

18 CHAPTER 2. THE FINITE ELEMENT METHOD

for all v € A and
'C(UN;UN) = (f, UN)

for all vy € Sy C A, then we may subtract the above two equations to find that L(u —un,vn) =0
for all vy € Sy. Thus if L(+,-) is an inner product, uy is the projection of v onto Sy with respect
to the inner product L£(-,-). (Even if £(-,-) is not an inner product, however, we still call uy the
Galerkin projection of u.) These observations lead us to the following theorem.

Theorem 2.2.1 Assume that_ﬁ(-, -) is an inner product on some admissible class A of functions
(one may think of A=A or A= Ay), and let Sy C A be a finite-dimensional subspace of A. Also,
assume that uy 1is the Galerkin projection of some u € A onto Sy. Then

llu — unlleng = min [ju = Xlleng- (2.12)
XESN

Proof. Since L(-,-) is an inner product, uy is a projection of u onto Sy. Since projections are
distance-minimizing in the corresponding norm, (2.12) must hold.

Remark. We note that we have not covered here the case of nonsymmetric forms, i.e., of forms
where L(u,v) # L(v,u). A similar theorem holds in this case, but we do not state it. We also note
that we have been rather lax in our treatment of projections. In particular, we have left out some
technicalities necessary to deal with the fact that A is an infinite-dimensional space. Our goal here
was to emphasize that Galerkin’s method involves finding a projection of a function contained in an
infinite dimensional space onto a finite dimensional space and to explore the consequences of this
fact while not overburdening the reader with technical details.

Remark. In (2.12), we have used the energy norm to measure the error u — uy. Notice that the
energy norm really measures the average (or the average of the square) of the error function u — un
over the interval (0,1). This leaves open the possibility that u — unx will be very large over a small
subinterval of (0,1) while being very small elsewhere (if you want 100 numbers to have an average
of 1, you can either choose them all to be 1, or you can choose 1 to be 99.01 and the rest to be
.01; the same applies to functions). Rather than knowing that the average (energy) error is small, it
would be better to know that the error is small everywhere. However, it is theoretically much more
convenient to measure the error in the energy norm, and we restrict ourselves to doing so.

2.3 The Finite Element Method

(2.12) tells us that the Galerkin approximation uy of u from a space Sy is the best approximation
as measured in the energy norm. We now discuss the task of choosing a space Sn which is able to do
a good job of approximating functions in A (or Ag) and which also is relatively easy to compute with
(our final aim, after all, is the construction of a computer code to implement Galerkin’s method).

2.3.1 Piecewise Linear Spaces

The spaces Sy which we shall employ are alternatively known as piecewise polynomial or finite
element spaces. In the present 1-dimensional case, they also are called spline spaces. We begin with
the simplest example (and one which is widely used in practice), that of continuous piecewise linear
functions, a “typical” example of which is displayed in Figure 2.1.

2.3. THE FINITE ELEMENT METHOD 19

Figure 2.1: A “typical” piecewise linear function

We may describe the space of piecewise linear functions as follows. Let 0 = 29 < 21 < 22 < ... <
xy-1 < xy = 1. We shall call the z;’s mesh points. Also, let h; = x; — x;—1, i = 1,..., N (so that
h; is the length of the subinterval [z;_1,2;]). We shall also denote by h(z) the function which is h;
when z € (z;_1,x;) (it isn’t defined at the points z;, but this doesn’t matter). Then we define the
space Sp, to be the functions which are continuous and which are linear on each subinterval [z;, Z; 1]
(note that instead of indexing the space S by its dimension N, we are now indexing it by the mesh
size function h).

We next note that if we fix the values of a function v, € Sj at each of the N + 1 mesh points
zi, t = 0,..., N, then we have determined the function v,. Thus we conjecture that Sy, is an N + 1-
dimensional space. To confirm this fact, we exhibit a basis for S; containing N + 1 members. We
let ¢, i = 0,..., N be the “hat” function in S, which is 1 at ; and 0 at x; if j # ¢ (such a basis
function is pictured in Figure 2.2). Then if v, € S}, it is easy to verify that v, = Zilio vp (25);.
Also, the 1);’s are clearly linearly independent, so they form a basis with IV + 1 members.

We next comment on the smoothness properties of the space S,. We have hitherto always said
that our class A is composed of “smooth enough” functions, and it is clear that members of Sy
are not very smooth. In fact, they have piecewise constant derivatives which are undefined at mesh
points (since members of Sj, have corners at the mesh points). In Figure 2.3 we picture the derivative
of a basis function ;. Why, then, do we consider S; to be a subspace of A7 We do not give a full
answer here, but we do note that members of Sy are just smooth enough to use in the weak form of
the equation. While v}, is not defined everyplace for v, € Sy, v}, is defined at all but a few points,
and if we take ¢ to be a smooth function, the integration by parts formula

1 1
/ vpd dz = vpdly — / vy ¢ dx (2.13)
0 0

holds. Secondly, we note that the energy norm that we have used in (2.12) to measure the error
in the Galerkin projection only involves first derivatives—which we again note are well-defined for
members of S;,. Thus we use functions which have only one derivative, and then not even at every

20 CHAPTER 2. THE FINITE ELEMENT METHOD

-0.5

Figure 2.2: The piecewise linear basis function ;

point, to approximate solutions of differential equations which in their strong form are required to

have two derivatives. This may seem like a slightly paradoxical situation, but as we shall see, it
nonetheless works quite well.

1/(x‘—x|71) L —

U, 7%)

Figure 2.3: The derivative ¢} of a basis function

We next discuss some of the mechanics of implementing the finite element method using the
piecewise linear space Sy. We recall from (2.10) that the stiffness matrix S for a Galerkin method on a
space with basis 1); is defined by Sj; = L(1);,), where L(u,v) = fol au'v' dz + fol bu' dzx + fol cuv dx.
We also introduce some terminology: we define the support of a function v to be the closure of
the set of values for which v is nonzero, or supp(v) = {z :v(z) # 0}. Next we note that since
supp(i) N supp(v;) = 0 if |j —i| > 1, we have Sj; = L(¢;,9;) = 0if |[j —¢| > 1. Thus S is a

2.3. THE FINITE ELEMENT METHOD 21

tridiagonal matrix having form

(2.14)

0

just as in the finite difference method. More generally, we say that S is banded with bandwidth
1 because all of its nonzero entries lie within 1 diagonal row of the main diagonal. We shall be
able to exploit the fact that S is a banded matrix when solving the linear system arising from
this finite element method. We leave the discussion of the details for later. We do note, however,
that efficient implementation of finite element methods requires careful attention to the structure of
the matrices which arise. Gaussian elimination is a computationally expensive algorithm, with the
number of operations required growing with the cube of the number of unknowns, and it is generally
not feasible to naively apply Gaussian elimination. In the present case of 1-dimensional problems
we will be able to arrange things so that we need only solve linear systems with tightly banded
matrices. Stiffness matrices arising in higher dimensional problems are not generally tightly banded,
however, so other approaches are necessary there.

2.3.2 General Spline Spaces

One may modify the setup given above for piecewise linear spaces in two different ways. The first is
to raise the order k of polynomials used while maintaining the same degree of smoothness (that is,
functions in the finite element space will be continuous only; their derivatives will not be continuous
across mesh points). We will denote by S¥ the space of functions which are polynomials of at most
degree k on each mesh interval [z;,z;11] and which are continuous on [0,1]. Thus the piecewise
linear functions are denoted S}, the piecewise quadratic functions S7, and so forth.

More generally, we may require that members of a finite-dimensional space are in C*([0, 1]) and
are polynomials of degree k when restricted to each mesh subinterval. More precisely, we define
S,’:’” = {x € C*([0,1]) such that x|(z;,z,,] € P*¥}. Thus the piecewise linear space Sy from above
may be denoted 5,11’0, and the piecewise quadratics may be denoted by S:’O. We note that the space
S,ll’l is trivial: in order for a piecewise linear function to have a continuous first derivative, it must
be linear globally, that is, a line on the whole interval [0,1]. It similarly does not work well to
require piecewise quadratic functions to have continuous first derivatives because, in the language
of the trade, they do not possess enough degrees of freedom to do so while maintaining the ability
to approximate well.

The “smallest” (or lowest order) piecewise polynomial space which one may efficiently require
to have continuous derivatives is the Hermit cubic spline space S,‘Q;’l. The Hermite cubics and other
spline spaces are heavily used in practice, and not only in the context of finite element methods. We
shall construct a basis for the Hermite cubics. First, however, we determine appropriate degrees of
freedom for piecewise cubic polynomials. We note that C'! functions must have continuous function
values and continuous derivatives, so it seems reasonable to specify the function values and first
derivatives of x € S,?;’l at each mesh point z;. The following lemma tells us that doing so uniquely
determines a piecewise cubic function.

22 CHAPTER 2. THE FINITE ELEMENT METHOD

Proposition 2.3.1 Assume that g(z) is a cubic polynomial on [xg,x1], where x1 > xo. Then the
values go = g(xo), g1 = g'(x0), g2 = g(x1), and g3 = ¢'(x1) determine the polynomial g uniquely.

Proof. We write g(z) = c3(x — 10)® + ca(@ — 20)? + ¢1(x — o) + co. Computing g(zo), ' (o), g(z1),
and ¢'(x1), we obtain the following set of four linear equations for ¢;, i =0, ..., 3:

¢ = Yo,

a = 0,

ca(w1 — 20)® + c2(m1 — w0)? +c1(@ —x0) +c0 = go,
3cs(z1 —w0)? + 2ca(z1 —0) +1 = g3.

We recall the fundamental theorem of linear algebra, which states that a square system of linear
equations has a unique solution if and only if it has a trivial null space, that is, if and only if the only
time each equation is 0 is when all coefficients are 0. Thus we assume g; = 0,7 =0, ..., 3. The first two
equations above yield cg = ¢; = 0. The third equation then reduces to c3(z1 —20)3 +c2 (21 —20)% = 0,
and we may solve for c3 to find that c3 = —zlc_zwo. Substituting this expression into the fourth
equation above while recalling taht ¢; = 0 yields 5¢z (21 — x¢) = 0, which implies that ¢2 = 0. Thus
¢z = 0, and we finally find that g(z) = 0. Thus our system of equations has a unique solution, and
gi, © =0, ..., 3, uniquely determine g.

We next turn to the problem of determining a basis for Sz’l. We have shown that our degrees of
freedom should be the function values and first derivatives at the mesh points because determining
these at two mesh points determines a cubic polynomial in between the mesh points. We shall first
determine four cubic polynomials on [0, 1], one satisfying ¢g(0) = 1, ¢'(0) = 0, g(1) =0, ¢'(1) = 0,
one satisfying ¢’'(0) = 1 with the other three degrees of freedom being 0, and so on. We will then
construct our basis by transforming and scaling these four “building block” functions.

Our proof of the above proposition suggest that we can determine our building block functions
by solving four sets of linear equations, and we do so. We let 91 (%) = c33% + c23? + 1% + ¢ be the
unique cubic polynomial satisfying #1(0) = 1, 9{(0) = 0, 91(1) = 1, and #;(1) = 0. This leads to a
set of four linear equations in four unknowns:

Co =

C1 =
cg+cr+c1+cg =
3c3 + 2¢9 + ¢

Solving this set of equations gives us 91 (%) = 22° — 3% + 1. Similarly, letting 05(Z) satisfy 95(0) = 1
and #2(0) = 92(1) = 95(1) = 0, we find that 72(F) = 2*> — 232 + Z. Letting 93(1) = 1 and letting
the other degrees of freedom be 0, we find that @3(%) = —23° + 3%2. Finally, letting @4(1) = 1 and
letting the other degrees of freedom be 0, we find ¥4 (%) = & — 2.

Given a mesh 0 = zy < z; < ... < zy = 1, we will have 2(N + 1) degrees of freedom, so we
need 2(N + 1) basis functions. We will construct our basis ¢y, ..., any1 50 that 9a;q1(z;) = d;5,
Y91 (z5) = 0, ai(z;) = 0, and 95;(x;) = d45, 4,5 = 0,..., N. We consider in detail only the
construction of basis functions corresponding to interior mesh points; basis functions corresponding
to the boundary points are similar.

We first construct a basis function 19;41 (2) which we shall use to specify the function value at
the mesh point z;. We will construct 12,41 so that supp(Yair1) = [Ti—1,%itr1]. Our strategy is to
paste together a transformed version of 93 from z;_; to x; and a transformed version of #; from

2.3. THE FINITE ELEMENT METHOD 23

oo . ~ _ T—Ti1l _ T—Ti_1
z; to iy1. To transform 93(%) to [z;_1,2;], we use the change of variables & = — = = ===,
T—T4

Similarly, to transform @ (Z) to [z;,2;11], we use the change of variables & = Thus we may

define

hiy1”

v3(F2=L), wio <@ <y,

T—T;

Poip1(z) = ¢ 0 (55), 7 <7< wiga,
0 otherwise

The basis function 9,1 is pictured in figure 2.4.

15

0.51

Figure 2.4: The Hermite cubic basis function 9,41

Our first instinct is to define the basis function 1; so that 15, (z;) = 1, and in fact this is precisely
what we initially did. We shall now backtrack a bit, however, for the following reason. We note that if
we define g (x) = h;D4(&) for z; 1 < & < @;, then we will have b, (;) = h;d) (F=2=2) /L (F==2) =
73(1) = 1. However, in this case 1)»; would have a maximum of just hymaz;zejo,1104, as compared
with a maximum of 1 for 15;_;. We wish to have our basis functions be approximately the same
size as measured in the Lo, norm so that the elements of our stiffness matrix won’t differ too much

in size, so we shall define things a little differently. Our definition is

2hi i (T=EALY pyg <@ < @,

hé—}thi+l h;
$2i(2) = ¢ 0 (50E), 7 <o < i,

0 otherwise

to; is plotted in figure 2.5. We note that %¢2z’($i) = h+27h+1 For comparison, we note that
1-0

Yaiv1(z;) = 1 and 941 (z;—1) = 0, so by the mean value theorem, %wz»j_’_l(g) =5 = h% for some
€ € (xi—1,%;). Thus 1P2;11 and 1Po; are about the same size, as are 95;,; and ¢y;.

We finally note that the stiffness matrix S arising from use of the Hermite cubic polynomials in
the finite element method is banded, as was the stiffness matrix arising from use of the piecewise
linears. However, the bandwidth in the case of Hermite cubic splines is 3 as opposed to 1 in the case
of the piecewise linears.

24 CHAPTER 2. THE FINITE ELEMENT METHOD

0.2r

Figure 2.5: The Hermite cubic basis function g;

2.3.3 Boundary conditions in the finite element method

We now discuss in a little more detail how boundary conditions are handled in the finite element
method. We begin with Neumann conditions. In Section 2.2.2, we noted that a general Neumann
problem with boundary conditions a(0)u'(0) = vy, a(1)u’(1) = v1 can be written as: Find u € A
such that

Lynevu(u,v) = L(u,v) — vpv(0) + 1v(1) = (f,v) for all v € A. (2.15)
We shall rewrite this equation. For v € A, we define
F(v) = (f,v),

and
fNeu(U) = (f:U) + VOU(O) - VIU(]-)'

We may thus rewrite (2.13) as: Find u € A such that
L(u,v) = Fneu(v)
for all v € A. The finite element method for (2.15) may be written as: Find uy, € S’,ﬁ’” such that
L(up,vp) = FNeu(vy) for all vy, € S,’:”‘.

Let 9;, i« = 1,..., M be a basis for S’,i’” . Then we may rewrite the above finite element method as:
Find uy, € S’,ﬁ’” such that

L(up, ;) = Fneu(t;) for all i =1, ..., M.

We note that for most 4, ¥;(0) = ¥;(1) = 0, in which case Fneu(¥;) = F(¥;). This simplifies the
computations since in our code we may first calculate F(1);) for all 4, then add in the boundary

2.3. THE FINITE ELEMENT METHOD 25

conditions for those basis functions for which it is necessary to do so (and usually there will be only
two such basis functions).

We next describe how Dirichlet boundary conditions may be treated in finite element methods.
We assume that our Dirichlet conditions are u(0) = ug and u; = g, so that our problem is: Find
u € Apir = {v € As.t. v(0) = ug,v(1l) = uq such that

L(u,v) = F(v) for all v € Ap.

We rewrite this problem as follows. Let up;, be any function in Ap;,, and let ug = v — up;-. Then
our problem may be reformulated as: Find ug € Ag such that

L(ug,v) = F(v) — L(upir,v) for all v € Ayp.

We emphasize that the function up;, is fixed and known; we may choose it to be anything we want
(such as, say, the linear function passing throught the points (0, uo) and (1,u1)). In the finite element
method, we shall similarly choose a fixed function up;,p € S,’:’” that satisfies upir 1 (0) = up and

uDir,n(1) = u1. We then define 5’2” = {v, € Sp* s.t. vp(0) = v (1) = 0}. Then the finite element
method for the Dirichlet problem is: Find uj € .g'fl“ such that

L(up,vp) = F(vp) — L(Dir,n, vp) for all vy, € gi”

o [
Rewriting this in terms of basis functions v;, i = 1,..., M for S’;’” , we seek uy, € S’}fb’” such that
L(un,¥i) = F(@i) — L(upirn, Vi), i=1,..., M.

We note that our choice of up;,, will have an impact on how convenient and expensive it will be
to compute the right hand side of the above equation; in particular, we would like to compute the
term L(upir,p, ;) for as few of the basis functions ; as possible. We thus shall choose up;r,, to be
a linear combination of the two basis functions of S’,:’” corresponding to the point values at 0 and 1.
For example, in the case of piecewise linear elements, we let upirp = uoto + u1¥n. In the case of
Hermite cubic elements, we let upirp = uot)1 + v19an4+1. We finally note that in order to produce

o
a basis for S’,i’“, we simply delete the basis elements from S,'f’“ which correspond to point values at
o
0 and 1. In particular, in the case of piecewise linear elements we let S} = span{i1,vs, ..., Un_1},

o
and in the case of Hermite cubic elements we let Si’l = span{vo, P2, Y3, ..., Yan_1,Pan}

2.3.4 An overview of a finite element code

One of the great attractions of the finite element method is that it can be coded in a very modular
way. While there are certain pieces of information that many or all parts of the code must have access
to, there are several essentially independent functions in a finite element code. The basic structure
we shall employ is the following. We begin with a program which calls the various subprograms
and contains declarations of global variables, etc. As long as consistency in data structures is
maintained, the following parts of the code may be written to be fairly independent of one another:
a mesh generator, a subroutine which returns the value of a basis function at a point, a numerical
integration routine, a routine to assemble the stiffness matrix and right-hand-side vector F'; a solve

26 CHAPTER 2. THE FINITE ELEMENT METHOD

for linear systems of equations, and various types of output routines (for example, a routine to
calculate various norms of the error in the finite element approximation if we are testing our code
on problems with known solutions, or graphing routines).

2.4 Exercises
1. Program the finite difference method in Matlab for the problem

—(aw)" = fin (0,1),
u(0) = wu(l)=0.

Make sure that your code allows you to specify different numbers of mesh points. Use your code to
approximate the solution to the above problem with a(z) = 2 + sin50z and f(z) = —[27?sin 7z —
507 cos 50z cos x + 72 sin 50z sin mx]. Note that this problem has a known solution, u(x) = sin 7z
(check it out if you’re not sure). Next, calculate the error in your solution at each of the mesh points,
and calculate erry = max;—1,.. n_1u(z;) — U;. Finally, use a mesh which has mesh intervals which
are half the size of those in your first calculation, i.e., one with 2N + 1 mesh points. Then calculate
errany1, and compare it with erry. Repeat this procedure a couple more times and try to detect
a pattern.

2. Let (-,-) be an inner product on a vector space V with corresponding norm ||z|| = v/(z,). Use
Schwarz’s inequality

(u,v) < [ulll[o]|

to prove that if Pz is the projection of a point z onto a subspace X C V, then
lz — Pz < ||lz -yl

for all y € X. (Recall that the projection Pz satisfies (x — Pz,y) =0 for all y € X.)

3. Construct a basis for use with S7 (that is, the piecewise quadratic polynomials). For degrees of
freedom, use the function values at each mesh point z; and at the midpoint z%ﬂ”’ of each mesh
interval. You will thus need to construct two types of basis function. A basis function ;41 of the
first type will satisfy 19;11(z;) = d;; for 4,5 = 0,..., N, and ¢2i+1(zj%+m") =0forj=1,..,N. A
basis function 1)2; of the second type will satisfy v9;(z;) = 0 fori =1, ..., N and for j =0,..., N and

Woi (=5 = 6y for i, j = 1,..., N.

2.5 Programming Project, Part I

Before giving the specific assignment for this chapter, I'll make a few general comments about
the project. First of all, you’re reminded that no sharing of code is allowed, although you may
discuss issues that arise with classmates. Secondly, you may not use Matlab functions that perform
numerical operations except those which would be present in any programming language (such as
sin, cos, etc.). You may, however, use Matlab functionality pertaining to data manipulation. For
example, using the diag operator to create or manipulate a matrix is fine (even preferred), as is using
Matlab’s vectorized notation (for example, if one wishes to apply the function f to each element
of a vector z, writing y = f(z) is fine-don’t use a for-loop in this situation!). Thirdly, debug
CAREFULLY! This project will require an error-free code, so try to do it right the first time. Also,

2.5. PROGRAMMING PROJECT, PART 1 27

test every portion of your code as well as possible. I will try to give hints about tests you can use
to debug as we go, but the final responsibility for constructing a correct code lies with you!

The first part of the project will involve two parts of your final code, the mesh generator and the
polynomial basis functions for S} and .S’,3L’1. Your mesh generation routing should output (or, return
as a global variable) a vector containing the mesh points 0 = 29 < 1 < 22 < ... < zy = 1. For
now, it’s fine if the mesh points are evenly spaced, but remember as your programming that you’ll
eventually want to output meshes which are not uniform. You should also code the polynomial
basis functions for the piecewise linear and the Hermite cubic spaces. For each type (linear and
cubic), you’ll need two functions, one for function values and one for derivatives. In each case, your
functions should accept as input a value z € [0,1] and an index (in the piecewise linear case, the
index of the mesh point at which the basis function is nonzero; you decide how to index the cubic
case). The output should then simply be the value of the basis function or of its derivative at . To
test your code, make sure that plots of basis functions and their derivatives are correct for various
meshes. Also, check some values by hand.

