
48



Chapter 7

Time-dependent problems

7.1 Introduction

Our goal in this section is to discuss the numerical treatment of time-dependent problems. The first
problem we wish to treat is the numerical solution of parabolic partial differential equations via the
finite element method. This will lead us to the topic of numerical methods for ordinary differential
equations. Although we shall mainly look at this area from the perspective of its usefullness in
approximating solutions of parabolic partial differential equations, it is of course a large and rich
area in its own right.

7.2 Parabolic differential equations

Our goal is the numerical treatment of the parabolic problem

ut − (au′)′ + bu′ + cu = f, x ∈ (0, 1), 0 ≤ t ≤ T,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = u0(x).

(7.1)

We emphasize that u(x, t) is a function of two variables x and t, and we denote by ut the derivative
with respect to the second variable and by u′ the derivative with respect to the first variable. Also,
the coefficients a, b, and c and the right-hand-side f are in general dependent upon t as well as
upon x. Normally x is viewed as the space variable, and t as the time variable. Also, note that the
well-known heat equation

ut − uxx = f, quadx ∈ (0, 1), 0 ≤ t ≤ T,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = u0(x)

is a special case of the above general parabolic problem. These equations both can be used to model
diffusive processes, for example, the diffusion of heat in a body over time or the diffusion of chemical
in a solution. Note that the lower-order terms may be used to model different physical phenomenon,
e.g., convection, and that different boundary conditions (Neumann conditions, e.g.) may arise as
well.
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50 CHAPTER 7. TIME-DEPENDENT PROBLEMS

We may derive a weak form of (7.1) just as in the case of the time-independent two-point
boundary value problem. We now need class of admissible functions which is time-dependent, so we
let A0,T be the class of functions which are defined on (0, 1)× [0, T ] and which are “smooth enough”,
by which we roughly mean that they have one derivative in time and have the same smoothness in
space as functions in our previous class A0. Multiplying by a test function and integrating by parts
in space (but not in time), the weak form is: Find u ∈ A0,T such that∫ 1

0
utv dx+

∫ 1

0
au′v′ dx+

∫ 1

0
bu′v dx+

∫ 1

0
cuv dx =

∫ 1

0
fv dx for all v ∈ A0, 0 ≤ t ≤ T,

u(x, 0) = u0(x).
(7.2)

Denoting by L(·, ·) the usual bilinear form and by (·, ·) the usual inner product, we may rewrite the
above as: Find u ∈ A0,T such that (ut, v) + L(u, v) = (f, v) for all v ∈ A0 and for 0 ≤ t ≤ T , where
u satisfies the given initial condition. One can show that the weak and strong forms of a parabolic
problem are equivalent exactly as in the case of the two-point boundary value problem, that is, by
choosing v carefully. Also, Neumann conditions are treated just as in the time-independent case. One
definesAT to be the space of functions which have one derivative in time and enough space derivatives
and, for homoegeneous Neumann conditions, seeks u ∈ AT such that (ut, v) + L(u, v) = (f, v) for
all v ∈ A and 0 ≤ t ≤ T . Thus Neumann conditions are still natural (that is, they don’t need to be
imposed in the weak formulation), and Dirichlet conditions are still essential (that is, they need to
be imposed in the weak formulation).

7.3 Time-dependent finite element formulation

We next write down the finite element method for approximating solutions of (7.2). Our approach
is to first discretize the problem in space, leading to a semi-discrete formulation, and then discretize
the problem in time, leading to the fully discrete formulation. We shall first deal with the Neumann
problem. As in the case of the time-independent problem, we assume that (7.2) have a unique
solution, or slightly more stringently, we require that L(·, ·) be an inner product on A. We then
let Sh ⊂ A be a finite dimensional space with basis {ψi}i=1,...,N and denote by Sh,T the space of
functions of the form vh(x, t) =

∑N
i=1 vi(t)ψi(x). That is, the time dependence of our finite element

functions occurs in the coefficients, and the space dependence occurs in the basis functions. We
next rewrite the Neumann version of (7.2) with Sh in place of A to yield the following semidiscrete
problem: Find ũh ∈ Sh,T such that

( d
dt ũh, vh) + L(ũh, vh)=(f, vh), vh ∈ Sh, 0 ≤ t ≤ T,

ũh(x, 0)=uh0(x).
(7.3)

Here uh0 is an appropriate approximation of u0. For example, one could use uh0 = Int(u0). Alter-
natively, one could let uh0 be the L2-projection of u onto Sh, that is,

∫ 1

0
uh0χdx =

∫ 1

0
u0χdx for all

χ ∈ Sh.
We next show that solving (7.3) is equivalent to solving a system of ordinary differential equations

for the coefficients {ũi(t)}i=1,...,N , where ũh(x, t) =
∑N

i=1 ũi(t)ψi(x). We first note that if (7.3) holds
for vh = ψi, i = 1, ..., N , then it holds for all vh ∈ Sh, just as in the time-independent problem.
We then substitute

∑N
i=1 ũi(t)ψi(x) for ũh in (7.3) to obtain the following problem: Find coefficient
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functions {ũi(t)}i=1,...,N such that∑N
i=1

d
dt ũi(t)(ψi, ψj) +

∑N
i=1 ũi(t)L(ψi, ψj) = (f, ψj), j = 1, ..., N, 0 ≤ t ≤ T,

ũi(0) = ui0, i = 0, ..., N

where uh0 =
∑N

i=1 ui0ψi. We let S be the stiffness matrix with entries Sij = L(ψj , ψi) as previosly,
and we now also define the mass matrix M with entries Mij = (ψj , ψi). Note that M is always
symmetric, whereas S is symmetric if and only if the coefficient b ≡ 0. Also, S is in general time-
dependent since the coefficients a, b, and c may be, whereas M does not depend on time. We then
let Ũ be the vector function with entries ũi(t) and having time derivative Ũt. Also, we let U0 be the
vector with entries ui0, and we let F be the vector with entries (f, ψi) (note that F is in generally
time-dependent as well). The we seek U such that

MŨt + SŨ = F, 0 ≤ t ≤ T,

Ũ(0) = U0.

Rewriting the above in the typical form for an ordinary differential equation, we seek U such that

Ũt = M−1(F − SŨ), 0 ≤ t ≤ T,

Ũ(0) = U0.
(7.4)

Next we make a couple of notes about (7.4). First, it is a system of first-order linear ordi-
nary differential equations for the vector variable U . Thus if we can solve this system of ODEs,
we will have our finite element solution uh of our parabolic problem. Secondly, we say that if
ũh(x, t) =

∑N
i=1 ui(t)ψi(x), where Ũ = {ũi} satisfies (7.4), then ũh is a semidiscrete solution. The

term semidiscrete is used because the underlying parabolic PDE has been discretized in the spatial
variable x, but not in the time variable t. The development and analysis of finite element meth-
ods for parabolic problems and most other time-dependent problems proceed by first analyzing the
semidiscrete case, then by introducing and analyzing a time discretization for the purpose of solving
the above ODE.

We next introduce time-discretized versions of (7.3) and (7.4) (they are of course equivalent).
The basic idea is to approximate d

dt ũh by a difference approximation. We first introduce a time grid
0 = t0 < t1 < ... < tL = T , and we let kn = tn − tn−1, n = 1, ..., L. Our goal will be to find finite
element functions u(n)

h , n = 0, ..., L, such that u(n)
h approximates ũh(·, tn) well. To begin with, we

introduce the most basic time-stepping scheme, the (forward) Euler method. Here we approximate
d
dt ũh(·, tn) by u

(n+1)
h −u

(n)
h

kn
, and we approximate (7.3) by

(u
(n+1)
h −u

(n)
h

kn
, vh) + Ltn(u(n)

h , vh) = (f(tn), vh), vh ∈ Sh, 0 ≤ n ≤ L− 1,
u

(0)
h = uh0.

(7.5)

The solution of (7.5) may be implemented as follows. We let U (n) be the vector of coefficients
corresponding to u

(n)
h . We also let F (tn) and S(tn) be the right-hand-side vector and stiffness

matrix at time tn. Then (7.5) is equivalent to finding the vectors U (n), n = 1, ..., L, such that

U(n+1)−U(n)

kn
= M−1(F (tn)− S(tn)U (n)), 0 ≤ n ≤ L− 1,

U (0) = U0.
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Solving the first equation above for U (n+1), we find that

U (n+1) = U (n) + knM
−1(F (tn)− S(tn)U (n)), 0 ≤ n ≤ L− 1.

Since we already know U (0) (at least after somehow computing a finite element approximation to
the initial data u0 of the continuous problem), we may compute U (1), and then U (2), and so forth.
We note that at each time step, it is necessary to compute F (tn) and S(tn) (unless the coefficients
and/or the right hand side are time-independent) and then solve one linear system. We say that
this forward Euler method is an explicit one-step method.

In the backward Euler method, we approximate d
dt ũh(·, tn+1) instead of d

dt ũh(·, tn) by u
(n+1)
h −u

(n)
h

kn
.

Instead of (7.5), this leads to the equation

(u
(n+1)
h −u

(n)
h

kn
, vh) + Ltn+1(u

(n+1)
h , vh) = (f(tn+1), vh), vh ∈ Sh, 0 ≤ n ≤ L− 1,

u
(0)
h = uh0.

(7.6)

In terms of the coefficients Un, we then have

M U(n+1)−U(n)

kn
= F (tn+1)− S(tn+1)U (n+1), 0 ≤ n ≤ L− 1,

U (0) = U0.

Rewriting, we find

MU (n+1) + knS(tn+1)U (n+1) = MU (n) + knF (tn+1), 0 ≤ n ≤ L− 1,

or
U (n+1) = (M + knS)−1(MU (n) + knF (tn+1)), 0 ≤ n ≤ L− 1.

We note that here one must essentially solve a two-point boundary value problem at every time step,
with a right-hand-side which is dependent upon the solution at the previous time step. The forward
Euler method is called an implicit one-step method; we shall have more to say about the difference
between implicit and explicit methods in the future.

Euler’s methods–both backward and forward–are globally first-order accurate. Letting k =
max0≤n≤L−1 kn, we have |ũh(x, tn)−u(n)

h (x)| ≤ Ck, where C is independent of n and x. As we shall
see when we present the theory for these methods more precisely, higher accuracy would be very
desirable. There are many possibilities for obtaining higher-order accuracy, a few of which we shall
present later.

7.4 Finite element error estimates

In this section, we give estimates for the errors u(t)− ũh(t) and u(tn)− un
h in the L2 norm over the

interval (0, 1). For simplicity, we shall assume in this section that L(u, v) = (u′, v′) + (u, v), that is,
the coefficients a, b, and c are time-independent and satisfy a = 1, b = 0, and c = 1. We first give
(but do not prove) a theorem for the error in the semidiscrete approximation.

Theorem 7.4.1 Assume that Sh approximates to order r in L2 (so r = 2 for the piecewise linear
elements and r = 4 for the Hermitian cubics). Also, assume that ũh(x, 0) = uh0(x) = Int(u0)(x).
Then

‖u(t)− ũh(t)‖L2([0,1]) ≤ Chr(‖u(r)
0 ‖L2([0,1]) +

∫ t

0

‖u(r)
t ‖L2([0,1])ds)
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for any 0 < t ≤ T . Here u(r) = dr

dxr u is the r-th space derivative of u.

Note that we get the same order of convergence for the semidiscrete parabolic method as for the
time-independent finite element method.

Next we shall state and prove an estimate for the fully discrete backward Euler finite element
method given by (7.6).

Theorem 7.4.2 Assume that ki = k for 1 ≤ i ≤ L, that is, assume that the time steps are uniform.
Then

‖u(tn)− u
(n)
h ‖L2([0,1]) ≤ Chr(‖u(r)

0 ‖L2([0,1]) +
∫ tn

0

‖u(r)
t (s)‖L2([0,1])ds) + Ck

∫ tn

0

‖utt(s)‖L2([0,1])ds.

Proof. Omitted for the present.

7.5 Linear multistep methods for initial value problems

7.5.1 Basic theory of ODE’s

In this section we shall (rather briefly) discuss a few important ideas concerning the topic of numerical
analysis of initial value problems. In the previous section, we dealt with the numerical solution of
a system of linear ordinary differential equations arising from the spatial discretization of a partial
differential equation. Here we shall look instead at a one-dimensional model ordinary differential
equation of the form

dy
dx = f(x, y),

y(x0) = y0
(7.7)

f is in general a nonlinear function of both x and y. If f is linear in y (but not necessarily in
x), that is, if f(x, y) = g(x)y + h(x), we say that (7.7) is a linear initial boundary value problem;
otherwise it is nonlinear. As examples, dy

dx = λy is linear, dy
dx = 2y + sinx is linear, and dy

dx = sin y
is nonlinear. We note that the ideas in this section carry over with little modification to systems of
ordinary differential equations (such as those discussed in the previous sections).

In contrast to partial differential equations, there is a general and unified theory concerning
existence and uniqueness of solutions to ordinary differential equations. While there are many
recurring themes in the analysis of partial differential equations, separate theories must generally
be developed for each different type of problem, and nonlinear problems in particular often require
different analyses for problems with seemingly small differences. Nothing remotely close to the
simple theory given below for both nonlinear and linear ordinary differential equations exists for
partial differential equations. This theorem is as follows.

Theorem 7.5.1 Consider the problem dy
dx = f(x, y) with initial condition y(x0) = y0. Suppose that

on some rectangle R = [x0 − a, x0 + a] × [y0 − b, y0 + b], f(x, y) and d
dyf(x, y) are defined and

continuous. Then there exists an interval [x0 − c, x0 + c] on which the given initial value problem
has a unique continuously differentiable solution. Here the size of c depends upon ‖f‖L∞(R) and
‖ d

dyf‖L∞(R).
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Proof. Omitted.
As a first example, we consider the problem dy

dx = λy, y(0) = y0. f is clearly defined and
continuous for all y, as is df

dy . In fact, this problem has a solution for all x. We may separate
variables here to find dy

y = λdx, and integrating both sides yields ln |y| = λx+C. Thus |y| = eλxec,
or substituting the initial condition, y(x) = y0e

λx. Our theorem tells us that this solution is in fact
unique.

As a second example, consider dy
dx = y2/3, y(0) = 0. Clearly y(x) = 0 is a solution of this

problem since dy
dx = y = 0. If we integrate, however, we find that y(x) = (x/3)3 also solves this

initial value problem. Thus it does not have a unique solution. We then are led to question whether
the theorem given above is violated by this example. The answer is no– d

dyf(x, y) does not exist at
(x0, y0) = (0, 0), and it is not bounded near (0, 0), both of which are conditions of the theorem.
Thus while our theorem is very general and very useful, it does not always apply.

7.5.2 Numerical methods for ODE’s

In this section we shall discuss three properties of numerical methods for ordinary differential equa-
tions: order of convergence, excplicit vs. implicit methods, and (absolute) stability. We shall first
discuss these properties in some detail within the relatively simple confines of the forward and back-
ward Euler methods, then present some more complicated (and more practical) methods along with
brief comments on their properties.

We first consider the simplest numerical method for ordinary differential equations, forward
Euler. We shall assume for simplicity that x0 = 0, and we then construct a grid 0 = x0 < x1 <
x2 < ... < xM = L. Also, we define kn = xn − xn−1. We denote by y(n) the approximation to y(xn)
given by the time-stepping formula

y(n) = yn−1 + knf(xn−1, y
(n−1), y(0) = y(0).

One may develop forward Euler in a couple of different ways. We shall think of it as a truncated
Taylor expansion. Note that y(xn) = y(xn−1) + kn

dy
dx (xn−1) + k2

n

2
d2y
dx2 (η) for some xn−1 < η < xn.

If we simply truncate the Taylor expansion, we are left with y(xn) ≈ y(xn−1) + kn
dy
dx (xn−1) =

y(xn−1) + knf(xn−1, y(xn−1)). We note that if we perform exactly one step of forward Euler with
step size k (that is, if we do one step of forward Euler from a point x where we know y(x)), an error
of O(k2) results. Thus we say that forward Euler has a local truncation error of order O(k2). We
next show that the overall error of forward Euler with uniform time steps (for simplicity) is O(k).

Theorem 7.5.2 Assume that d2y
dx2 and d

dyf(x, y) are uniformly bounded. Then with uniform time
step size k, the error in forward Euler satisfies

|y(xn)− y(n)| ≤ Ck.

Proof. We note that

y(xn) = y(xn−1) + k
dy

dx
(xn−1) +

k2

2
d2y

dx2
(η) = y(xn−1) + kf(xn−1, y(xn−1)) +

k2

2
d2y

dx2
(η)

and
y(n) = y(n−1) + kf(xn−1, y

(n−1)).
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Combining these two equations and applying the Mean Value Theorem, we find that

|y(xn)− y(n)| = |y(xn−1)− y(n−1) + k(f(xn−1, y(xn−1))− f(xn−1, y
(n−1))) + k2

2
d2y
dx2 (η)|

≤ |y(xn−1)− y(n−1)|+ k| d
dyf(xn−1, ν)(y(xn−1)− y(n−1))|+ |k

2

2
d2y
dx2 (η)|

≤ |y(xn−1)− y(n−1)|+ k‖ d
dyf‖L∞ |y(xn−1)− y(n−1)|+ k2

2 ‖
d2y
dx2 ‖L∞ .

Iterating this equation, we find that

|y(xn)− y(n)| ≤ (1 + k‖ d
dyf‖L∞)n|y(x0)− y(0)|+ k2

2 ‖
d2y
dx2 ‖L∞

∑L−1
i=0 (1 + k‖ d

dyf‖L∞)i

= k2

2 ‖
d2y
dx2 ‖L∞

∑L−1
i=0 (1 + k‖ d

dyf‖L∞)i

= k2

2 ‖
d2y
dx2 ‖L∞

(1+k‖ d
dy f‖L∞ )L−1

k‖ d
dy f‖L∞

.

We next note that (1+k‖ d
dyf‖L∞)L−1 = (1+ X

L ‖
d
dyf‖L∞)L−1 ≤ eX‖ d

dy f‖L∞ −1, which is bounded
independent of k. A small amount of further arithemetic completes the proof.

We thus see that forward Euler is globally first-order accurate.


