

- that determines the order in which S-polynomials are processed.
- match or beat the existing state-of-the-art.

nonzero ideal generated by polynomials  $f_1, \ldots, f_k$ .

SUMMARY **REINFORCEMENT LEARNING** Reinforcement learning problems can be phrased as the interaction of an agent and an environment. Buchberger's algorithm is the standard method for computing a Gröbner basis, and highly-tuned and optimized versions are a critical part of many computer algebra systems. 2. The efficiency of Buchberger's algorithm strongly depends on a choice of selection strategy Agent 3. By phrasing Buchberger's algorithm as a reinforcement learning problem and applying standard reinforcement learning techniques we can learn new selection strategies that can state reward  $S_t$ Gröbner Bases Environment Let  $R = K[x_1, \ldots, x_n]$  be a polynomial ring over some field K and  $I = \langle f_1, \ldots, f_k \rangle \subseteq R$  be a Given a monomial order, a Gröbner basis G of a I is a set of generators  $\{g_1, g_2, \ldots, g_s\}$  of I The agent chooses actions and the environment processes actions and gives back the updated state and a such that any of the following equivalent conditions hold: reward. The agent wants to maximize its return, which is the amount of reward it gets in the long run. Chess CartPole  $f^{G}$  is unique for all  $f \in R$ (iii)  $\langle LT(g_1), LT(g_2), \dots, LT(g_s) \rangle = \langle LT(I) \rangle$ ◇ ≙ ≝ ☆ ≜ ◇ ! where LT(g) is the lead term of g with respect to the monomial order and  $f^G \rightarrow r$  is the remainder under polynomial long division of f by the polynomials in G. BUCHBERGER'S ALGORITHM **Theorem (Buchberger's Criterion)**: Let  $G = \{g_1, g_2, \dots, g_s\}$  generate some ideal *I*. If  $S(g_i, g_i)^G \rightarrow 0$  for all pairs  $g_i, g_i$ , where  $S_t$  = positions of all pieces  $S_t = \text{cart/pole position/velocity}$  $A_t$  = push the cart left or right  $A_t =$  a valid move  $R_t = 1$  while pole is upright  $R_t = 1$  if you win at t, otherwise 0 POLICIES AND TRAJECTORIES **input** a set of polynomials  $\{f_1, \ldots, f_k\}$ **output** a Gröbner basis G of  $I = \langle f_1, \ldots, f_k \rangle$ **procedure** BUCHBERGER( $\{f_1, \ldots, f_k\}$ ) A policy  $\pi$  is a function  $\pi : \mathcal{A} \times \mathcal{S} \to \mathbb{R}$  given by ▷ the current basis  $G \leftarrow \{f_1, \ldots, f_k\}$  $\pi(a|s) = \Pr(A_t = a|S_t = s)$  $P \leftarrow \{(f_i, f_j) \mid 1 \leq i < j \leq k\}$ ▷ the remaining pairs which maps state-action pairs to the probability of choosing the given action in the given state. while |P| > 0 do Policies are often viewed as functions that take in a state and return a probability distribution on actions. An  $(f_i, f_i) \leftarrow \operatorname{select}(P)$ agent follows a policy by applying the policy to its current state and sampling from the returned probability  $P \leftarrow P \setminus \{(f_i, f_j)\}$ distribution to choose the next action.  $r \leftarrow S(f_i, f_i)^G$ A *trajectory* or *rollout*  $\tau$  of a policy  $\pi$  is a series of states, actions, and rewards **if** *r* ≠ 0 **then**  $G \leftarrow G \cup \{r\}$  $\tau = (S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, \dots, R_T, S_T)$  $P \leftarrow P \cup \{(f, r) : f \in G\}$ obtained by following the policy  $\pi$  one time through the environment, and the *return* of a trajectory is the end if sum of rewards along the trajectory. end while return G Given an environment, the goal of reinforcement learning is to find a policy  $\pi$  that maximizes end procedure  $\mathop{\mathbb{E}}_{\tau\sim\pi}$ SELECTION STRATEGIES IN BUCHBERGER'S ALGORITHM which is the expected return along trajectories  $\tau$  obtained by following  $\pi$ . The implementation of select does not affect correctness of Buchberger's algorithm, but it is critical for efficiency. In general, good selection strategies pick "small" pairs first. POLICY GRADIENT First: among the pairs with minimal *j*, pick the pair with smallest *i* ▶ Degree: pick the pair with smallest degree of  $Icm(LT(f_i), LT(f_i))$ Suppose  $\pi_{\theta}$  is a parametrized policy that is differentiable with respect to its parameters  $\theta$ . Then the ▶ Normal: pick the pair with smallest  $lcm(LT(f_i), LT(f_i))$  in the monomial order expected return Sugar: pick the pair with smallest sugar degree of  $Icm(LT(f_i), LT(f_i))$  $J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left| \sum_{t=1}^{T} R_{t} \right|$ Pair Reductions in Buchberger's Algorithm per Strategy ce has gradient  $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(A_t | S_t) \sum_{t'=t+1}^{T} R_{t'} \right].$ This expectation is a quantity we can sample by interacting with the environment. By starting with any set of parameters  $\theta_1$  and updating by gradient ascent steps  $\theta_{k} = \theta_{k-1} + \alpha \cdot \nabla_{\theta} J(\theta_{k})$ for some small learning rate  $\alpha$ , we can incrementally improve the policy. Intuitively, we should increase the

(i) 
$$f^G \to 0 \iff f \in I$$

the log probability of choosing that action again.

$$S(g_i, g_j) = \frac{\operatorname{lcm}(\operatorname{LT}(g_i), \operatorname{LT}(g_j))}{\operatorname{LT}(g_i)} g_i - \frac{\operatorname{lcm}(\operatorname{LT}(g_i), \operatorname{LT}(g_j))}{\operatorname{LT}(g_i)}$$

is the S-polynomial of  $g_i$  and  $g_i$ , then G is a Gröbner basis of I.

## Algorithm 1 Buchberger's Algorithm

| r an rioddollorio in Edolloorgor o rigoritini por olidlogy |       |        |       |        |      |         |      |  |
|------------------------------------------------------------|-------|--------|-------|--------|------|---------|------|--|
| example                                                    | First | Normal | Sugar | Random | Last | Strange | Spic |  |
| cyclic4                                                    | 11    | 11     | 11    | 14     | 21   | 23      | 23   |  |
| reimer3                                                    | 25    | 23     | 25    | 25     | 25   | 28      | 28   |  |
| katsura5                                                   | 28    | 28     | 28    | 44     | 76   | 86      | 86   |  |
| eco6                                                       | 67    | 61     | 64    | 97     | 149  | 295     | 295  |  |
| noon4                                                      | 71    | 71     | 71    | 100    | 103  | 375     | 375  |  |
| cyclic6                                                    | 366   | 620    | 343   | 793    | -    | -       | -    |  |
| katsura7                                                   | 164   | 164    | 164   | 285    | -    | -       | -    |  |
| katsura4-lex                                               | 25    | 46     | 19    | 29     | 44   | 30      | 59   |  |
| eco5-lex                                                   | 30    | 22     | 26    | 28     | 91   | 32      | 97   |  |
| cyclic5-lex                                                | 104   | 1602   | 108   | -      | -    | -       | -    |  |
|                                                            | 1     |        |       | 1      | 1    |         |      |  |

# Reinforcement Learning in Buchberger's Algorithm Dylan Peifer **Cornell University**





