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Outline

The efficiency of Buchberger’s algorithm strongly depends on a
choice of selection strategy. By phrasing Buchberger’s algorithm as
a reinforcement learning problem and applying standard
reinforcement learning techniques we can learn new selection
strategies that can match or beat the existing state-of-the-art.
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1. Gröbner Bases and Buchberger’s Algorithm



R = K [x1, . . . , xn] a polynomial ring over some field K

I = 〈f1, . . . , fk〉 ⊆ R an ideal generated by f1, . . . , fk ∈ R

Example

R = Q[x , y ]

= {polynomials in x and y with rational coefficients}

I = 〈x2 − y3, xy2 + x〉
= {a(x2 − y3) + b(xy2 + x) : a, b ∈ R}

Question
In the above example, is x5 + x an element of I ?
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Question
Consider the ideal I = 〈x2 + x − 2〉 in the ring Q[x ]. Is
x3 + 3x2 + 5x + 4 an element of I ?

x + 2
x2 + x − 2 x3 + 3x2 + 5x + 4

− (x3 + x2 − 2x)
2x2 + 7x + 4

− (2x2 + 2x − 4)
5x + 8

x3 + 3x2 + 5x + 4 = (x + 2)(x2 + x − 2) + (5x + 8)

=⇒ x3 + 3x2 + 5x + 4 6∈ 〈x2 + x − 2〉
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Definition
Let xα denote an arbitrary monomial where α is the vector of
exponents. A monomial order on R = k[x1, . . . , xn] is a relation >
on the monomials of R such that

1. > is a total ordering

2. > is a well-ordering

3. if xα > xβ then xγxα > xγxβ for any xγ (i.e., > respects
multiplication).

Example

Lexicographic order (lex) is defined by α > β if the leftmost
nonzero component of α− β is positive. For example, x > y > z,
xy > y4, and xz > y2.



Divide x5 + x by the generators x2 − y3 and xy2 + x

q1 : x3 − xy

q2 : x2y − y2 + 1

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x

− (−x3y + xy4)

−xy4 + x

− (−xy4 − xy2)

xy2 + x

− (xy2 + x)
0

x5 + x = (x3 − xy)(x2 − y3) + (x2y − y2 + 1)(xy2 + x)

=⇒ x5 + x ∈ 〈x2 − y3, xy2 + x〉
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Definition
When F is set of polynomials and dividing h by the fi ∈ F using
the division algorithm leads to the remainder r we write hF → r or
say h reduces to r .

Lemma
If hF → 0 then h is in the ideal generated by F .

Unfortunately, the converse is false.

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, note that

y2(x2 − y3)− x(xy2 + x) = −x2 − y5 ∈ I

However, multivariate division produces the nonzero remainder
−y5 − y3.
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Definition
Given a monomial order, let LT(f ) be the leading term of f .
Similarly, let 〈LT(I )〉 = 〈LT(f ) | f ∈ I 〉 be the ideal generated by all
leading terms of I .

Definition
Given a monomial order, a Gröbner basis G of a nonzero ideal I is
a subset {g1, g2, . . . , gs} ⊆ I such that any of the following
equivalent conditions hold:

(i) f G → 0 ⇐⇒ f ∈ I

(ii) f G is unique for all f ∈ R

(iii) 〈LT(g1), LT(g2), . . . , LT(gs)〉 = 〈LT(I )〉



Definition
Let S(f , g) = xγ

LT(f ) f −
xγ

LT(g)g where xγ is the least common
multiple of the leading monomials of f and g. This is the
S-polynomial of f and g, where S stands for subtraction or syzygy.

Example

S(x2 − y3, xy2 + x) =
x2y2

x2
(x2 − y3)− x2y2

xy2
(xy2 + x)

= y2(x2 − y3)− x(xy2 + x)

= −x2 − y5

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gs} generate some ideal I . If S(gi , gj)
G → 0

for all pairs gi , gj then G is a Gröbner basis of I .



Definition
Let S(f , g) = xγ

LT(f ) f −
xγ

LT(g)g where xγ is the least common
multiple of the leading monomials of f and g. This is the
S-polynomial of f and g, where S stands for subtraction or syzygy.

Example

S(x2 − y3, xy2 + x) =
x2y2

x2
(x2 − y3)− x2y2

xy2
(xy2 + x)

= y2(x2 − y3)− x(xy2 + x)

= −x2 − y5

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gs} generate some ideal I . If S(gi , gj)
G → 0

for all pairs gi , gj then G is a Gröbner basis of I .
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Algorithm 1 Buchberger’s Algorithm

input a set of polynomials {f1, . . . , fk}
output a Gröbner basis G of I = 〈f1, . . . , fk〉
procedure Buchberger({f1, . . . , fk})

G ← {f1, . . . , fk} . the current basis
P ← {(fi , fj) | 1 ≤ i < j ≤ k} . the remaining pairs
while |P| > 0 do

(fi , fj)← select(P)
P ← P \ {(fi , fj)}
r ← S(fi , fj)

G

if r 6= 0 then
P ← P ∪ {(f , r) : f ∈ G}
G ← G ∪ {r}

end if
end while
return G

end procedure



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}



Algorithm 2 Buchberger’s Algorithm

input a set of polynomials {f1, . . . , fk}
output a Gröbner basis G of I = 〈f1, . . . , fk〉
procedure Buchberger({f1, . . . , fk})

G ← {f1, . . . , fk} . the current basis
P ← {(fi , fj) | 1 ≤ i < j ≤ k} . the remaining pairs
while |P| > 0 do

(fi , fj)← select(P)
P ← P \ {(fi , fj)}
r ← S(fi , fj)

G
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P ← P ∪ {(f , r) : f ∈ G}
G ← G ∪ {r}

end if
end while
return G

end procedure



In general, we should select “small” pairs (fi , fj) first.

I First:
among the pairs with minimal j , pick the pair with smallest i

I Degree:
pick the pair with smallest degree of lcm(LT(fi ), LT(fj))

I Normal:
pick the pair with smallest lcm(LT(fi ), LT(fj)) in the
monomial order

I Sugar:
pick the pair with smallest sugar degree of lcm(LT(fi ), LT(fj)),
which is the degree it would have had if we had homogenized
at the beginning
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The number of pair reductions performed is a rough estimate of
how much time was spent. Smaller numbers are better.

example First Normal Sugar Random Last Strange Spice

cyclic4 11 11 11 14 21 23 23
reimer3 25 23 25 25 25 28 28

katsura5 28 28 28 44 76 86 86
eco6 67 61 64 97 149 295 295

noon4 71 71 71 100 103 375 375
cyclic6 366 620 343 793

katsura7 164 164 164 285
katsura4-lex 25 46 19 29 44 30 59

eco5-lex 30 22 26 28 91 32 97
cyclic5-lex 104 1602 108



Summary

I A Gröbner basis of an ideal in a polynomial ring is a special
generating set that is useful for many computational
problems. Buchberger’s algorithm can produce a Gröbner
basis from any initial generating set of an ideal.

I Buchberger’s algorithm works by repeatedly choosing pairs
(fi , fj) of the current generating set and adding the reduction
of the s-polynomial of fi and fj to the generating set if it is
not zero.

I The selection strategy used to pick which pair to choose next
can make a big difference in the efficiency of Buchberger’s
algorithm.



2. Reinforcement Learning and Policy Gradient



Reinforcement learning is the study of methods for learning how to
act in order to maximize reward.

Alternatively, reinforcement learning tries to understand and
optimize goal-directed behavior driven by interaction with the
world.



I playing games (backgammon, chess, Go, StarCraft, ...)

I flying a helicopter or driving a car

I controlling a power station or data center

I managing a portfolio of stocks or other financial assets

I allocating resources to research projects



Key features of a reinforcement learning problem include

I no supervisor, instead we learn from our own experience

I rewards can be sparse or delayed

I current actions influence future conditions and options

and key issues are

I Credit Assignment: After we receive a reward, how do we
determine which action was responsible for it?

I Explore/Exploit Tradeoff: How do we balance trying new
things and taking advantage of what we already know?
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Reinforcement learning problems can be phrased as the interaction
of an agent and an environment.

The agent chooses actions and the environment processes actions
and gives back the updated state and a reward. The agent wants
to maximize its return, which is the amount of reward it gets in the
long run.



CartPole

State: the cart and pole positions and velocities
Action: push the cart left or right
Reward: 1 for every transition the pole is still upright



Chess

State: the positions of all pieces on the board
Action: a valid move of one of your pieces
Reward: 1 if you win immediately after the transition, otherwise 0



Buchberger

G = {x2 − y3, xy2 + x ,−y5 − y3}
P = {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

State: the current basis and pair set
Action: a pair from the pair set
Reward: -1 for every transition until the pair set is empty



Definition
A policy π is a function

π : A× S → R
π(a|s) = Pr(At = a|St = s)

which maps state-action pairs to the probability of choosing the
given action in the given state.

Policies are often viewed as functions that take in a state and
return a probability distribution on actions. An agent follows a
policy by applying the policy to its current state and sampling from
the returned probability distribution to choose the next action.
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Definition
A trajectory or rollout τ of a policy π is a series of states, actions,
and rewards (S0,A0,R1,S1,A1,R2,S2,A2, . . . ,RT , ST ) obtained by
following the policy π one time through the environment.

Definition
The return of a trajectory is the sum of rewards

T∑
t=1

Rt

along the trajectory.

Given an environment, the goal of reinforcement learning is to find
a policy π that maximizes the expected return

E
τ∼π

[
T∑
t=1

Rt

]
.
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Consider a parametrized policy function πθ which maps states to
probability distributions on actions. The expected return is now a
function

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]
of the parameters θ of the policy.

Starting from any value of the parameters θ1, we can improve the
policy by repeatedly moving the parameters in the direction of
∇θJ(θ).

θk+1 = θk + α∇θJ(θ)|θk
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Theorem (Policy Gradient Theorem)

Suppose πθ is a parametrized policy that is differentiable with
respect to its parameters θ. Then the gradient of

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]

is

∇θJ(θ) = E
τ∼πθ

[
T−1∑
t=0

∇θ log πθ(At |St)
T∑

t′=t+1

Rt′

]
.

Intuitively, we should increase the probability of taking the action
we chose proportional to the future reward we received and the
derivative of the log probability of choosing that action again.
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Summary

I Reinforcement learning can be phrased as the interaction of
an agent and an environment, where an agent picks actions
and is trying to maximize the total reward it receives from the
environment over a full trajectory.

I Buchberger’s algorithm is a reinforcement learning problem
with state the current basis/pairs and action a choice of pair
to reduce (i.e., each pass through the while loop is a state
transition).

I Policy gradient methods improve a parametrized policy by
moving the parameters in the direction of the gradient of
expected return.



3. Preliminary Results



Example 1: 5 Binomial Quadrics

Consider R = Z/32003[x , y , z ], grevlex ordering, and ideals I
generated by 5 random quadrics.

Example

I = 〈xy + 31398y2, x2 + 15976y2, xy + 3328xz , y2 + 18836z2, yz +
10816z2〉

In this setting we know Random selection has average return -37.
Degree, Normal, and Sugar selection all have average return -21.
WARNING: These returns are without any pair elimination.
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10816z2〉

In this setting we know Random selection has average return -37.
Degree, Normal, and Sugar selection all have average return -21.

WARNING: These returns are without any pair elimination.



Example 1: 5 Binomial Quadrics

Consider R = Z/32003[x , y , z ], grevlex ordering, and ideals I
generated by 5 random quadrics.

Example

I = 〈xy + 31398y2, x2 + 15976y2, xy + 3328xz , y2 + 18836z2, yz +
10816z2〉

In this setting we know Random selection has average return -37.
Degree, Normal, and Sugar selection all have average return -21.
WARNING: These returns are without any pair elimination.



G = {xy+31398y2, x2+15976y2, xy+3328xz , y2+18836z2, yz+10816z2}
P = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)}

Concatenate exponent vectors of the lead terms in each pair. Place each
pair in the row of a matrix.

→



1 1 0 2 0 0
1 1 0 1 1 0
2 0 0 1 1 0
1 1 0 0 2 0
2 0 0 0 2 0
1 1 0 0 2 0
1 1 0 0 1 1
2 0 0 0 1 1
1 1 0 0 1 1
0 2 0 0 1 1





G = {xy+31398y2, x2+15976y2, xy+3328xz , y2+18836z2, yz+10816z2}
P = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)}

Concatenate exponent vectors of the lead terms in each pair. Place each
pair in the row of a matrix.

→



1 1 0 2 0 0
1 1 0 1 1 0
2 0 0 1 1 0
1 1 0 0 2 0
2 0 0 0 2 0
1 1 0 0 2 0
1 1 0 0 1 1
2 0 0 0 1 1
1 1 0 0 1 1
0 2 0 0 1 1





Trainable Parameters: 193
Optimizer: Adam with learning rate 0.00001
Training Time: 8 hours

In each epoch we perform 1000 rollouts, compute future rewards
for each state on each trajectory, baseline by the size of the current
pair set in each state, and normalize these scores before performing
the policy gradient step.





Before training there is no
relation between the degree of a
pair and the agent’s preference.

After training the agent clearly
prefers pairs that have smaller
degree.



5 Binomials of Degree 5:
Random: -221
Degree/Normal/Sugar: -54.7
Agent: -71.5

5 Binomials of Degree 10:
Random: -1260
Degree/Normal/Sugar: -125
Agent: -319



Example 2: 5 Inhomogeneous Binomials of degree ≤ 7

Consider R = Z/32003[x , y , z ], grevlex ordering, and ideals I
generated by 5 random binomials of degree less than or equal to 7.

Example

I =
〈xy6+9y2z4, z4+1212z , xy3+961xy2, x4yz+12518xz , xyz2+20y〉

In this setting we know Random selection has average return -175.
Degree, Normal, and Sugar selection have average returns -117,
-126, -130, respectively.
WARNING: These returns are without any pair elimination.
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Consider R = Z/32003[x , y , z ], grevlex ordering, and ideals I
generated by 5 random binomials of degree less than or equal to 7.

Example

I =
〈xy6+9y2z4, z4+1212z , xy3+961xy2, x4yz+12518xz , xyz2+20y〉

In this setting we know Random selection has average return -175.
Degree, Normal, and Sugar selection have average returns -117,
-126, -130, respectively.
WARNING: These returns are without any pair elimination.
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Example 2: 5 Inhomogeneous Binomials of degree ≤ 7

Consider R = Z/32003[x , y , z ], grevlex ordering, and ideals I
generated by 5 random binomials of degree less than or equal to 7.

Example

I =
〈xy6+9y2z4, z4+1212z , xy3+961xy2, x4yz+12518xz , xyz2+20y〉

In this setting we know Random selection has average return -175.
Degree, Normal, and Sugar selection have average returns -117,
-126, -130, respectively.
WARNING: These returns are without any pair elimination.



G = {xy6 + 9y2z4, z4 + 1212z , xy3 + 961xy2, x4yz + 12518xz , xyz2 + 20y}
P = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)}

Concatenate exponent vectors of all terms in each pair. Place each pair
in the row of a matrix.

→



1 6 0 0 2 4 0 0 4 0 0 1
1 6 0 0 2 4 1 3 0 1 2 0
0 0 4 0 0 1 1 3 0 1 2 0
1 6 0 0 2 4 4 1 1 1 0 1
0 0 4 0 0 1 4 1 1 1 0 1
1 3 0 1 2 0 4 1 1 1 0 1
1 6 0 0 2 4 1 1 2 0 1 0
0 0 4 0 0 1 1 1 2 0 1 0
1 3 0 1 2 0 1 1 2 0 1 0
4 1 1 1 0 1 1 1 2 0 1 0





G = {xy6 + 9y2z4, z4 + 1212z , xy3 + 961xy2, x4yz + 12518xz , xyz2 + 20y}
P = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)}

Concatenate exponent vectors of all terms in each pair. Place each pair
in the row of a matrix.

→



1 6 0 0 2 4 0 0 4 0 0 1
1 6 0 0 2 4 1 3 0 1 2 0
0 0 4 0 0 1 1 3 0 1 2 0
1 6 0 0 2 4 4 1 1 1 0 1
0 0 4 0 0 1 4 1 1 1 0 1
1 3 0 1 2 0 4 1 1 1 0 1
1 6 0 0 2 4 1 1 2 0 1 0
0 0 4 0 0 1 1 1 2 0 1 0
1 3 0 1 2 0 1 1 2 0 1 0
4 1 1 1 0 1 1 1 2 0 1 0





Trainable Parameters: 3025
Optimizer: Adam with learning rate 0.00001
Training Time: 72 hours

In each epoch we perform 1000 rollouts, compute future rewards
for each state on each trajectory, baseline by the size of the current
pair set in each state, and normalize these scores before performing
the policy gradient step.





Summary

I In the binomial quadric example, a policy gradient agent that
only saw lead terms learned a strategy that approximates
degree selection.

I In the general binomial example, a policy gradient agent that
saw the full binomials learned a strategy that performs better
than Degree, Normal, or Sugar.

I While some performance does transfer, policy gradient agents
do have trouble generalizing to ideals significantly different
from those seen in training.




