
Chapter 5

Error Estimates for the Finite
Element Method

5.1 Introduction

In this chapter, we shall focus on two types of error estimates for the finite element method, a priori
and a posteriori estimates. (We have previously introduced these terms in the context of quadrature
rules.) These two types of estimates serve very different purposes. The main feature of a priori
estimates is that they tell us the order of convergence of a given finite element method, that is, they
tell us that the finite element error ‖u−uh‖ in some norm ‖ · ‖ is O(hα), where h is the (maximum)
mesh size and α is a positive integer. The constant in the O(hα) is generally unknown and is often
not of great interest. The goal of these estimates is to give us a reasonable measure of the efficiency of
a given method by telling us how fast the error decreases as we decrease the mesh size. In contrast,
a posteriori estimates use the computed solution uh in order to give us an estimate of the form
‖u− uh‖ ≤ ε, where ε is simply a number. These estimates accomplish two main goals. First, they
are able to give us a much better idea of the actual error in a given finite element computation than
are a priori estimates. Secondly, they can be used to perform adaptive mesh refinement. In adaptive
mesh refinement, a posteriori error estimators are used to indicate where the error is particularly
high, and more mesh intervals are then placed in those locations. A new finite element solution is
computed, and the process is repeated until a satisfactory error tolerance is reached.

5.2 A priori error estimates

Our goal is to find bounds for the error u − uh in the finite element approximation of the solution
u to our general two-point boundary value problem. We first consider how we should measure the
error, that is, what norm we should use. We have already demonstrated that the energy norm ‖·‖eng

is convenient in one sense because ‖u − uh‖eng = minχ∈Sh
‖u − χ‖eng. However, it has a few key

disadvantages. First, it is highly connected with our problem; in particular, it depends upon the
coefficients a, b, and c. This can be a problem if these coefficients vary widely in size. Also, if we
were to use this norm as our error measure, we would have to compute minχ∈Sh

‖u−χ‖eng for each

43

44 CHAPTER 5. ERROR ESTIMATES FOR THE FINITE ELEMENT METHOD

choice of a, b, and c. A second disadvantage of the energy norm is that it measures both the error
u − uh in the function values and the error (u − uh)′ in the first derivative. However, sometimes
we wish to measure only the error u − uh in the function values, and in fact this error converges
at a higher rate than does the error in the derivative (or more precisely, the error in the H1 or
energy norms). Finally, the energy norm measures an average error in some sense; more precisely, it
measures weighted integrals of the squares of the errors over the interval [0, 1]. However, controlling
the average error leaves open the possibility that the error is very large on a very small portion of
the interval [0, 1]. Thus we could seek to measure the maximum of the error over the interval [0, 1],
i.e., ‖u− uh‖L∞([0,1]).

We shall present error estimates in three different norms, all of which overcome at least one of
the objections to the energy norms presented above. The first option is the H1 norm, defined as
‖u − uh‖H1 = (

∫ 1

0
(u′ − u′h)2 dx +

∫ 1

0
(u − uh)2 dx)1/2. (In all of our norm notation in this section,

we shall assume that the norm is being taken over the interval [0, 1] unless otherwise noted.) Note
that if a ≡ c ≡ 1 and b ≡ 0, the H1 norm is precisely the energy norm. The H1 and energy norms
provide similar measures of the error under many circumstances, but the H1 norm is independent
of the problem under study and is thus more convenient for many purposes.

A second option for measuring the error is to use one of the Lp norms, given by ‖u − uh‖Lp =
(
∫ 1

0
(u − uh)p dx)1/p, 1 ≤ p < ∞. Typically it is easiest to choose p = 2, but other choices of

p sometimes are convenient or necessary. These norms measure only the error in function values
and not in derivatives. The third option, the L∞ norm, also measure only function values, but it
measures the maximum ‖u − uh‖L∞ of the error over the interval [0, 1] instead of measuring an
average over this interval as the Lp norms do (again, we may interpret an integral as an average).

We next give error estimates for the piecewise linear and Hermite cubic finite element methods
in the various norms listed above. We shall only prove the estimate for the Hermite cubic method in
the H1 norm. This is the simplest of the estimates to prove, and even its proof is somewhat lengthy.

Theorem 5.2.1 Assume that 0 < a0 ≤ a(x) ≤ A0 and 0 < c0 ≤ c(x) ≤ C0 for 0 ≤ x ≤ 1, and
assume that u satisfies L(u, v) = (f, v), v ∈ A (that is, assume that u satisfies a two-point boundary
value problem with homogeneous Neumann boundary conditions). Let also uh be the Hermite cubic
spline finite element approximation to u on a mesh with maximum element size h. Then

‖u− uh‖H1 ≤ Ch3‖u(4)‖L2 , (5.1)
‖u− uh‖Lp ≤ Ch4‖u(4)‖Lp , 1 ≤ p < ∞, (5.2)

‖u− uh‖L∞ ≤ Ch4‖u(4)‖L∞ , (5.3)

where u(4) is the fourth derivative of u.

Proof. Omitted here for the present.
We next give analagous estimates for the piecewise linear finite element method.

Theorem 5.2.2 Assume that 0 < a0 ≤ a(x) ≤ A0 and 0 < c0 ≤ c(x) ≤ C0 for 0 ≤ x ≤ 1, and
assume that u satisfies L(u, v) = (f, v), v ∈ A (that is, assume that u satisfies a two-point boundary
value problem with homogeneous Neumann boundary conditions). Let also uh be the piecewise linear
finite element approximation to u on a mesh with maximum element size h. Then

‖u− uh‖H1 ≤ Ch‖u′′‖L2 , (5.4)
‖u− uh‖Lp ≤ Ch2‖u′′‖Lp , 1 ≤ p < ∞, (5.5)

‖u− uh‖L∞ ≤ Ch2‖u′′‖L∞ . (5.6)

5.3. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE MESH REFINEMENT 45

Proof. Omitted.
We also note that these estimates are valid for a wide range of boundary conditions; we have

only presented them for homogeneous Neumann conditions for the sake of simplicity.
As stated previously, our interest in these estimates is largely theoretical: we wish to know how

fast our error will decrease as the mesh size decreases. They do provide a very handy basis for
comparing methods, however. For example, notice that the error in the Hermite cubic method as
measured in the L∞ norm is O(h4), while the L∞ error in the piecewise linear method is O(h2).
Thus the error will decrease much faster when using the Hermite cubic method than when using the
piecewise linear method, and the Hermite cubic method is usually more efficient computationally
speaking (though perhaps harder to program). There are definitely exceptions, however. The error
estimates for the Hermit cubic method require that u have four derivatives, whereas the error
estimates for the piecewise linear method only require that u have two derivatives. There are
practical situations where u indeed only has two derivatives (perhaps even less), and here it makes
much more sense to use the piecewise linear elements. While the Hermite cubics and piecewise linears
both yield O(h2) convergence if u doesn’t have more than two derivatives, the Hermite cubics will
not be as efficient as the piecewise linears in achieving this accuracy. Thus while the Hermite cubics
are very efficient for smooth problems, the piecewise linears will yield optimal convergence for a
wider range of problems.

These estimates also give us an excellent tool for dealing with a very practical problem, that
of debugging codes. We may observe two things from them. First, there are times when the finite
element method should yield an exact solution. For example, assume that the Hermite cubic method
is used to approximate a solution u, where u(x) is a cubic polynomial. Since cubic polynomials have
a fourth derivative which is 0, the error u−uh should be 0 (this is true no matter what the coefficients
are, so long as they satisfy the conditions given in the theorem). Thus if we set up a problem with
a known solution which is a cubic polynomial, the finite element method should return the exact
solution. We may also do a rate of convergence test, just as we described in the context of Gaussian
quadrature. If such a test yields a suboptimal computed rate of convergence, then there is probably
a bug in the code.

5.3 A posteriori error estimation and adaptive mesh refine-
ment

In this section, we shall try to solve the following problem: How should the mesh points {xi}i=0,...,N

in a finite element mesh be placed so that a given error tolerance is achieved with maximum efficiency,
i.e., with as few mesh points as possible? The answer to this problem depends on many factors,
including the coefficients and solution of the given TPBVP, and in fact it is solved in different ways
in different circumstances. We give here one solution which is very widely used in practice.

Knowing where to place mesh points before computing a finite element solution is difficult because
it generally requires some knowledge about the solution–which is exactly what we don’t know since
that’s what we’re trying to compute in the first place. Thus we shall use the following strategy.
We will first compute a finite element approximation on a relatively coarse grid (i.e., a grid with
relatively few mesh points). We shall use information from this computed solution to guess where
more mesh points should be placed, then recompute the finite element solution on the resulting finer
mesh. This procedure is continued until a given error tolerance is reached.

46 CHAPTER 5. ERROR ESTIMATES FOR THE FINITE ELEMENT METHOD

To be more precise, let’s suppose that we are seeking to find a finite element approximation uh

to the solution u of a TPBVP such that

‖u− uh‖L∞ ≤ tol.

Here tol might be .01, .001, or something like that. It is difficult to know absolutely for certain that
we have reached this goal (unless we know u ahead of time, which we generally don’t), so we shall
instead settle for being reasonably sure that we are close to it.

We assume here that uh is the piecewise linear finite element approximation to u. Then (5.6)
tells us that ‖u− uh‖L∞ ≤ Ch2‖u′′‖L∞ . Actually, we shall need a sharper version of this estimate,
which is

‖u− uh‖L∞([0,1]) ≤ C max
1≤j≤N

h2
j‖u′′‖L∞([xj−1,xj]).

Thus if we can determine C and ‖u′′‖L∞([xj−1,xj]) for each j, we will have a reasonable bound on
the error as measured in the L∞ norm.

Theoretical bounds for C are often unrealistic, although sometimes theory can determine C
more closely than we have done above. We will discuss two strategies for dealing with C. The
first is to simply ignore it. If C isn’t too big (say, 2 or 3) and we are somehow able to ensure that
max1≤j≤N h2

j‖u′′‖L∞([xj−1,xj]) ≤ tol, then in fact ‖u − uh‖L∞([0,1]) ≤ Ctol. Although we would
prefer not to be off by this factor of C, we generally will be willing to accept it. If it is important
to have firm bounds on ‖u− uh‖L∞([0,1]) (that is, if it is important to know this error precisely and
not just up to a constant factor), then well-chosen experiments can yield a reasonable estimate for
C. Finite element approximations to a variety of problems with known solutions may be computed
on a variety of meshes, both uniform and non-uniform. In each experiment, C is then estimated by

‖u−uh‖L∞([0,1])

max1≤j≤N h2
j‖u′′‖L∞([xj−1,xj])

. This will yield a range of possible values for C, and the greatest is then

used, perhaps with a little extra added on just to be sure.
We shall expend most of our effort in the estimation of ‖u′′‖L∞([Ij]) (here Ij = [xj−1, xj], 1 ≤ j ≤

N). Our goal is to construct an error estimator EE(Ij) so that h2
j‖u′′‖L∞([Ij]) ≈ EE(Ij). Here we

shall present two possible choices of the error estimator EE. The first choice of EE is very specific
to the problem we are studying. Recall that

−(au′)′ + bu′ + cu = f,

or
−au′′ − a′u′ + bu′ + cu = f.

Since we have assumed that a(x) ≥ a0 > 0 for all x, we can solve for u′′(x) precisely:

u′′(x) =
f(x) + a′(x)u′(x)− b(x)u′(x)− c(x)u(x)

a(x)
.

We of course don’t know u′(x) and u(x), but we have estimates u′h(x) and uh(x) for these values.
Thus

u′′(x) ≈ f(x) + a′(x)u′h(x)− b(x)u′h(x)− c(x)uh(x)
a(x)

,

and our first error estimator is

EE(Ij) = h2
i

∥∥∥∥f + a′u′h − bu′h − cuh

a

∥∥∥∥
L∞(Ij)

5.3. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE MESH REFINEMENT 47

The accuracy of this estimator can be proven by using bounds for u − uh and (u − uh)′ in L∞,
although we don’t do so here. While it is an excellent choice for use with piecewise linear finite
element methods for second-order TPBVP’s, it relies heavily upon the fact that the order of the
differential equation and the order of convergence of the finite element method are the same. This
is a fairly severe restriction; for example, this method (or a similar one) would not work when using
the Hermite cubics to solve our TPBVP.

A second option is to estimate u′′ by second difference quotients of uh. This approach is more
generally applicable than that given above and could be extended to higher-order methods. It is not
always rigorously justified theoretically speaking, but generally works well in practice. (We shall
consider our use of this estimator to be purely experimental mathematics–try it and see if it works
with little heed paid to theory!) We first note that for any mesh point xj ,

u′′(xj) =
1

hj(
hj+hj+1

2)
u(xj−1)−

2
hjhj+1

u(xj) +
1

hj+1(
hj+hj+1

2)
u(xj+1) + O(max{hj , hj+1}).

We shall simply disregard the O(max{hj , hj+1}) and replace u(xj) with uh(xj). Doing so, we make
the definition

δ2uh(xj) =
1

hj(
hj+hj+1

2)
uh(xj−1)−

2
hjhj+1

uh(xj) +
1

hj+1(
hj+hj+1

2)
uh(xj+1).

Note that δ2uh is defined only at mesh points xj . In order to estimate u′′ over Ij , we shall take an
average of δ2uh(xj−1) and δ2uh(xj), except at the boundaries:

EE(Ij) =

h2

1|δ2uh(x1)| if j = 1,

h2
j
|δ2uh(xj−1)+δ2uh(xj)|

2 if 2 ≤ j ≤ N − 1, j = 2, ..., N − 1,
h2

N |δ2uh(xN−1)| if j = N.

We shall now present an algorithm for solving the problem we originally stated in this section,
which is: For u solving a TPBVP, find uh such that ‖u− uh‖L∞([0,1]) ≤ tol, where tol is given. We
shall simply assume that C is 1; if a value for C has been determined, one may replace EE(Ij) in
what follows with CEE(Ij). Our algorithm is as follows.
Step 1. Choose a mesh size h and calculate a first approximation uold

h on a uniform mesh of size h.
One could choose h ≈

√
tol, for example, though h could be larger.

Step 2. Using uold
h , calculate EE(Ij) for j = 1, ..., N . If EE(Ij) ≥ tol, then subdivide Ij into two

new mesh intervals by adding a new mesh point at the center of Ij . If EE(Ij) < tol, leave Ij alone.
Step 3. If EE(Ij) ≥ tol for at least one j, calculate a new approximation unew

h on the new mesh
and replace uold

h with unew
h .

Step 4. Repeat steps 2 and 3 until EE(Ij) < tol for j = 1, ..., N .

