
Reinforcement Learning in Buchberger’s Algorithm
Dylan Peifer
Cornell University

Summary

1. Buchberger’s algorithm is the standard method for computing a Gröbner basis, and
highly-tuned and optimized versions are a critical part of many computer algebra systems.

2. The efficiency of Buchberger’s algorithm strongly depends on a choice of selection strategy
that determines the order in which S-polynomials are processed.

3. By phrasing Buchberger’s algorithm as a reinforcement learning problem and applying
standard reinforcement learning techniques we can learn new selection strategies that can
match or beat the existing state-of-the-art.

Gröbner Bases
Let R = K [x1, . . . , xn] be a polynomial ring over some field K and I = 〈f1, . . . , fk 〉 ⊆ R be a
nonzero ideal generated by polynomials f1, . . . , fk .
Given a monomial order, a Gröbner basis G of a I is a set of generators {g1,g2, . . . ,gs} of I
such that any of the following equivalent conditions hold:

(i) fG → 0 ⇐⇒ f ∈ I
(ii) fG is unique for all f ∈ R
(iii) 〈LT(g1), LT(g2), . . . , LT(gs)〉 = 〈LT(I)〉

where LT(g) is the lead term of g with respect to the monomial order and fG → r is the
remainder under polynomial long division of f by the polynomials in G.

Buchberger’s Algorithm
Theorem (Buchberger’s Criterion): Let G = {g1,g2, . . . ,gs} generate some ideal I. If
S(gi,gj)

G → 0 for all pairs gi,gj, where

S(gi,gj) =
lcm(LT(gi), LT(gj))

LT(gi)
gi −

lcm(LT(gi), LT(gj))

LT(gj)
gj

is the S-polynomial of gi and gj, then G is a Gröbner basis of I.

Algorithm 1 Buchberger’s Algorithm
input a set of polynomials {f1, . . . , fk }
output a Gröbner basis G of I = 〈f1, . . . , fk 〉
procedure Buchberger({f1, . . . , fk })

G ← {f1, . . . , fk } . the current basis
P ← {(fi, fj) |1 6 i < j 6 k } . the remaining pairs
while |P | > 0 do

(fi, fj)← select(P)
P ← P \ {(fi, fj)}
r ← S(fi, fj)G

if r , 0 then
G ← G ∪ {r}
P ← P ∪ {(f , r) : f ∈ G}

end if
end while
return G

end procedure

Selection Strategies in Buchberger’s Algorithm
The implementation of select does not affect correctness of Buchberger’s algorithm, but it is
critical for efficiency. In general, good selection strategies pick “small” pairs first.
I First: among the pairs with minimal j, pick the pair with smallest i
I Degree: pick the pair with smallest degree of lcm(LT(fi), LT(fj))
I Normal: pick the pair with smallest lcm(LT(fi), LT(fj)) in the monomial order
I Sugar: pick the pair with smallest sugar degree of lcm(LT(fi), LT(fj))

Pair Reductions in Buchberger’s Algorithm per Strategy

example First Normal Sugar Random Last Strange Spice
cyclic4 11 11 11 14 21 23 23

reimer3 25 23 25 25 25 28 28
katsura5 28 28 28 44 76 86 86

eco6 67 61 64 97 149 295 295
noon4 71 71 71 100 103 375 375
cyclic6 366 620 343 793 - - -

katsura7 164 164 164 285 - - -
katsura4-lex 25 46 19 29 44 30 59

eco5-lex 30 22 26 28 91 32 97
cyclic5-lex 104 1602 108 - - - -

Reinforcement Learning
Reinforcement learning problems can be phrased as the interaction of an agent and an environment.

The agent chooses actions and the environment processes actions and gives back the updated state and a
reward. The agent wants to maximize its return, which is the amount of reward it gets in the long run.

CartPole

St = cart/pole position/velocity
At = push the cart left or right
Rt = 1 while pole is upright

Chess

St = positions of all pieces
At = a valid move
Rt = 1 if you win at t , otherwise 0

Buchberger

G = {x2 − y3, xy2 + x,−y5 − y3}
P = {(1,3), (2,3)}

St = current basis and pair set
At = a pair from the pair set
Rt = -1 until the pair set is empty

Policies and Trajectories
A policy π is a function π : A× S→ R given by

π(a |s) = Pr(At = a |St = s)

which maps state-action pairs to the probability of choosing the given action in the given state.
Policies are often viewed as functions that take in a state and return a probability distribution on actions. An
agent follows a policy by applying the policy to its current state and sampling from the returned probability
distribution to choose the next action.
A trajectory or rollout τ of a policy π is a series of states, actions, and rewards

τ = (S0,A0,R1,S1,A1,R2,S2,A2, . . . ,RT ,ST)

obtained by following the policy π one time through the environment, and the return of a trajectory is the
sum of rewards along the trajectory.

Given an environment, the goal of reinforcement learning is to find a policy π that maximizes

E
τ∼π

 T∑
t=1

Rt


which is the expected return along trajectories τ obtained by following π.

Policy Gradient
Suppose πθ is a parametrized policy that is differentiable with respect to its parameters θ. Then the
expected return

J(θ) = E
τ∼πθ

 T∑
t=1

Rt


has gradient

∇θJ(θ) = E
τ∼πθ

T−1∑
t=0
∇θ logπθ(At |St)

T∑
t ′=t+1

Rt ′

 .

This expectation is a quantity we can sample by interacting with the environment. By starting with any set of
parameters θ1 and updating by gradient ascent steps

θk = θk−1 + α · ∇θJ(θk)

for some small learning rate α, we can incrementally improve the policy. Intuitively, we should increase the
probability of taking the action we chose proportional to the future reward we received and the derivative of
the log probability of choosing that action again.

Experiment 1: 5 Homogeneous Binomial Quadrics
Let R = Z/32003[x, y, z] with grevlex ordering. Consider ideals I generated by 5 random
binomial quadrics. Perform Buchberger with no pair elimination.

G = {xy + 3y2, x2 + 6y2, xy + 8xz, y2 − z2}

P = {(1,2), (1,4), (2,4), (3,4)}
↓

1 1 0 2 0 0
1 1 0 0 2 0
2 0 0 0 2 0
1 1 0 0 2 0


Convert the state St = (G,P) to a matrix with rows the exponent vectors of the lead terms of
each pair. Each step input this matrix to a neural network that learns the policy function.

In each epoch we perform 10 rollouts, compute future rewards for each state on each
trajectory, baseline by the size of the current pair set in each state, and normalize these
scores before performing the policy gradient step. Total training time was 45 minutes.

By examining the agent’s preferences for picking different pairs we see that it has learned an
approximation to degree selection, the best strategy in this case.

Experiment 2: 10 Nonhomogeneous Binomials of Degree 6 20

Let R = Z/32003[x, y, z] with grevlex ordering. Consider ideals I generated by 10 random
binomials of degree 6 20. Perform Buchberger with Gebauer-Möller pair elimination.

G = {xy + 3y2, x2 + 6y2, xy + 8xz, y2 − z2}

P = {(1,2), (1,4), (2,4), (3,4)}
↓

1 1 0 0 2 0 2 0 0 0 2 0
1 1 0 0 2 0 0 2 0 0 0 2
2 0 0 0 2 0 0 2 0 0 0 2
1 1 0 1 0 1 0 2 0 0 0 2


Convert the state St = (G,P) to a matrix with rows the exponent vectors of both terms of
each pair. Each step input this matrix to a neural network that learns the policy function.

After 12 hours of training the agent
has learned a policy that averages
20% fewer pair reductions than the
best known selection strategies.

