Chapter 3

Numerical Quadrature

3.1 Midpoint Rule and Simpson’s Rule

Now that we have seen what the finite element is, we turn our attention to its implementation.
We begin by considering the computation of the stiffness matrix S, where S;; = L(v;,%;) and
{1;} is the basis for the finite element space being used. Recall from the previous chapter that
L(i ;) = fol ai; dz + fol biep; dx + fol cp;9; dz. Thus in order to compute S, we must compute
a number of integrals. In this chapter, we study efficient ways of accurately approximating integrals.
We shall use numerical quadrature (or numerical integration) to approximate integrals.

We first emphasize the point that we shall only give ways to approximate integrals here, not
compute them exactly (although our rules will be able to exactly compute integrals of polynomials
having small enough degree). The exact evaluation of general integrals, when it is possible at all,
is much more computationally expensive than their numerical approximation. The dual (and often
competing) goals in scientific computing are efficiency and accuracy. The correct choice of numerical
quadrature methods yields sufficient accuracy with high efficiency and is thus the preferred method
of computing integrals in many applications, including finite element computations.

Our goal is to approximate [; f(z)dz, where I is some interval in R. We’re going to start by
breaking I into intervals I; of length k;, i = 1,..., M, so I = UY | I; and [f(z) = Ef‘il fL— f(z) de.
We will approximate each || 1, f(z) dz and sum the resulting approximations to approximate J; [(@) da.
We call this sort of approximation a composite rule because an integral over an interval I is approx-
imated by a composite of approximations of integrals over subintervals. To begin our discussion, we
analyze two very common quadrature techniques, the midpoint rule and Simpson’s rule.

Before stating any of the methods or giving error bound for them, we recall Taylor’s theorem.

Theorem 3.1.1 (Taylor’s Theorem) Assume f(z) € C""1([a,b]). LetT™(z) = >.1r o, 5@ (a)(z—
a)t, and R™(x) = f(z) — T™(z). Then for each point x € [a,b],

n 1 n n
IR™(2)| < ——[IF"*V|1 o (a2 — al™
(n+1)!

Taylor’s theorem will be used repeatedly in this and the subsequent chapters.

29

30 CHAPTER 3. NUMERICAL QUADRATURE

Let I = [a,b] be an interval in R with midpoint %t and length k = b — a. The midpoint rule is

then
a+b

I

Our error bound for the midpoint rule is as follows.
Proposition 3.1.2 Assume f € C*(I). Then [, f(z)dz —kf() < %”f””Lm(I).
Proof. We first use Taylor’s theorem to find that for z € I, f(z) = f(%£2)+ f'(22) (z— L2)+ R (z),

SO
/f dw‘/f (@0 4 “*”>w+R"<x)dw=kf<“§b>+/R1<x>dx
I

2

(note that [, f'(0)(z — %%) dz = 0 because (z — %t) is antisymmetric about %£2). Thus

[1@ ek ("3 = [R do

Using Taylor’s Theorem, we find that

|f1 d.'E kf(a+b)| S f['Rn |dm<f12v”f””Lw(I)(m_a_+b) dzx
= I rwmi@— 23 = L1 e

O

We note that something special has happened here. Since we chose to approximate our integral

by evaluating f at the midpoint of the interval, the first-degree term in the Taylor polynomial fell

out by symmetry. If we had chosen to evaluate f at any other point within the inverval I;, the linear

term in the Taylor polynomial would not have fallen out, and we would have only gotten a factor

of k? in our estimate instead of a factor of k® (note we’re thinking of taking k to be small, so that

k? is much larger than k®). Also, assume that we are approximating fo z)dz by SOV =1 kf(mj),
where k = % (i.e., the I;’s are uniform) and m; is the midpoint of I;. Then

| Jo 1) do =25 kf(my)| = |Eg_1 Jr, @) e =k fmy)] < T30 521 ey

<N 4||f"||L°° = 0" ey

Thus the order of convergence for the composite midpoint rule is k2.

We state Simpson’s rule and error bounds for it here, but we do not prove the error bounds.
Simpson’s rule is derived as follows. We first approximate the curve y = f(z) on I by the parabola
P(z) passing through the curve f(z) at the points a, 2%, and b. Let P(z) = A(z — “£%)? + B(zx —
atb) + C. Tt is easy to see that C' = (%), and inserting # = a and = = b into P, we find that

A= 5B+ f(*F) = f(a),

P(a) = (oth
A+ EB + f(2£b) = f(b),

5
Pb) = (%

S0 that solving we find that A = Q(f(a)_Qf,(c:%Hf(b)) and B = M We now approximate

[; f(z) dz by

[, P(z)dz = i(w—%*”)ﬂgm—j*j) +C(a — =)}
= BA | po = MG IHIO) | gopadhy = L(f(a) +4f(252) + f(D)).

3.2. GAUSSIAN QUADRATURE 31

Thus we use the approximation f: f(z)dz ~ E(f(a) + 4f(%E2) + f(b)). The error bound for the
composite Simpson’s rule is as follows.

Proposition 3.1.3 Assume that f € C*(I), where I = [a,b]. Divide I into M subintervals of
length k = ”_7“ and then approrimate f] f(z)dx by the composite Simpson’s rule (i.e., adding up
the result of Simpson’s rule on each of these subintervals). The error in this procedure is bounded

by K|t @)1, 0.

3.2 Gaussian Quadrature

We next present Gaussian quadrature. Its development may be a little less transparent than that
of the midpoint and Simpson’s rules, but as we shall see, it is worth the effort.

Instead of directly attacking the problem of approximating fab f(z) dz, it turns out to be much
more convenient to first approximate fil f(x) dz, then handle other intervals by a change of vari-

ables. Our goal will be to build an approximation Ef\io w;i f(x;) = f_ll f(z)dz. Here the values w;
are called weights and the points z; are called quadrature points. We note that our analysis of the
midpoint rule was based on the fact that it could “knock out” (or integrate exactly) the first two
terms of the Taylor expansion of f, and the analysis of Simpson’s rule would similarly show that it
can integrate exactly the first four terms of the Taylor expansion of f. We thus attempt to pick the
weights w; and the quadrature points w; so that Eﬁ\io w; f(x;) integrates exactly as high of order of
polynomial as possible, that is, fil 2 = Z?io w;(z;)? for j as large as possible.

We note that Zf\io w; f(z;) contains 2(M + 1) degrees of freedom {w; }i—o,... . »r and {z;}i=o,... M-
We thus may guess that we can integrate exactly polynomials agp + a1z + a22? + ... + az M+1a:2M +1 of
up to degree 2M + 1 with the rule Ziﬂio w; f(z;). This is indeed the case, although constructing w;
and z; will take some work. We note that the midpoint rule is in fact the lowest-order Gaussian rule
(it uses one function evaluation, and it will exactly integrate linear functions). Simpson’s rule, on
the other hand, requires function evaluation at three points and will exactly integrate cubics (a fact
which we didn’t show), while the Gaussian rule to integrate cubics (M = 1) requires two function
evaluations and is thus more efficient.

In order to derive the weights and quadrature points, we shall need to use the Legendre polyno-
mials L;(x), j =0,1,2,... Their definining property is that they satisfy

1
/ L,(.’L‘)L] (.’L‘) dx = J,J
—1
Thus {L;}io,..., forms an orthonormal basis for P¢(0, 1) with respect to the inner product (u,v) =

f_ll u(z)v(z)dr. We may apply the Gram-Schmidt orthogonalization procedure to determine Lj;,
which would lead to

Lo(l') = \/LE’
Ll(x) = %Z‘,
Ly(z) = \/%(33;2 —-1).

32 CHAPTER 3. NUMERICAL QUADRATURE

It turns out that L; is even if j is even and odd if j is odd. In general, the Rodriguez formula

2j+1 1 & ,
Lj(z) = 2 W@[(lﬁ—l)]]

gives L;(z). It should also be noted that Ly is orthogonal to any polynomial of degree less than M
since (LM, i) =0,i=0,. —1, and {L;}i=0,...,1m, forms a basis for PM~1.
We now prove a lemma about Ly

Lemma 3.2.1 Lys has M zeros, all of which are simple and all of which lie inside of (—1,1).

Proof. Let r be the number of sign changes of Ly lying inside of (—1,1). Since Ly is a polynomial
of degree M, we must have r < M. Since we wish to show that r = M, we shall assume r < M and
reach a contradiction. If r < M, then Lps has r sign changes inside of (—1,1) occuring at i, ..., &p.
Thus inside of (—1,1), the polynomial p(z) = (z — &)(x — &) - - - -(z — &) will have exactly the
same (or perhaps exactly the opposite) sign as Lys. Thus (p, L) # 0. However, we must have
(p, L) = 0 since the degree of p is less than M. This is a contradiction; thus Ljs has precisely M
sign changes in (—1,1) and thus M simple zeros in (—1,1). O

We choose the M + 1 quadrature points xg, ..., £y to be the M + 1 zeros of L.

In order to choose the weights w;, we shall use Lagrangian interpolation.

Lemma 3.2.2 Given distinct points {z;}i=o, .. .n and values {g;}i=o,... n, there ezists a unique poly-
nomial ¢ of degree n such that q(z;) = g;, 1 =0,...,n

Proof. We first prove uniqueness. Assume that ¢;(z;) = g; and ¢2(x;) = gi, © = 0, ...,n, and that
¢q1 and ¢y are both polynomials of degree n. Then ¢; — ¢» is also a polynomial of degree n, and it
has n + 1 zeros {z;}i=o,....n. A polynomial of degree n with n + 1 zeros must be 0 everywhere, so
q1 = q2-

We now construct g. Let £;(z) =

(z—wo) (x—x1) - (z—zi—1)(@—Tiq1) - (z—Tn)
T (wi—zo)(wi—z1)(zi—zi—1)(@i—zit1) - (zi—Tn)

nomial of degree n satisfying £;(z;) = d;;. g(z) = Y., 9:i(z) then has the desired properties.
O

Z; is then a poly-

Recall that we are seeking to choose the w;’s so that Zfio wi(z;)? = f_ll widr,j=0,..,2M+1,
i.e., so that our quadrature rule is exact on all polynomials of degree 2M + 1 or less. Let {¢;(z)} be
the polynomials of degree M satisfying ¢;(x;) = J;; for the M + 1 quadrature points {z;}i=o,...,m-
We then define pysj(z) = Y1, (2:)74;(x), where 0 < j < 2M + 1. That is, par; interpolates 7
at the quadrature points. Let ¢p; = ¥ — parj(x). Note that ¢ j(z;) = 0, i = 0,..., M, since
pu,; interpolates 7 at these points. Thus 9, ;j(#) = Layy1(2)G(x), where Lysyq is the Legendre
polynomial of degree M + 1 and G is some polynomial of degree j — (M +1) <2M +1— (M +1) =
M. We then have z7 = parj(z) + ¥m,;(z), so that fll ridr = fllpM,j(x) dm+f_11 Y, ;(z) do

But filpM,j(l') der = fil Z?io(:ci)jfi(x) dr = Zl o(@i) f li(z)dz. Also, fil Yum,j(z)de =
fil Lyr+1(2)G(z) dz = 0 because Lysy; is orthogonal to all polynomials of degree M or less. Thus
[t @i de = M (2:) [T, £i(x) dz. We therefore choose w; = [, £;(2) dz. As we have just shown,

our quadrature rule Zf\io w; f(:cz) is thus exact when f(z) is a polynomial of degree 2M + 1 or less.
We next write down the composite Gaussian quadrature rule. We wish to use a composite
rule to estimate ff (z)dz. Let [A,B] = U] 11, where the I; are disjoint intervals havmg mid-

points m; and length k;. Then [} f(z)dz = j:l J;, dv. We next note that [; f(z)de =

3.2. GAUSSIAN QUADRATURE 33

k;fl f(kja: + m])d:c ~ 2 E —o Wi f(& Zx; +mj). Thus our composite rule is: ff flz)dz =~
N =1 Ez 0 2 Zw; f(ja:z- +m;). Note that a translated and scaled polynomial of given degree is still
a polynomial of that degree, so the composite Gaussian rule is exact on polynomials of degree up to
2M + 1-in fact, it’s exact on piecewise polynomials of degree up to 2M + 1 since the integrals over
each subinterval I; are approximated independently. (This is in contrast to Simpson’s rule, which
required function evaluations at endpoints of intervals, meaning it only makes sense for functions
which are at least continuous.)

Before stating and proving an error bound for this quadrature rule, we would like to observe
that Zfiowi =2and w; > 0,4¢ =0,.., M. To see that Zfiowi = 2, let f(z) = 1 so that
2= fi1 lder = Zf\io w;. To see that the second fact is true, note that £7 is a polynomial of degree

2M, so our rule is exact for this function. That is, [*, £2(z)dz = E;\io wil?(z;) = w;. Thus w;
may be represented as the integral of the square of a function not identically zero, and w; must thus

be positive.

Theorem 3.2.3

M
k; k;

|/1 f(z) m—E]Zf(EJmH-mj)I < Com2k3 P2 F M2 1, 1y (3.1)

i i=0

and

B N M k

I/A f(z)dz - Zzgjf $l+mJ)|<CzM+2k2M+2||f(2M+2)”L1 ([A,B])> (3:2)
j=1i=0

where k = maxj—1,.. N kj.

Proof. The essential ingredient of the proof is that Gaussian quadrature integrates exactly polyno-
mials of a given degree (2M + 1), so that it in essence “knocks out” the first 2M + 1 terms of the
Taylor expansion of f. We call this property polynomial invariance.

We shall first prove (3.1). In this proof, we shall need a slightly nonstandard version of Taylor’s
theorem for a Taylor expansion of f about m], which is f () = T"() + R*(x), where R™(z) =
S SO FD(8) db. Next let BM(f) = [, f() dz =% SiL, f(%2:+m;). Note that EM (p) = 0
for any polynomial p having degree less than or equal to 2M + 1, and note also that EM is linear,
i.e., EM(f +cg) = EM(f) + cEM(g) for functions f, g and constant c. Using Taylor’s formula, we
find that EM(f) = EM(T2M+1 4 R2M+1) — EM(T2M+1) + EM(R2M+1) = EM(R*M+1). Thus we
must bound |EM(R2M+1)| = |/, RPMH () de =5 S i R2MA (%5, 4 m)|. Note first that

| / R2MH (2) da | < / M+ (0)] da.
I I;

But
[R2MH)| = | [<f2;}+1). AR @) de| < [(3)M T gy 2 (0)] dt
i e . (3.3)
< m”f lzy(r

34 CHAPTER 3. NUMERICAL QUADRATURE

Thus
2M+1 2M+2
2M+1 J 2M+2 — J 2M+2
l/fj s /zj a1 = ey -
(3.4)
Using (3.3) and recalling that Ef\io |w;| = Eiﬂio w; = 2, we next find that

IN

ki =M k; kj M

|71 Ei:o wiR2M+1 (7J1'z + mg)' TJ”RM;[;UJLM(Q) Ei:o |w,|

k; K

¥ et 1 P) 2 (3.5)
kM 2M+2

m”f Ly (zy)-

IN

IN

Thus combining (3.4) and (3.5), we find that

BM(P)| = | [, BM+ (@) de =4 T, RPMH (o + my)]
| [, B (@) de | + 5 S0 R (i +my))|

2tz 1 ety = smttasrro 124
22MFI(2M41)! Li(I;) = 22M(2M+1)! Li(15)-

IA

IA

This completes the proof of (3.1) with Capryo = m

In order to complete the proof of (3.2), we simply sum over the intervals I;:

B N M kj kj M
| [y f@)de — 3550, Yoo srwif (Fai +my)| < 3250 |EM(F)
N KM 2M 42 N £2M+2 2M 42
Zj:l 22M (M +1)! ||f ||L1(IJ-) < Zj:l 22M (2M+1)! ||f ||L1(IJ-)

2M+2 2M 42
' 1721+

N
sty gt 1P ey < setarrmy |L1(1a,B)-

O

We next make a couple of notes about (3.1) and (3.2). First we note that the constant Capry2 we
obtained is not the best possible, though it will decrease very quickly as M increases even as it is. We
won’t worry about finding the best possible constant, however. What we’re most concerned about is
the exponent of &k, which we call the rate of convergence. This is perhaps the most important piece
of information gleaned from these error bounds because they tell us how fast the error decreases
as we use smaller and smaller subintervals in our quadrature rule. Another note we make about
the error bounds we have derived is that they are called a priori error bounds because they tell us
before we have done any computations what kind of error we can expect. It is often the case in real
applications that the (2M + 2)-th derivatives of f are difficult or impossible to compute. Thus in
reality, a priori error bounds don’t really tell us how small the error will be-they only give us an idea
of how fast it will decrease. Another type of bounds, called a posteriori error bounds, use information
gleaned from computations to estimate how large the error is. (That is, they don’t involve unknown
quantities such as 2M + 2-th derivatives.) In a posteriori bounds, constants generally do matter, in
contrast to a priori bounds.

A priori bounds suggest a very important tool for checking codes, which is the observed rate of
convergence. An observed rate of convergence is computed as follows. First, pick a function f for
which [" f(z) dz is known exactly. We only know that the error in Gaussian quadrature is bounded
by Ck*M+2 (where C' now depends on f as well as M); assume instead that the error is actually

3.3. EXERCISES 35

equal to Ck?M+2, Denote by Ej the error obtained by using uniform mesh intervals of size k. Then

Bz C(k/2)2M+2

2M+2
Ek Ck _ 2M—‘r2

Thus E
logy —— = log, 22M+2 = 2]/ + 2.
Ey /o

Thus if we compute Ej and Ej/; and compute log, of their ratio, we should get 2M + 2. This
observation is based on the assumption that the error is exactly Ck2M+2 not just bounded by
this quantity, but in practice this test usually gives an observed rate of convergence close to the
theoretical rate of convergence for the proper values of k. Although we do not justify why this is
so0, the proper values of k are those which are “small enough” (what “small enough” means will
depend on the situation, but numbers like £ = 1 usually aren’t) but not so small that roundoff error
will factor heavily into computations. The observed rate of convergence is one of the first tests that
should be performed on code, if possible. If the theoretical proven rate is not observed, there is
likely something wrong with the code. If possible, codes should also always be tested on problems
for which they should give exact answers. For example, in the case of Gaussian quadrature one
should test the code on polynomials of degree 2M + 1 and piecewise polynomials of degree 2M + 1.
The error in this case should be something like machine precision (10716); if it isn’t, something is
probably wrong.

3.3 Exercises
The exercise for this section is to program and compare the midpoint rule and the Gauss rule

obtained for M = 5. The quadrature points x; and weights w; for M = 5 are given in Table 3.1.
Program the composite midpoint rule and the composite Gaussian rule with M = 5. Your code

Table 3.1:

Quadrature points (+x;) Weights (w;)
.238619186083197 .467913934572691
.661209386466265 .360761573048139
.932469514203152 .171324492379170

should approximately integrate from A to B. You should check your code using different meshes,
both uniform and non-uniform. First test your code on functions it should integrate exactly; make
sure that both methods integrate polynomials of up to order 2M + 1 exactly for both uniform
and non-uniform meshes. You don’t need to hand in results showing that your code integrates
polynomials exactly; the parts you do need to hand in are:

(a) Use your code to calculate estimated rates of convergence for both quadrature rules. Think
carefully about how to pick a function that will give clear results; try several different functions if
necessary. Use a uniform mesh. Your answer should consist of the function or functions you used to
get results along with numerical results showing estimated rates of convergence for both rules.

36 CHAPTER 3. NUMERICAL QUADRATURE

(b) Use first the midpoint rule, then the Gaussian rule with M = 5 to approximately integrate
sin(%) from .01 to 1. Your answer should consist of your approximations to f :)1 sin % dx and a
clear description of the meshes you used to obtain your approximations (including how many mesh
intervals each method required and how the mesh intervals were positioned). Remember to balance
carefully the goals of efficiency and accuracy, that is, make sure your answer is correct, but don’t
put too many mesh intervals where they aren’t needed. (Not to hand in: Can you think of a way to
automate the chore of choosing a good mesh?)

3.4 Programming Project, Part 11

In this part of the project, you will assemble the stiffness matrix S and the right-hand-side vector
F. After completing this assignment, you will be only a linear system solver away from a working
finite element code. Recall that the finite element method requires you to solve a system of the form
SU = F, where Sj; = L(v;,¢;) and {¢;} is a basis for S}, (or S,’f’”). Computing S;; thus involves
computing some integrals, which you are now well-prepared to do. Recall that £(1;,1;) = 0 if i and
J are far enough apart (how far depends on the method), and that £(1;,4;) will involve integrals
over at most two mesh intervals in any case. You should apply Gaussian quadrature with M =5
directly on each mesh interval (that is, no composite rule is needed). Thus if you are computing
an integral involving two mesh intervals, you will need to apply the quadrature rule twice, once on
each interval. Compute and assemble the stiffness matrix S and the right-hand-side vector F' (with
entries fol f; dx). You should use a sparse matrix structure to store S; otherwise you end up storing
a whole bunch of zeros. It’s fine if you store the diagonals of S in vectors, at least for now, or else
you may use Matlab’s “sparse” matrix data structure.

Using M = 5 will give you WAY more accuracy than you need for the piecewise linear method,
and plenty of accuracy for the finite element method using cubic splines. Using such a high order
of accuracy in quadrature would probably be considered “overkill” by most practical finite element
practitioners, but our goal is to construct our code in such a way that the quadrature error can be
ignored—and it essentially can be with M = 5.

