
The F4 Algorithm

Dylan Peifer

May 4, 2017

1 Introduction

Gröbner bases are sets of polynomials with properties that make them especially useful for
computation. Many questions about sets of polynomials, such as the existence of common
roots or implicitization of a parametrization, can be computed easily from a Gröbner basis,
so one of the key problems in computational algebra is how to efficiently compute a Gröbner
basis from an arbitrary set of polynomials.

1.1 Gröbner bases

Let R = k[x1, . . . , xn] be a polynomial ring over some field k.

Example 1. Let R = Q[x, y]. Then elements of R are all polynomials in variables x and y
with rational coefficients. For example, 3x2 + x+ 1 and xy + 1

2
y2x− y are both in R.

One of the key tools used in manipulating single-variable polynomials is the division
algorithm, which requires that we can order the terms of any polynomial. Thus to define a
multivariate division algorithm we need a way to order terms in multivariate polynomials.

Definition 2. Let xα1
1 x

α2
2 . . . xαn

n = xα denote an arbitrary monomial where α = (α1, α2, . . . , αn)
is the vector of exponents. A monomial order on R = k[x1, . . . , xn] is a relation > on the
monomials of R such that > is a well-ordering and if xα > xβ then xγxα > xγxβ for any xγ

(i.e., > respects multiplication).

Example 3. Lexicographic order (lex) is defined by α > β if the leftmost nonzero component
of α− β is positive. For example, supposing x > y gives xy > y4 and x2y > x2.

Definition 4. Given a monomial order, define LT(f) to be the leading term of polynomial
f . Define LM(f) to be the leading monomial (i.e., LT(f) without coefficient).

With ordering defined we can do multivariate division in approximately the same way
as univariate division. In fact, the conditions on a monomial order are chosen precisely
so that terms can be ordered, the division algorithm will terminate, and terms will not
change order mid-step. In multivariate division we commonly have multiple divisors and can
choose any valid divisor for each step. With dividend f and divisors f1, . . . , fk, this produces
an expression of the form f = f1q1 + · · · + fkqk + r, where r is the remainder. Letting

1



F = f1, . . . , fk we will write fF → r in this situation, which means that f reduces to or
leaves a remainder of r when divided by F . Note that the qi and even r are not necessarily
unique since there may have been choices in the steps of the division algorithm.

Often when given a set of polynomials {f1, . . . , fm} ⊆ R we are really concerned with all
possible polynomials we can generate as linear combinations of the fi.

Definition 5. The ideal I generated by polynomials f1, . . . , fm ∈ R is the set

〈f1, . . . , fm〉 = {a1f1 + · · ·+ amfm | a1, a2, . . . , am ∈ R}

Example 6. Suppose we are searching for solutions of both x2y−y2 = 0 and xy+x−3 = 0.
Then for any polynomials f(x, y) and g(x, y) we know that f(x, y)(x2y − y2) + g(x, y)(xy +
x − 3) = 0 when evaluated on these solutions, so we are really looking for common roots to
all polynomials in I = 〈x2y − y2, xy + x− 3〉.

The advantage of looking at ideals is that a given ideal can have many different sets of
generators, and since we are really only concerned with the ideal we are free to choose among
different generating sets. A Gröbner basis of an ideal is simply a set of generators with a
useful property.

Definition 7. Given a monomial order, a Gröbner basis G of a nonzero ideal I is a subset
{g1, g2, . . . , gk} ⊆ I such that for all f ∈ I we have that LM(f) is divisible by at least one of
LM(g1), . . . ,LM(gk).

One way to understand this definition is to note that since any element f ∈ I has a leading
term divisible by some leading term of a gi we can always perform a step of the division
algorithm of f by that gi to remove the leading term of f , and so the final remainder after
dividing by G must be 0. This means a Gröbner basis G of I has the property that fG → 0
if and only if f ∈ I, which is surprisingly not the case for any generating set of I.

Example 8. The polynomials f1 = x2y − y2 and f2 = xy + x − 3 do not form a Gröbner
basis in lex order since f1 − xf2 = −x2 + 3x − y2 has a leading term not divisible by either
leading term of f1 or f2. A Gröbner basis in lex of the ideal generated by f1 and f2 is
g1 = y4 +2y3 +y2−9y and g2 = 3x+y3 +y2−9. Note that g1 is a single-variable polynomial
that we could find roots of much easier than f1 or f2. This is one potential use for Gröbner
bases.

1.2 Buchberger’s Algorithm

Buchberger’s algorithm, which produces a Gröbner basis from any starting set of generators,
is useful computationally and proves that any ideal has a Gröbner basis. The basic idea is
contained in the following theorem. Proofs and further details can be found in [2].

Definition 9. Let S(f, g) = lcm(LM(f),LM(g))
LT(f)

f− lcm(LM(f),LM(g))
LT(g)

g where lcm is the least common
multiple. This is the S-polynomial of f and g, where S stands for subtraction or syzygy.

Theorem 10 (Buchberger’s Criterion). Let G = {g1, g2, . . . , gk} ⊆ I for some ideal I. If
S(gi, gj)

G → 0 for all pairs gi, gj ∈ G then G is a Gröbner basis of I.

2



This theorem leads naturally to an algorithm to compute a Gröbner basis of I from any
generating set of I. The idea is to check all S-polynomials of our current generating set. If
any S-polynomials do not leave remainder 0, we force them to reduce to 0 by adding their
remainder to our generating set (of course as soon as we add a new element to the generating
set we now also have many more pairs to consider). Termination follows from the ascending
chain condition, as each time we add a new generator we are strictly increasing the size of
the ideal generated by the leading terms of the generators.

Buchberger’s Algorithm

Input: a set of generators F = {f_1, ..., f_k} for ideal I

Output: a Groebner basis G for I

G = F

k = size(G)

P = {(i, j) | 1 <= i < j <= k}

while size(P) > 0 do

(i, j) = select(P)

P = P \ {(i, j)}

r = remainder of S(G_i, G_j) divided by G

if r != 0 then

G = G union {r}

k = k + 1

P = P union {(i, k) | 1 <= i < k}

return G

Here P is the pairs and select is a function that chooses the next S-polynomial to con-
sider. Different implementations of select can affect the speed of the algorithm. Improved
versions of Buchberger’s algorithm, which take pairs in special order or can detect when it is
possible to throw out pairs before performing the division algorithm, are still the standard
method for computing the Gröbner basis of an ideal in most computer algebra systems.

2 F4

The F4 algorithm was introduced in [4] by Jean-Charles Faugère as an efficient algorithm for
computing Gröbner bases. F4 works in much the same way as the traditional Buchberger
algorithm. The difference is that F4 reduces large numbers of pairs at the same time by
placing these pairs and associated elements in the rows of a matrix and using sparse linear
algebra techniques to quickly reduce the matrix to row echelon form. In this way F4 derives
its increased efficiency over Buchberger by performing steps in parallel and taking advantage
of fast algorithms for sparse row reduction.

2.1 Outline

The basic outline of F4 is very similar to Buchberger’s algorithm.

3



F4 Algorithm

Input: a set of generators F = {f_1, ..., f_k} for ideal I

Output: a Groebner basis G for I

G = F

k = size(G)

P = {(i, j) | 1 <= i < j <= k}

while size(P) > 0 do

P’ = select(P)

P = P \ P’

G’ = reduction(P’, G)

for h in G’ do

G = G union {h}

k = k + 1

P = P union {(i, k) | 1 <= i < k}

return G

There are two major differences. First, the function select now returns a nonempty
subset of P instead of a single element (in fact, if select always chooses a single element
subset then F4 will reduce to Buchberger’s algorithm). Second, we have introduced a new
function reduction that produces a set of new basis elements from the input pairs P’ and
current basis G. This function reduction is the key piece of F4.

reduction

Input: a set of pairs P’ and current basis G

Output: a set G’ of new basis elements

L = symbolicPreprocessing(P’, G)

M = matrix with rows the polynomials in L

M’ = reduced row echelon form of M

L’ = polynomials corresponding to the rows of M’

G’ = {f in L’ | LM(f) != LM(g) for any g in L}

return G’

In the third line of reduction we have replaced the expensive polynomial long division
of Buchberger’s algorithm with a reduction to reduced row echelon form of a matrix whose
rows represent the polynomials associated to P’. This matrix is constructed by taking all
monomials found in polynomials of L, ordering them with >, and labeling the columns of
M left to right with the monomials. Then each row consists of the coefficients of these
monomials in a given polynomial. The goal is to mimic steps in the division algorithm by G

with row operations, but this is not possible without adding many additional polynomials.
In particular, during the division algorithm we multiply the divisor by a monomial and then
subtract this product from the dividend, and while the subtraction is a valid row operation,
making the product is not. The role of symbolicPreprocessing is precisely to make sure
all such products are available as precomputed rows.

4



symbolicPreprocessing

Input: a set of pairs P’ and current basis G

Output: a set L of polynomials

Left = {LCM(LM(G_i), LM(G_j))/LT(G_i) * G_i | (i, j) in P’}

Right = {LCM(LM(G_i), LM(G_j))/LT(G_j) * G_j | (i, j) in P’}

L = Left union Right

done = {LM(f) | f in L}

while done != Mon(L) do

m = largest monomial in (Mon(L) \ done)

done = done union {m}

if LM(g) divides m for some g in G then

f = choose g such that LM(g) divides m

L = L union {m/LM(f) * f}

return L

Here Mon(L) represents all monomials found in polynomials of L. L starts with both halves
of the S-polynomial for each pair, which will be separate rows in the eventual matrix. Then
polynomials are added to L so that in the final output if any term in Mon(L) is divisible
by some leading term in the current basis then there is a corresponding multiple of a basis
element in L with that monomial as its leading term, which is precisely what is needed to
perform a step of the division algorithm with that term.

Many improvements can be made to this basic outline. As with Buchberger’s algorithm,
different implementations of select can affect efficiency, and steps can be taken to avoid
reducing pairs that are guaranteed to reduce to 0. Proofs, refinements, and further details
along these lines can be found in [4].

2.2 Matrix Reduction

In Buchberger’s algorithm the majority of computation is spent doing polynomial long di-
vision. In F4 we have replaced this with spending the majority of the time row reducing
matrices in the reduction subroutine. Many of these matrices are enormous - examples in
[1] include matrices with 106 rows and columns. However, these matrices are also typically
very sparse, as the total number of terms placed in L by symbolicPreprocessing is usually
much larger than the total number of terms in a polynomial from the current basis. This
sparsity helps us row reduce the matrix efficiently. Additionally, steps in row reduction and
other matrix operations can be efficiently parallelized, which gives a significant improvement
over the sequential reduction in Buchberger’s algorithm.

2.2.1 LU Factorization

Problems in computational linear algebra are often expressed as matrix factorizations. The
LU factorization is the matrix factorization description of Gaussian elimination, and factors
a matrix A into A = LU , where L and U are lower and upper triangular matrices respec-
tively. Since triangular systems are easy to invert with forward or back substitution the LU
factorization is often used to efficiently solve Ax = b for given b and unknown x.

5



To apply LU factorization to computing a row reduction of a k×m matrix M with k > m
we first use fast rank methods to determine the first k linearly independent columns and
permute them to a front square submatrix A. The remaining columns form submatrix B,
and then the row reduction will produce pivots in each column of A and transform B into
A−1B, which can be computed quickly with an LU factorization of A. Finally, columns are
permuted back to starting positions (in fact, the steps can all be done in place).

M →
[
A B

]
→

[
I A−1B

]
→ rref(M)

More advanced versions of LU factorization use pivoting to ensure that a factorization is
found and computations are numerically stable [6].

2.2.2 Matrices from F4

The standard algorithm for computing LU factorizations of sparse matrices is UMFPACK
[3]. While the matrices in F4 are sparse, they also have significantly more structure. In
particular:

• Many pivots are immediately visible, meaning many columns have a row with its first
nonzero entry in that column. This is because for every term in L (and thus for
every column in the eventual matrix) symbolicPreprocessing attempted to produce
a polynomial with that lead term (and thus a row with first nonzero entry in that
column).

• Many rows are multiples of the same polynomial, as each row is constructed as a
multiple of one of the current basis elements.

• For Gröbner basis computations we are typically working over finite fields.

An example matrix in F4, taken
from Figure 1 of [1]. Black en-
tries are nonzero, and the al-
most triangular structure imme-
diately reveals many pivots.

6



2.2.3 GBLA

Faugère and Lachartre introduced an algorithm specifically for reducing matrices coming
from Gröbner basis computations in [5]. A basic version of this algorithm first permutes
all immediately visible pivots into the diagonal of an upper left submatrix. Reduction of
these rows then yields an identity and A−1B, which can be computed with back substitution
since A was already upper triangular. Then the pivots are used to zero out the lower left
block, and finally the lower right block is reduced with standard reduction algorithms before
reversing the original permutation and reconstructing the final reduced row echelon form.

M →
[
A B
C D

]
→

[
I A−1B
C D

]
→

[
I A−1B
0 D − CA−1B

]
→

[
I A−1B
0 rref(D − CA−1B)

]
The block D is typically much smaller than A, so the time for its reduction is typically

much smaller than the overall time for the algorithm. Many parts of this algorithm can also
be parallelized, such as the action on distinct columns in B and D.

Boyar et al. develop the algorithms and data structures for reduction further in [1], where
the Gröbner Basis Linear Algebra package (GBLA) is introduced. GBLA is now included as
a linear algebra library for FGb, Faugère’s own implementation of F4 and its successor F5.

2.3 Results

The following is a list of timing results on examples found in [7]. Each example is an ideal
in a polynomial ring over a finite field (F101 or F32003) using grevlex order. Macaulay2
and Magma, two common computer algebra systems, both have built-in implementations of
Buchberger’s algorithm and F4, and both were used to compare the two algorithms. Testing
was performed on an i7-4770 at 3.40GHz with 16GB of RAM using Macaulay2 1.8.2 and
Magma V2.21-5. All timings are in seconds.

Macaulay2 Magma
example Buchberger F4 Buchberger F4

hcyclic8 320 4 111.6 1.12
jason210 16 6 5.65 2.79
katsura10 68 1 21.46 0.13
katsura11 955 4 272.01 0.64
mayr42 71 66 165.14 28.61
yang1 28 503 92.27 13.22

Magma’s F4 is fastest for all examples, and in particular is always faster than Buchberger,
sometimes by several orders of magnitude. Macaulay2’s Buchberger does beat Magma’s
Buchberger for the final two examples, but cannot beat Magma’s version of F4, and surpris-
ingly Macaulay2’s F4 is slower on yang1 than Macaulay2’s Buchberger. Magma and FGb are
generally considered the fastest programs for Gröbner basis computation, but both are un-
fortunately closed source. Thus it is not clear what modifications or special implementation
details have been made in Magma’s algorithms. It is clear, however, that F4 is a substantial
improvement over Buchberger, and it is becoming the standard method in many computer
algebra systems.

7



References

[1] Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvain Lachartre, and Fayssal Mar-
tani. GBLA: Gröbner basis linear algebra package. In Proceedings of the ACM on Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pages 135–142,
New York, NY, USA, 2016. ACM.

[2] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer,
fourth edition, 2015.

[3] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multi-
frontal method. ACM Trans. Math. Softw., 30(2):165–195, 2004.

[4] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[5] Jean-Charles Faugère and Sylvain Lachartre. Parallel Gaussian Elimination for Gröbner
bases computations in finite fields. In Proceedings of the 4th International Workshop
on Parallel and Symbolic Computation, PASCO ’10, pages 89–97, New York, NY, USA,
2010. ACM.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, fourth edition, 2013.

[7] Bjarke Hammersholt Roune and Michael Stillman. Practical Gröbner basis computation.
www.broune.com/papers/issac2012.html. Accessed: 2017-04-17.

8


