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Everything in this brief note is inspired by Grothendieck’s revolutionary letter [Gro97].

1 Motivation from topology

Let’s start with a slightly unorthodox take on the (standard) fundamental group of a topological space. Let
X be a “nice” space (e.g. a manifold) and let x ∈ X be a chosen basepoint. Let p : C → X be a cover. If
γ ∈ π1(X,x) is a path, it induces a permutation of the set p−1(x) in the usual way [draw picture]. We get in
this way the monodromy representation ρC : π1(X,x)→ Aut(p−1(x)).

Introduce a bit of notation and write Fx(C) = p−1(x) if C
p−→ X is a cover. The monodromy representation

is functorial in the sense that it gives us a representation ρ : π1(X,x)→ Aut(Fx). In fact, this “universal”
monodromy representation is an isomorphism, i.e. π1(X,x)

∼−→ Aut(Fx). Our general heuristic towards
fundamental groups will be that there is a category C of “covers” and a functor F : C → set. One puts
π1(C) = Aut(F ). This is naturally a topological group, and if everything is sufficiently nice, induces an
equivalence C ∼−→ set(π).

Finally, recall a bit of group theory. If 1→ π → H → G→ 1 is a short exact sequence of groups, then
there is a natural representation ρ : G→ Out(π). For g ∈ G, put ρ(g)(x) = g̃xg̃−1. It is essentially trivial
that the class of ρ(g) in Out(π) does not depend on the choice of a lift g̃ of g to H.

2 Some Galois theory

Let q = pf be a prime power, and let Fq be the finite field with q elements. Let Fq be an algebraic closure
of Fq. Let’s compute GFq

= Gal(Fq/Fq). Let frq(x) = xq; this gives an element frq ∈ GFq
. So then

frZq ⊂ GFq
. But we haven’t exhausted GFq

. Choose a sequence of numbers an ∈ Z/n! such that an+1 ≡ an
(mod n!). Then fraq makes sense as an element of GFq

. For x ∈ Fq, choose n such that x ∈ Fqn and put

fraq (x) = franq (x); it is easy to see that this is a well-defined element of GFq . Let Ẑ be the group of sequences
a = (an) ∈

∏
n Z/n! such that an+1 ≡ an (mod n!). This is naturally a compact topological group, and

a 7→ fraq is an isomorphism Ẑ
∼−→ GFq

.

It seems that Galois groups are naturally topological groups. Let GQ = Gal(Q/Q). For x ∈ Q, put
GQ(x) = StabGQ

(x). The GQ(x) form the basis for a topology (the Krull topology), with which GQ is a
compact, totally disconnected topological group with a basis of open normal subgroups of finite index. Such
groups are called profinite. Understanding GQ is the central object of algebraic number theory. Unfortunately,
studying GQ directly has not been very fruitful. The best approach up till now has been to study GQ via its
representations. A good source of these representations are the fundamental groups of varieties over Q.

3 Algebraic fundamental groups

Now let X be a variety over Q. I won’t define this precisely, but you should think of subsets of An or Pn cut
out by polynomials with coefficients in Q. It makes sense to ask for complex solutions to these polynomial
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equations, and X(C) is naturally a topological space. If X is smooth, then X(C) is a complex manifold.
We want a good category of covers of X. We will say that a morphism p : C → X of varieties over Q (that

means that the polynomials defining p have coefficients in Q) is a cover if the induced map f : X(C)→ Y (C)
is a cover in the sense of differential geometry (a local analytic diffeomorphism). Choose a point x ∈ X(Q)
and let Fx(C) = p−1(x). Since everything is algebraic, Fx(C) is a finite set. Put π1(X) = Aut(Fx); this is
naturally a profinite group. Indeed,

π1(X) =

(σC) ∈
∏

p:C→X
Fx(C) : f ◦ σC = σD ◦ f for all f : C → D between covers

 .

The group
∏
C Fx(C) is a product of finite (hence compact) groups, so it is compact.

If X is a variety over Q, let XQ be X, except now that we allow maps f : Y → X where the equations

defining Y and the polynomials defining f have coefficients in Q. We can define a category of covers of XQ

in the same way, and get a fundamental group π1(XQ). There is a canonical short exact sequence

1→ π1(XQ)→ π1(X)→ GQ → 1.

Basically, if γ ∈ π1(X), we need to define how γ acts on finite Galois extensions F/Q. The variety X × F is
a cover of X, so γ acts on X × F . This action must come from one of γ on F itself.

There is a nice comparison theorem. If X is a variety over Q, then π1(XQ) is the profinite completion of
the topological fundamental group π1(X(C)). Thus:

π1(P1
Q
r {0,∞}) = Ẑ

π1(P1
Q
r {0, 1,∞}) = F̂2

· · ·

π1(P1
Q
r {x0, . . . , xn}) = F̂n.

Note that if we choose x ∈ X(Q), then the surjection π1(X)� GQ has a section. This gives a representation
GQ → Aut(π1(XQ)). We will be interested in a clever choice of X, to be described in the next section.

4 Teichmüller tower

Let P1(C) = C ∪ {∞} be the Riemann sphere. Recall that if {x1, x2, x3} are three distinct points in P1,
then there is a unique fractional linear transformation µ(z) = az+b

cz+d such that µ(x1) = 0, µ(x2) = 1 and
µ(x3) =∞. Let PGL2(C) be the group of fractional linear transformations. We can rephrase this by saying
that PGL2(C) acts simply transitively on P1(C).

Let n > 1 be an integer. Let ∆ ⊂ (P1)n be the “weak diagonal” consisting of all tuples (x1, . . . , xn) with
some xi = xj . Put

M0,n =
(
(P1(C))n r ∆

)
/PGL2(C).

A priori, this is just a topological space. However, we could have repeated the definition with varieties:

M0,n =
(
(P1)n r ∆

)
/PGL(2),

and gotten a variety over Q. As a set,M0,n is the space of isomorphism classes of n marked points on P1(C).
Thus

M0,4 = P1 r {0, 1,∞}
M0,5 = (M0,4)2 r ∆.

2



There are obvious maps M0,n+1 →M0,n given by “forget a point.” Denote by M0,• the whole collection of
the M0,n with these maps. Note that dim(M0,n) = max{0, n− 3}.

More generally, if 3g − 3 + n > 0, let Mg,n be the “moduli space of genus g curves with n marked
points. As a topological space, this has an easy description. Let Sg,n be a genus g surface with n marked
points, let Tg,n be the space of triples (X,x, φ) where X is a genus g curve, x = (x1, . . . , xn) is a tuple of

n distinct points in X, and φ : Sg,n
∼−→ X is a diffeomorphism. The space Tg,n is simply connected. Let

Γg,n = π0
(
Diff+(Sg,n)

)
, the space of connected components in the group of orientation-preserving, boundary

fixing diffeomorphisms of Sg,n. This is the mapping class group of Sg,n. The group Γg,n acts freely on Tg,n
and (topologically) we have Mg,n = Tg,n/Γg,n. The space Mg,n exists as a variety of dimension 3g − 3 + n
over Q. We will only need M0,n. Note that the geometric fundamental group π1((Mg,n)Q) = Γg,n, where

we write Γg,n for the profinite completion of Γg,n. Since M0,4 = P1 r {0, 1,∞}, we have Γ0,4 = F̂2.
By [Loc97], there is a coherent way of choosing basepoints for the Mg,n in such a way that the actions of

GQ on Γg,n are compatible with the degeneracy maps Γg,n+1 → Γg,n. We writeM•,• for the whole collection
of the Mg,n-s, and ρ : GQ → Aut(Γ•,•) for the induced action.

5 The Grothendieck-Teichmüller group ĜT

Define ĜT = Aut(Γ•,•). By the theory of “base points at infinity” we have a representation ρ : GQ → ĜT.
A fundamental theorem of Bely̆ı is that ρ is an injection. The Grothendieck-Teichmüller conjecture states
that GQ

∼−→ ĜT. Even if this were proved, it wouldn’t a priori be especially helpful if we couldn’t

determine ĜT. Fortunately, it is possible to pin down ĜT as a subgroup of Aut(F̂2). First, it is known that
Aut(Γ•,•) = Aut(Γ0,65), i.e. an automorphism of the Teichmüller tower is determined by its restriction to
Γ0,4 and Γ0,5. Moreover, it is shown in [Sch97] that this restriction has an explicit description.

To be precise, for (λ, f) ∈ Ẑ× × [F̂2, F̂2], consider the map φλ,f : F̂2 → F̂2 given by

φλ,f (x) = xλ

φλ,f (y) = f−1 · yλ · f.

Here we have chosen generators F2 = 〈x, y〉. Let

P5 = 〈σ1, . . . , σ4 :σiσi+1σi = σi+1σiσi+1

σiσj = σjσi

σ4σ3σ2σ
2
1σ2σ3σ4 = 1

(σ1σ2σ3σ4)5 = 1〉

and, for i ∈ Z/5, let xi,i+1 = σi−1 · · ·σi+2σ
2
i+1σ

−1
i+3 · · ·σi−1 (check that this is independent of the class of i).

A good reference here is [Iha91].

Let θ ∈ Aut(F̂2) be θ(x) = y, θ(y) = x, and ω(x) = y, ω(y) = (xy)−1. Suppose φλ,f is invertible. Then
φλ,f extends to an automorphism of Γ0,5 if and only if

f(x, y)f(y, x) = 1 (I)

f(z, x)zmf(y, z)ymf(x, y)xm = 1 if xyz = 1 and m =
1

2
(λ− 1) (II)

f(x1,2, x2,3)f(x3,4, x4,0)f(x0,1, x1,2)f(x2,3, x3,4)f(x4,0, x0,1) = 1 (III)

The last relation takes place in P5, where we interpret f(a, b) (for a, b elements of any group) in the obvious

way. So conjecturally GQ is isomorphic to the subgroup of Aut(F̂2) consisting of φλ,f satisfying (I), (II), and
(III).

Finally. If p : C → P1
Q
r {0, 1,∞} is a Bely̆ı cover, let Γ = p−1[0, 1]; this is a graph in C with edges

marked black and white for lying over 0 and 1. It is an example of a dessin d’enfant : a connected graph
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with a two-coloring of the vertices, for which each edge has endpoints of different colors. See the AMS article
What is a Dessin d’Enfant by Leonardo Zapponi for examples.
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