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My research is in equivariant stable homotopy theory, which is the study of stable invariants of spaces
equipped with a group action. In this field, we replace homotopy groups by homotopy Mackey functors, which
are an algebraic gadget that records a system of topological invariants and relations between them. Although
computations in equivariant stable homotopy theory are done with Mackey functors, many aspects of their
algebra have not yet been developed. The goal of my thesis is to understand homological and commutative
algebra in the category of Mackey functors. Work of mine with Mike Hill and J.D. Quigley finds a surprising
difference between free algebras in the category of Mackey functors and ordinary free algebras (Section 2).
In another project with J.D. Quigley, I investigate an equivariant Hochschild–Kostant–Rosenberg theorem,
which could lead to new calculations in equivariant or Hermitian K-theory (Section 3).

1 Background: Equivariant homotopy theory and Mackey functors

Equivariant homotopy theory is the study of algebraic invariants of spaces or spectra equipped with a group
action. It has been instrumental in several recent advances in algebraic topology, such as Hill–Hopkins–
Ravenel’s solution to the Kervaire invariant one problem [HHR16] and calculations of algebraic K-theory via
trace methods [BoHM93, HM03, NS18]. Here, we will consider only finite groups G.

Invariants ofG-spaces should distinguish between different group actions on the same space. For example,
the cyclic group of order three can act on a 2-sphere in two different ways. Either it does nothing, or it rotates
the sphere like a globe through an angle of 120◦. The homotopy groups of the sphere can’t tell the difference
between the different actions, but the homotopy groups of the fixed points can. The fixed points of the trivial
action are the whole sphere, while the fixed points of rotation are the north and south poles.

The cyclic group C3 acts on S2 by rotation with fixed points S0 (in red).

Here’s some intuition for why the fixed points show up. Non-equivariantly, picking a point in a space X
can be done by choosing a map from a point into X. There is a homeomorphism between the mapping space
of all such maps and the space itself:

Map({∗},X) ∼= X.

Equivariantly, whenever you pick a point in a G-space X, you must say how the group acts on that point.
Instead of specifying a point in X, this amounts to specifying an entire G-orbit. We say that “orbits are the
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points of equivariant homotopy theory.” Any G-orbit in X is homeomorphic to a coset space G/H for some
subgroup H ⊆ G, and can be picked out by a G-equivariant map from the coset space G/H to our space X.
The mapping space of all such G-equivariant maps is homeomorphic to the H-fixed points of X:

MapG(G/H,X) ∼= XH. (1.1)

Since orbits are the basic building blocks of equivariant homotopy theory, we should take care to keep
track of the morphisms between them. To do so, we form the G-orbit category OrbG, whose objects are the
coset spaces G/H and whose morphisms are all G-equivariant maps between them. The collection of fixed
point spaces for a G-space X can be encoded in the functor

MapG(−,X) : Orbop
G → Top.

On objects, this functor takes the orbit G/H to the H-fixed points of the space X by (1.1). A morphism
G/H→ G/K in OrbG becomes an inclusion of fixed points XH ↪→ XK. In fact, all of the homotopy theory of
G-spaces is contained in such functors: Elmendorf’s Theorem [Elm83] says that the category of G-spaces and
the category of contravariant functors from the orbit category to topological spaces have the same homotopy
theory.

Post-composing one of these functors MapG(−,X) with a homotopy group functor πn gives us the correct
invariant for equivariant homotopy theory, called a homotopy coefficient system of X. It consists of the homotopy
groups of all of the fixed point spaces of X, as well as the homomorphisms induced on homotopy groups by
the inclusions of fixed point spaces. Generically, a coefficient system is a contravariant functor from the orbit
category to abelian groups. The name comes from the fact that coefficient systems are the coefficients for
equivariant cohomology theories.

Another example of a coefficient system is the fixed points of a G-module M. We will call this coefficient
system M; as a functor, M takes an orbit G/H to the H-fixed points of M and takes morphisms of OrbG

to inclusions of fixed points. There is more structure here than just the data of a coefficient system. From
the additive structure of M, we get homomorphisms in the other direction to the inclusions. For subgroups
K ⊆ H ⊆ G, a K-fixed pointm ∈MK becomes an H-fixed point by summing over the action by the K-cosets
of H:

MK MH

m
∑

gK∈H/K
g ·m. (1.2)

This is our first example of a Mackey functor, called the fixed point functor of the G-moduleM.
A Mackey functor [Dre73] is a pair of functorsM = (M∗,M

∗) subject to the following conditions. BothM∗
andM∗ are functors from the orbit category to abelian groups, butM∗ is covariant andM∗ is contravariant.
These two functors must agree on objects; we writeM(U) for the common valueM∗(U) =M∗(U). This must
satisfy a formula analogous to the double coset formula. In a Mackey functor, the contravariant morphisms
M∗(f) are called restrictions, and the covariant morphisms M∗(g) are called transfers. A morphism of Mackey
functors fromM toN is a natural transformation that works for both the covariant and contravariant functors
simultaneously. We write MackG for the category of G-Mackey functors.

Examples of Mackey functors are abundant. Group cohomology, homology, and Tate cohomology can
be expressed as Mackey functors. The representation ring of any finite group is a Mackey functor in which
transfers are induction and restriction is restriction of representations to a subgroup. The earlier example of
the fixed points of any G-module is the Mackey functor for the zeroth group cohomology.

The relevant examples for my research are the homotopy Mackey functors of a G-spectrum. For instance,
a G-space has stable homotopy Mackey functors, much as a space has stable homotopy groups.

Because Mackey functors play the role of abelian groups in equivariant stable homotopy theory, we tend
to think of them as algebraic objects instead of functors. This is borne out in the properties of the category of
G-Mackey functors. The category MackG is abelian, so it makes sense to do homological algebra and to talk
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about free, projective, and flat Mackey functors. There is a symmetric monoidal product on MackG, called
the box product. When G is the trivial group, the category of G-Mackey functors is equivalent to the category
of abelian groups, and the box product is the tensor product over Z. In this sense, the category of Mackey
functors generalizes the category of abelian groups.

Commutative monoids for the box product are called Green functors. Green functors are in many ways
analogous to commutative rings. Loosely speaking, a Mackey functorM is a Green functor whenM(U) is a
commutative ring for all finite G-sets U, suitably compatible with the other data ofM. If R is a commutative
ring with an action of G by ring homomorphisms, then the fixed point Mackey functor of R is a Green functor.
Write R for this fixed point Green functor.

This fixed point functor has more structure. In the fixed point Mackey functor for a G-module M, we
obtained transfer homomorphisms (1.2) from the additive structure of theG-module. In the fixed point Green
functor R, there is also a morphism that comes from the multiplicative structure. For subgroups K ⊆ H ⊆ G,
a K-fixed point r ∈ RK becomes an H-fixed point by multiplying over the action by K-cosets of H:

RK RH

r
∏

gK∈H/K
g · r.

We call this these the norm morphisms. They are extra structure that is not present in the definition of Green
functors as commutative monoids for the box product.

Just as cohomology rings are more powerful invariants than cohomology groups, the extra structure of
norms makes analysis easier. A Green functor R together with norm morphisms nmH

K : R(G/K) → R(G/H)
compatible with the rest of the data of R is called a Tambara functor [Tam93]. A Tambara functor is another
kind of commutative ring in the category of Mackey functors. Tambara functors are the more honestly
equivariant object, insofar as they are the monoids for an equivariant symmetric monoidal structure on the
category of Mackey functors [HM19].

Sometimes we don’t have all of the norm morphisms, but only some of them1. It is useful to remember
which ones we do have. A Green functor with some, but not all, of the norms is called an incomplete Tambara
functor [BH18]. The norms that are present in an incomplete Tambara functor are described by an indexing
system [BH15]. There is a finite lattice of indexing systems ordered by which norms are present. The greatest
element of this lattice is the indexing system corresponding to Tambara functors, with all norms. The least
element is the indexing system corresponding to Green functors, with no norms. In other words, a Green
functor is the most naı̈ve way to give a Mackey functor equivariant multiplicative structure.

Any incomplete Tambara functor R is a commutative ring-like object in the category of Mackey functors.
It makes sense to talk about modules over R, prime and maximal ideals of R [Nak12a], and to localize
R at a multiplicatively closed system [Nak12b]. However, the commutative and homological algebra of
incomplete Tambara functors has not been systematically pursued. My thesis develops aspects of the algebra
of incomplete Tambara functors. A Hochschild–Kostant–Rosenberg (HKR) theorem for incomplete Tambara
functors would enable new computations in rational equivariant algebraic K-theory (Section 3). A lemma
in the proof of one version of the HKR theorem relies on the fact that the free Z-algebra Z[x] is free as a
Z-module. This fact is surprisingly very rarely true for incomplete Tambara functors (Section 2).

2 Free incomplete Tambara functors are almost never flat

Here is a fact that we take for granted in commutative algebra. Consider the free Z-algebra on a single
generator Z[x]. This algebra is also a free Z-module on the countable basis 1, x, x2, x3, . . .. We often make
use of this fact in homological algebra computations. In our preprint [HMQ21], Mike Hill, J.D. Quigley

1An example of this situation is Bousfield localization of genuine equivariant ring spectra, which does not necessarily preserve all of
the norms [HH16].
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and I investigate the analogous property for incomplete Tambara functors. Surprisingly, it doesn’t always
hold! This means that standard homological algebra techniques will need some modification to work with
incomplete Tambara functors.

Question 2.1. When is a free incomplete Tambara functor free as a Mackey functor? When is it flat?

The Burnside Tambara functor A plays the role that the integers Z do for commutative algebras. Namely,
A is the initial Tambara functor and the unit for the box product of Mackey functors, just as Z is the initial
commutative ring and the unit for the tensor product of abelian groups. By forgetting some of the norms
present in the Tambara functor A, we can consider it as an incomplete Tambara functor for any indexing
system O. To keep track of which kinds of norms we have, we write this indexing system in the notation as a
superscript: AO .

For a given indexing system O, there are many different free O-Tambara functors on a single generator,
depending on how the group acts on the generator. We write AO[xG/H] for the free O-Tambara functor on a
single generator that lies in an orbit of shape G/H. This object is free in the sense that it satisfies the universal
property that is the equivariant version of the universal property of Z[x]: commutative ring homomorphisms
from Z[x] to any commutative ring R are isomorphic to R.

Each free incomplete Tambara functor is parameterized both by an indexing system O, specifying which
norms are present, and an orbit G/H, specifying the action of G on the generator. We provide conditions on
O and H such that the free incomplete Tambara functor is free as a Mackey functor.

Theorem 2.2 (Hill, Mehrle, Quigley [HMQ21]). Let G be a solvable finite group with subgroup H and let O
be an indexing system for G. The following are equivalent:

(a) H is a normal subgroup of G, plus two easily verifiable combinatorial conditions on O;

(b) the Mackey functor underlying the free O-Tambara functor AO[xG/H] is flat;

(c) the Mackey functor underlying the free O-Tambara functor AO[xG/H] is free.

The implications (a) =⇒ (b) and (a) =⇒ (c) do not require the solvable assumption.

If our free incomplete Tambara functor is not free as a Mackey functor, it might still be suitable for
homological algebra if it is projective or flat instead. However, our theorem quashes that possibility in most
cases: when G is solvable, the flat ones are exactly the free ones. One might wonder, then, how often the
conditions in the theorem are satisfied.

Question 2.3. How often are free incomplete Tambara functors flat? More precisely, how often do the
conditions in Theorem 2.2(a) hold?

The answer turns out to be less than we might hope. For example, consider the case of cyclic p-groups:

Group
total free incomplete
Tambara functors forG

number which are free
as Mackey functors

percent

{e} 1 1 100%
Cp 4 2 50%
Cp2 15 4 ≈ 27%
Cp3 56 9 ≈ 16%

As the depth of the subgroup lattice increases, the proportion of free incomplete Tambara functors which
are free as Mackey functors only decreases. We observe this phenomenon for other families of groups as well,
such as dihedral groups. The next theorem makes this rigorous, and gives us the slogan: “free incomplete
Tambara functors are almost never flat.”
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Theorem 2.4 (Hill, Mehrle, Quigley [HMQ21]). Pick any triple (G,H,O) of a finite group Gwith subgroup
H and indexing system O for G. Then the free incomplete Tambara functor AO[xG/H] is free (or flat) with
probability zero.

At this point, the situation is looking pretty dire. The property that we want almost never holds! But
there’s still hope: by inverting a single element in the Burnside functor A, we find that the situation changes
dramatically.

Theorem 2.5 (Hill, Mehrle, Quigley [HMQ21]). Let O be an indexing system. Let S−1AO be the incomplete
Tambara functor obtained from AO by inverting the element [G] ∈ AO(G/G). Then for any subgroup H of G,
the free incomplete Tambara functor S−1AO[xG/H] is free as a Mackey functor.

This theorem suggests that, as in classical algebra, working with derived functors will be easier after
rationalization or localization. However, this is not without its caveats. This localization operation is quite
brutal; it essentially destroys all information that is not already present in the data of the incomplete Tambara
functor evaluated on G/e. One reason that this localization is so destructive is that inverting [G] necessarily
also inverts the classes [G/H] for all subgroups H. So we are seeing two extremes here:

(1) Nothing is inverted, and almost nothing is free as a Mackey functor.

(2) [G/H] is inverted for all H, and everything is free as a Mackey functor.

The in-between cases leave a lot of room to explore. For a fixed indexing system O, what is the largest
subgroup H such that all free O-Tambara functors are free as Mackey functors after inverting [G/H] and
[G/J] for all J ≥ H? Can we predict a pattern given only the indexing system O? Are there combinations of
indexing system O and subgroup H such that inverting [G/H] yields a nonzero proportion of free things less
than “all of them”?

Goal 2.6. Understand how localizations of the Burnside Mackey functor A affect which free incomplete
Tambara functors are free as Mackey functors.

3 A Hochschild–Kostant–Rosenberg theorem for incomplete Tambara
functors

One of the most important tools we have for studying algebraic K-theory is the trace map [BoHM93, HM03,
NS18]. For a ring A, the most basic form of the trace map is a map

K∗(A) → HH∗(A),

where HH∗(A) is the Hochschild homology of A.
If instead A is a ring with involution, a kind of C2-action, we study its Real algebraic K-theory [HM15] or

Hermitian K-theory [Sch10, CDH+21a, CDH+21b, CDH+21c]. In this situation, there is a trace map

KR∗(A) → HHR∗(A)

whose target is Real hochschild homology [AGH21, DO19] – a kind of C2-equivariant Hochschild homology.
Recently, there has been interest in equivariant algebraic K-theory of rings equipped with action by an

arbitrary finite group [Mer17, Bar17]. For this equivariant algebraic K-theory, there is no trace map yet. Part
of the problem is that there is no notion of equivariant Hochschild homology.

Question 3.1. Is there an equivariant Hochschild homology that will serve as the target of a trace map from
equivariant K-theory?
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One clue towards the answer comes from the Hochschild–Kostant–Rosenberg (HKR) theorem [HKR62].
The classical HKR theorem states that the Hochschild homology of a smooth k-algebra A is the same as the
wedge powers of its Kähler differentials:

HH∗(A/k) ∼=
∧∗
Ω1

A/k. (3.2)

In [Hil17, Lee19], Hill and Leeman define an R-moduleΩ1,G
R/S of genuine Kähler differentials for a morphism

of incomplete Tambara functors S → R. Taking S and R to be fixed point Tambara functors of a ring with
G-action, this yields a notion of genuine Kähler differentials for rings with G-action as well. But the question
remains: what should go on the left hand side of (3.2)?

Goal 3.3. Define Hochschild homology of incomplete Tambara functors so that an equivariant version of the
HKR theorem (3.2) holds.

As a first pass, we might define Hochschild homology for incomplete Tambara functors by mimicking the
classical construction. With this definition, J.D. Quigley and I have proved the following:

Theorem 3.4 (Mehrle, Quigley). Let G be a finite group. Given a morphism of incomplete Tambara functors
S→ R, there is a surjection of R-modules

HH1(R/S) � Ω1,G
R/S. (3.5)

When S→ R is a morphism of Green functors, this is an isomorphism.

Nevertheless, when S→ R is not a morphism of Green functors, (3.5) need not be an isomorphism.

Theorem 3.6 (Mehrle, Quigley). For the free C2-Tambara functor R = AO
′
[xC2/C2

],

HH1(R/A) 6∼= Ω1,G
R/A.

There are several obvious directions to take Theorem 3.4 from here. First, we would like to extend this to
a full HKR thoerem in degrees n > 1 for Green functors. Second, we would like to find the correct notion of
Hochschild Homology such that (3.5) is an isomorphism for arbitrary incomplete Tambara functors instead
of just Green functors. I will discuss each of these in turn.

Goal 3.7. Extend Theorem 3.4 to an HKR theorem for all degrees for Green functors.

A key lemma in the proof of the classical HKR theorem is the local-to-global principle: an A-module
M is zero if and only if all of its localizations at prime ideals are. This lemma is useful in many other
commutative algebra contexts. The study of ideals and localizations of Tambara functors was started by
Nakaoka [Nak12a, Nak12b], and extended to all incomplete Tambara functors by Blumberg–Hill [BH18].
Incomplete Tambara functors have prime and maximal ideals, a prime ideal spectrum, and can be localized
at a multiplicatively closed sub-functor. With J.D. Quigley and Jack Carlisle, I am working on the following:

Goal 3.8. Understand a local-to-global principle for Green functors and general incomplete Tambara functors.

Extending Theorem 3.4 to an arbitrary incomplete Tambara functor R runs into some obstacles. From
calculations, it appears that HH1(R) and Ω1,G

R/A are not always the same unless R is a Green functor. Con-
ceptually, this is because of the presence of norms in R. Modules for an incomplete Tambara functor are
modules over the underlying Green functor, so the Hochschild homology of R doesn’t see the norms, while
Ω1,G does. To address this, we might change the notion of module that we work with. Strickland [Str12]
defines a category of genuine R-modules that contains the usual category of R-modules (by contrast, these are
called the naı̈ve modules). When R is a Green functor, the genuine and naı̈ve modules agree, but there are
more genuine modules in general. Although the category of genuine modules is harder to work with, we
hope that it will yield the correct version of equivariant Hochschild homology. To start, we must understand
how to work with the category of genuine modules.

Goal 3.9. Understand homological algebra for genuine R-modules over an incomplete Tambara functor R.
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