
Chapter 4

Numerical Linear Algebra

4.1 Introduction

In this chapter, we consider algorithms for solving linear systems of equations. Our goal is to
construct algorithms which are suitable for use on a computer, so we begin with a 2 × 2 example
which highlights some of the hazards of numerical linear algebra. After constructing a workable
numerical algorithm for this simple example, we shall then present a robust algorithm for solving
banded linear systems. This algorithm will suggest a more generally applicable algorithm, which is
the LU factorization. Finally, we will briefly consider an iterative algorithm which approximately
solves certain special linear systems.

We begin by considering how to solve the system

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2.

Using standard Gaussian elimination, we would typically first divide the top row through by a11

and the bottom row through by a21, then forward reduce to yield a upper triangular system, then
backsolve to find x1 and x2. If we perform this algorithm on the system[

1 10, 000
1 1

](
x1

x2

)
=

(
10, 000

2

)
, (4.1)

we find that x1 = 1 1
9999 = 1.0001 and x2 = 9998

9999 = .9998.
Computers do not do arithmetic in the same way that we do, however. They represent numbers

as an integer of some fixed length multipled by an order of magnitude. Assume for the present that
we are working with a computer which gives three digits of precision, that is, it represents numbers
as ±.d1d2d3 × 10n. Let’s see how Gaussian elimination works on the above system now. We first
note that the answer we are shooting for is x1 = 1 = .100× 101, and x2 = 1 = .100× 101, which are
x1 and x2 to three digits of precision. We first write down the augmented matrix corresponding to
4.1, which is [

.100× 101 .100× 105 .100× 105

.100× 101 .100× 101 .200× 101

]
.
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Subtracting row 1 from row 2 using 3-digit precision yields[
.100× 101 .100× 105 .100× 105

.000× 100 −.100× 105 −.100× 105

]
.

We next divide the bottom row through by −.100× 105 to find[
.100× 101 .100× 105 .100× 105

.000× 100 .100× 101 .100× 101

]
,

then subtract 104 times the bottom row from the top row to find[
.100× 101 .000× 100 .000× 100

.000× 100 .100× 101 .100× 101

]
.

Thus normal Gaussian elimination tells us that x1 = 0.00 and x2 = 1.00, which is not even close to
begin correct.

In order to correct this difficulty, we will employ a combined strategy of row scaling and row
pivoting (or partial pivoting). Row scaling involves dividing each row through by the greatest entry
in that row (the greatest entry is computed over the entries of the row in the original matrix, i.e.,
not taking the right-hand-side vector ~b into account). After row scaling, we then perform a row
pivot, which involves simply swapping the rows so that the first row has the largest entry in the first
column. Let’s see how this algorithm works with our above example. Beginning once again with[

.100× 101 .100× 105 .100× 105

.100× 101 .100× 101 .200× 101

]
,

we first divide the top row through by .100× 105, giving us[
.100× 10−3 .100× 101 .100× 101

.100× 101 .100× 101 .200× 101

]
,

Now the greatest entry in the first column appears in the second row, so we swap rows 1 and 2:[
.100× 101 .100× 101 .200× 101

.100× 10−3 .100× 101 .100× 101

]
,

We then proceed with Gaussian elimination as usual (except with the modification that we are now
using 3-digit precision, of course). Subtracting 10−4 times the first row from the second yields[

.100× 101 .100× 101 .200× 101

.000× 100 .100× 101 .100× 101

]
,

and then subtracting the second row from the first gives the row-reduced matrix[
.100× 101 .000× 100 .100× 101

.000× 100 .100× 101 .100× 101

]
,

that is, x1 = 1.00 and x2 = 1.00, which are both correct to three digits. Thus our row scaling and
pivoting strategy paid off. We note two things here. First of all, row scaling and pivoting make no
difference if no round-off errors are involved (i.e., if exact arithmetic is used) as Gaussian elimination
works as long as division by 0 is avoided. Secondly, neither row scaling nor pivoting alone will give
us a correct result for this example when three-digit arithemetic is used (try this out yourself if
you’re not convinced!). Both operations are essential.
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4.2 An algorithm for solving banded systems

We shall now give an algorithm for solving a system A~x = ~b, where A is an n × n matrix and ~x
and ~b are n-vectors. We shall also assume that A has a bandwidth of BW . That is, Aij = 0 if
|i − j| > BW , or said differently, only the first BW diagonals above and below the main diagonal
have nonzero entries. Our algorithm will employ row scaling and row pivoting. In the 2×2 example
above, we did row scaling, then row pivoting, then completed the forward reduction and the back
substitution. In this algorithm, the row scaling will be done as a preliminary step. The pivoting,
however, will be done multiple times during the forward reduction step (and not all at once).

In addition to writing down an effective algorithm, we also wish to know how much work the
algorithm requires as it executes. Thus we shall count the number of operations it requires. We
will not be all that precise. What we really are after is some statement of the form “this algorithm
requires about CnαBW β floating point operations”. We don’t really care what C is–it may be 2, 3,
or 57. If the #ops ≤ CnαBW β , we say that #ops is O(nαBW β), or “the number of operations is
oh of nαBW β”. This is called “big oh” notation and is commonly used in numerical analysis and
computer science.

Our first step is preliminary row scaling. We shall not pay attention to the vector ~b; it is “along
for the ride” and doesn’t add operations (more precisely, it doesn’t increase the order of the operation
count), although of course in an actual algorithm one must do anything to ~b that one does to A.

1. Preliminary row scaling
for i=1,...,n
Let M=maxi−BW≤j≤i+BW aij

divide row i through by M
end

Computing M requires a linear search through 2BW + 1 elements, which takes about 2BW + 1
operations, and dividing a row through by M also requires 2BW + 1 operations (since each row has
at most that many nonzero entries). Since we must do a linear search and divide through for each
of n rows, the operation count for the preliminary row scaling is O(nBW ).

We next perform the forward reduction. Before doing so, we make a brief note concerning memory
allocation. Besides requiring less floating point operations (“flops”), one of the great advantages of
using a banded matrix solver is that it uses less memory because one must only allocate memory
for the elements lying within BW of the main diagonal. However, the banded structure is disturbed
slightly by row pivoting. As will be made clearer below, pivoting will never increase the lower
bandwidth, but it may increase the upper bandwidth by BW . When allocating memory, one must
take this fact into account. Our algorithm for forward reduction with partial (row) pivoting is as
follows.

2. Forward reduction with row pivoting
for i=1,...,n-1
a) Do row pivoting:

Pick the row k so that |aki|=maxi≤j≤i+BW |aji|
Interchange row i and row k

b) Zero out the subdiagonal elements in column i:
for j=i+1,...,i+BW
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row j=row j-aji

aii
row i

end
end

Schematically, we can illustrate steps a) and b) for a 4 × 4 matrix with BW = 1 as follows. For
i = 1, we first swap rows 1 and 2 if necessary:

x x 0 0
x x x 0
0 x x x
0 0 x x

 →


x x x 0
x x 0 0
0 x x x
0 0 x x

 .

Note that we have increased the right bandwidth by BW = 1 here, but the left bandwidth remains
the same. Next we zero out the subdiagonal entries in the first column by subtracting an appropriate
multiple of row 1 from row 2: 

x x x 0
x x 0 0
0 x x x
0 0 x x

 →


x x x 0
0 x x 0
0 x x x
0 0 x x

 .

We next note that the lower n − 1 × n − 1 submatrix of the above matrix is a banded matrix of
bandwidth BW : 

x x x 0
0 x x 0
0 x x x
0 0 x x

 ,

and we may apply the same steps to this matrix.
The operation count for the forward reduction step is as follows. The row pivoting involves a

linear search over BW + 1 elements, which requires about BW operations, and this must be done n
times for a total of O(nBW ) operations. (Note that the row swap itself involves memory overhead
but no floating point operations.) Step b) involves a loop of length BW , and each step in that loop
involves about 3BW + 1 multiplications (multiplying row i by aji

aii
) and 3BW + 1 subtractions, so

we multiply BW by 6BW + 2 for a total of O(BW 2) operations. Since this must be done n times
also, the final operation count for the forward reduction is O(nBW 2) operations.

The final step in the algorithm is the backsolve. In this algorithm, we let ~b denote the vector ~b
after all operations done on the matrix A have been performed on ~b as well, i.e., we assume that ~b
has been “along for the ride” up to this point in the algorithm.

3. Backsolve
for i=n,...,1 with step -1

xi = 1
aii

(bi −
∑i+2BW

j=i+1 aijxj)
(note that xj in the above sum is known from the previous step)

end

This step requires about BW operations for each of n steps for a total of O(nBW ) operations.
To sum up the operation count, the preliminary row scaling required O(nBW ) operations, the

forward reduction O(nBW 2) operations, and the backsolve O(nBW ) operations. Since n and BW
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are both ≥ 1, the forward reduction will thus in general be the most computationally expensive
part of the algorithm. If BW = n (or if BW is O(n)), then the forward reduction will require
O(n3) operations, which is what we expect for Gaussian elimination. However, this analysis tells us
exactly where the largest expense in Gaussian elimination lies–in the forward reduction. This bit of
information will prove useful in the next section as we consider a more general-purpose algorithm
for solving linear systems.

As a final comment, we note that we can efficiently solve multiple right-hand-sides simultaneously
with this algorithm. That is, it requires only a little more work to simultaneously find ~x and ~y, where
A~x = ~b and A~y = ~c.

4.3 Programming Project, Part III

In this part of the project, you will construct a function or subroutine which inputs a banded matrix
A and a right-hand-side vector ~b and solves the system A~x = ~b for ~x. How you store A is up to
you, but don’t use more storage than necessary (with the possible exception of just a few entries–
say, O(BW 2)). Your routine should incorporate both preliminary row scaling and row pivoting, as
outlined earlier in the chapter.


