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Administrative

e There is a course webpage here.
o Office hours are Monday 1-2pm and Friday 2-3pm, but subject to change.

o There will be approximately four homework sets and a small final project
for those who really want or need a grade. Homework must be typed.

¢ Inna’s notes are on the class webpage, and are more complete than these.

1 Vector bundles

What are we studying in this class? Mostly, we’ll talk about vector bundles.
These seem like geometric objects, but really they’re topological objects. They
come up most naturally when we talk about geometry of manifolds — tangent
lines to curves on a manifold don’t ever intersect, and indeed they know nothing
about one another. The fact that they might look like it is an illusion of the fact
that we choose coordinates and go into R™.

We should get away from coordinates then, and look at manifolds as intrinsic
objects. Using this, we can define tangent spaces at a point.

Definition 1.1. A vector bundle on a base space B is is a topological space E
(the total space) together with a map p: E — B such that forall b € B,

e p~'(b) has the structure of a vector space, and

e for all b € B, there is a neighborhood U of b and an integer k (the rank)
with a homeomorphism ¢1,: U x R* — p~ 1 (U) such that the following
diagram commutes,

ux]Rk—>p‘ u)
\ /

and the restriction of ¢y, to each fiber is a linear homomorphism.

Example 1.2. The trivial bundle pr;: B x R* — B is a vector bundle, called
the trivial bundle of rank k over B.

Remark 1.3. There are really two structures contained in the definition of a
vector bundle. One is that of a fiber bundle, where the fibers are allowed to be
anything: tori, spheres, or other things without vector space structure.

The second thing is the linear structure on the fibers.


http://www.math.cornell.edu/~zakh/6530/sec1.pdf
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Example 1.4. The tangent bundle to a manifold M embedded in RN is
E={(x,v) | x € M, v tangent to M at x }

this is a subspace of M x R, and the projection onto the first factor is the map
p:E— M.

But we want an intrinsic definition of tangent bundles that doesn’t depend
on the embedding.

Example 1.5. Define the tangent bundle to an n-manifold M by

™= ][] M
xeM

as a set, with p: TM. — M defined in the obvious way. We can induce a topology
on this set by the map [ [, .y kxM — R™ x R™ given by choosing coordinates
around x in the first coordinate, and using the appropriate tangent vector in the
second.

Example 1.6. The normal bundle to an embedded n-manifold M < RN is
v={(xv) ] x € M,vnormal to M} C M x RN,
This has rank k = N —n.

Example 1.7. How do we construct vector bundles in general? If p: E — Bisa
vector bundle, with homeomorphisms

G P (Ua) = Uy x RF
dp:p ' (Up) — Up x R®
Then we have the composite homeomorphism

-1
(Uo NUg) x R¥ SN p T (Us NUp) e, (Ue NUg) x R¥

Restricting to the second coordinate, this gives an element GLy (IR) above every
point. This gives a smooth map

Jap: Us N UB — GLi(R).
These maps are called the transition functions, and they satisfy three things
(@) gax =id

(b) gocB(X) = 9[30((7()71
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(©) gup(X)gpy(X)gyalx) =id forx € U NUg NU,.

Proposition 1.8. Given an atlas {Uy} of X and functions gop: Uy NUg —
GLy (R) satisfying
(@) gux =1id

(b) gop(x) = gpal(x)!

(©) gup(x)gpy(x)gyua(x) =id forx € U NUg NU,,

you can construct a vector bundle

_JJUy x R¥
E=7% /(x,v) ~ (%, gap(x) V)

Remark 1.9. We’'ve been working with the assumption that the rank k is the
same everywhere, but this is not required by the definition. We may have
different rank in different connected components, but they are the same on
the same connected components. We don’t usually care about bundles with
different ranks on different components though, so we’ll almost always assume
the rank is uniform.

Remark 1.10. We haven’t used any properties of R, but we may use any other
field (such as C).

So far we haven’t conclusively demonstrated that any vector bundles are
nontrivial. Let’s do that now.

Definition 1.11. An isomorphism of vector bundles over Bisamap ¢: E — E’
such that

(a) ¢ is an isomorphism, and

(b) the diagram below commutes

<

E—~ L FE
N
B

and on each fiber it is a linear isomorphism.

1

Definition 1.12. Vect,, (B) is the set of vector bundles of rank n. over B.
Question: What is Vect,, (B)?

Example 1.13. If B = %, then Vectn (B) = {* x R™}.
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Example 1.14. If B = S', then there are several bundles just of rank 1: the
tangent bundle TS', the trivial bundle S! x R, and there’s also the Mobius
bundle.

We can construct the Mobius bundle as follows. Take two open sets U and V

onS!
u

\%

Then the Mobius bundle is (U x R) [ [(V x R), glued on the left hand side by 1
and the right hand side by —1.

Definition 1.15. A section of p: E — Bisamap s: B — E such that ps = idp.

Example 1.16. The zero section sp: B — E, b — (b, 0) sends a point in B to the
zero vector in the corresponding fiber.

Example 1.17. If E = B X RX is trivial, then there is an everywhere nonzero
section: choose any nonzero x € R¥, and then the section is b — (b, x).

Lemma 1.18. The tangent bundle on S is trivial.

Proof sketch. We can imagine both of these bundles as a circle with a line on
each point, either tangent to the circle (TS") or normal to the circle (S! x R). In
either case, we can arrange the lines to make a cylinder by either rotating by
7t/2 in the plane of the circle or rotating by 7t/2 around a tangent vector. So
these bundles look the same. O

Lemma 1.19. The Mébius bundle is not trivial.

Proof. Vector bundle isomorphisms preserve zero sections. So if E = E’ then so
are E\ so(B) = E/\s{(B). Nowlet E =TS' = S! x R and let E/ be the Mobius
bundle. E\ so(S") is ST x R\ {0}, which is disconnected, but E’ \ so(S') is
connected (as we know from slicing a Mobius strip along the middle circle). O

Definition 1.20. If a vector bundle has rank 1, we call it a line bundle.

Example 1.21. Let B = RP™. Let y;, € RP™ X R™*! be the bundle

Yin ={LV) v e

This is the tautological line bundle over RIP™.



Lecture 02: Vector bundles 25 August 2017

Lemma 1.22. y1,, has no everywhere nonzero sections.

Proof. Notice that RP™ = S™/{£1}. A section s: RP™ — v, is of the form
s(£x) = (£x,t(x)x), where we write +x for the image of the point x € S™
in RP™ = S™/{41}. We must have that t(x) = —t(—x), and t: S™ — R is an
odd function, so t must hit zero somewhere. Hence, the section s cannot be
everywhere nonzero. O

Lemma 1.23. Let L be a line bundle over a base B. If L has an everywhere
nonzero section, then it is trivial.

Proof. Assume that s: B — L is everywhere nonzero. Then define a map
f:L —- B xR by (b,v) — (b,c), where v = c - s(b) for a unique c. This is
an isomorphism. O

Lemma 1.24. Let f: E — E’ be a map of vector bundles. Then f is an isomor-
phism if and only if it is a linear isomorphism on each fiber.

Proof. Hatcher Lemma 1.1 O

Proposition 1.25. p: E — B is a trivial vector bundle if and only if there are n
sections s1, ..., sn that are linearly independent at each point of b.

Proof. First,if E = B x R™, then set s;(b) = (b, e;).
Conversely, define f: E — B x R™ by

(b,v) = (b, (c1,...,cn)),

where we write v uniquely as

n
v=>) cisi(b)
i1

in the basis s1(b),...,sn(b). O

Example 1.26.
TS! = {((cose,sine),(tsine,tcose)) ‘ pesl te ]R}

Define amap S' — TS by
0 — ((cosB,sin ), (—sin 6, cos 0))

This gives an everywhere nonzero section, which defines a basis of each fiber.
Hence, TS! is trivial.
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Theorem 1.27. If E — B is a fiber bundle with fiber F, then there is a long exact
sequence of homotopy groups

5 T (F) = 7 (E) = 7t (B) = 71 (F) = -+ = 7 (F) = m (E) = 70 (B)

Corollary 1.28. For a vector bundle, i (E) = 7, (B) since the fibers are all
contractible.

1.1 Grassmannians

Definition 1.29. The Grassmannian Gr;, (R¥) of n-planes in R¥ is the space of
n-dimensional linear subspaces of R¥.

Definition 1.30. The Stiefel manifold V;, (R¥) is the set of all orthogonal n-
frames in R¥. This is a subspace of (S*~1)", and inherits its topology and
manifold structure from that space.

Fact 1.31. V;, (R*) and Grp (R*) are compact.

Proof. Notice that Vi, (IR*) is a closed subspace of a compact space, and therefore
it is compact. There is an action of the orthogonal group O(n) on V; (R¥),
and the quotient of Vy,(R¥) by this action is Grn (R¥). Hence, Gry (R¥) is
compact. O

Lemma 1.32. Gr, (R¥) is Hausdorff.

Proof. It suffices to show that for any two n-planes w1, w; in Gry, (R*), there is
a function to R which has different values on wq and w,. For any point p € R¥,
let f,, (w) be the Euclidean distance from w to p. For any (v1,...,vn) € Vi (R¥)
representing w,

fp(@) = \/p-p—(pvi)2 ...~ (p-va)2

So fy, is clearly continuous and well-defined as a function Grn(R¥) = R.
If p € wy \ wy, then this gives the required function. O

Theorem 1.33. Gry, (R¥) is a manifold.

Proof. If w is an n-plane, let w be the orthogonal (k —n)-plane in R¥. Then let
U= {n—planes which do not meet wL}

This is homeomorphic to the set of graphs of linear maps w — w=, which is the

space of n x (k —n) matrices. This is homemorphic to R (k=)

This gives an atlas on Gry, (R¥). O
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The previous theorem also shows that dim Grp, (R¥) =n(k—n).

Since Gry, (R¥) is Hausdorff, we can try to construct a CW-structure on it.
This is relatively simple once we figure out the correct cells to look at. Let
pi: R¥ — R be the projection onto the first i coordinates, so py is the identity
and py is constant. As 1 goes from k to 0 the dimension of an n-plane w drops
fromn — 0. Let oy be the smallest integer j such that dimp;(w) = j. The
sequence 0 = (07,...,0n) is called a Schubert symbol.

If we let e(o) be the subset of Gry, (R*) having o as their Schubert symbol, we
notice these are spaces whose n-planes have matrices with columns o7, ..., on
holding pivots after row reduction. These are the Schubert cells of Gry, (R*).

Remark 1.34. Note that this doesn’t rely on any properties of R other than that
IR™ is homeomorphic to an open cell of dimension m. Thus we could have
done the exact same analysis for Gry (C*).

We want a Grassmannian of all n-planes, not just those in a particular
dimension. We have inclusions

Grn(R¥) C Grp (R*1) C Grp (R*2) C -+ - Grp (R®),

where R® = @2 ; R. Each of these inclusions respects the CW-structure on
the Grassmannian Gry, (R¥), so we get a CW-structure on Gry, = Grp, (R*).

Definition 1.35. Grp := Gry (R*®).

Definition 1.36. The universal bundle of n-planes is
Yn =Yneo = {(w,V) | w € Grp,v € w}.

This may look like we just made things harder! Gry, and v, are larger than
their counterparts in R¥. But for algebraic topologists, Gry, and yr, are much
more natural. They have nice topological structure.

Definition 1.37. Let G be a topological group. Then EG is any weakly con-
tractible space with a continuous free G-action and BG is the quotient of EG by
this action. BG is called the classifying space of G.

Example 1.38. When G =Z,BZ =S and EZ = R.
When G =27Z/2,B(Z/2) = RP* and E(Z/2) = S°.
In general, for G discrete, BG is a K(G, 1) space, which means

1 i=0
ﬂiBG: G i=1
0 i>1
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Remark 1.39. B is one of the most mysterious functors in all of algebraic topol-
ogy. It’s evil insofar as it hides a lot of information, but at the same time it has
lots of nice properties.

The next theorem illustrates how in the case of O(n), BG has both nice
homotopy-theoretic properties and a nice combinatorial description via Gry,.

Theorem 1.40. Gr, ~ BO(n).

Proof. First, we claim that EO(n) = V;, (R*). To show this will suffice to prove
the theorem, because we know that V;,(IR*°) has a free action of O(n), and
Grp, is the quotient of Vi, (IR*°) by this action. But what we don’t know is that
Vi (IR*®) is weakly contractible.

The map V;, (R¥) — S*~T given by projecting an n-frame onto its last vector
is a fiber bundle with fiber V,, 1 (R*~1), considering R*~ T as the hyperplane
orthogonal to the last vector. Thus there is a long exact sequence in homotopy

e T 1S S T Vi (RF1) = i Vi (RF) — iy SKT — -

Since T S¥ T = 0form < k—2, 7t Viu1 (R¥ 1) = 1 Vi (R¥) for m < k — 2.
By iterating this and takin k large enough, we note that

Tt Vi (R®) = 71, Vi (R = o (SR,

Thus for k large enough we can show that 71, Vi (R*) =0 for m < k—n.

Now consider 71, Vi, (R*). An element in this group is a homotopy class of
maps S™ — Vn (R®) = JP2_,, Vn (R¥). Since S™ is compact, this map factors
through the inclusion Va(R*) — V,, for some k. Assuming k is sufficiently
large, we this map factors through V;, (R¥).

sm Vi (R®)

~

Vi (R¥)

And since the first map is nullhomotopic, then the composite must be as well.
Thus, 7t Vn (R*°) = 0. O

Remark 1.41. A similar proof shows that Grn (C*) ~ BU(n).

Remark 1.42. In general, we cannot always factor a map from S™ to a colimit
through a finite stage, but it works if each map is given by a closed inclusion of
Hausdorff spaces.

10
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1.2 Classification of Vector bundles

How do we classify vector bundles? We will manage to classify them, but the
result will be computationally useless for our purposes. We'll also spend a great
deal of time figuring out how to make this result useful.

Theorem 1.43. There is a bijection of sets Vectn (B) = [B, Gry].

This result is magical! It gives a geometric classification through homo-
topical data! We can ignore geometric structure and instead use topological
information.

We need a few ingredients to prove Theorem 1.43.

Definition 1.44. A space is paracompact if every open cover has a locally finite
subcover.

Lemma 1.45. Given any open cover {U«} of a paracompact space X, there is a
countable open cover {V;} such that:

(a) for alli, V is a disjoint union of spaces U} with U} C U.
(b) there is a partition of unity {¢;} subordinate to V;.

Definition 1.46. If f: B’ — B is a continuous map and p: E — B is a vector
bundle, then the pullback bundle of p: E — B along f is the categorical pullback

f*(E) —— E
r

[ " b

B —f . B.

Explicitly, this is the set
f*(E) ={(b’,e) | b’ € B',e € E, f(b") =p(e)}.

What is the map [B, Grn] — Vecty (B) in the theorem? It is given by sending
the class of f: B — Grp to fyn.

[B,Grn] — Vect (B)

[f] ——— [f"yn]

We should check that this map is well-defined. That is essentially the content
of the next lemma.

Lemma 1.47. If f,g: X — Y are homotopic and p: E toY is any vector bundle,
then f*E = g*E.

11
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Proof. Let H: X X I — Y be a homotopy from f to g. In particular, H|x . ;0} = f
and H|x (1} = 9. Notice that H*E is a bundle over X x [, and the restriction of
this bundle to X x {0} is f*E and the restriction to X x {1} is g*E.

So it suffices to show that given any bundle E’ over X X [, the restrictions
over X x {0} and X x {1} are isomorphic.

Case 1: First, assume that E’ is trivial.

X x I x Rk

E/ \X;I/

Let E} be the restriction of E’ to X x {0}, and let E] be the restriction of E’ to
X x {1}. The required isomorphism between Eé and E{ is evident from the
following diagram.

E} X x {0} x Rk

\X x {0} /

X x {1} x R¥

N7

X x {1}

Now for any map p: X — [0,1], let I, € X x I be the be the graph of p. This
same proof as above shows that the restriction of E’ over T, is isomorphic to Ej,
for any p. Let E|, be the restriction of E’ to .

Case 2: Dispose of the assumption that E’ is trivial, and instead assume
that E' is trivial over U x I for U C X open. Let p: X — I be any function with
support contained in U. Then E{, = E(; indeed, outside U, Ej, = Eg, and inside
U, we can use the isomorphism from the previous case.

Case 3: Assume only that E’ is a vector bundle over X x [; no triviality
assumptions. By Lemma 1.45, there is a countable open cover {U;} of X such
that E' is trivial over U; x 1. Let {¢;} be the subordinate partition of unity. Let

Yi=) 5,

j=1

with g =0, and b = 1.

12
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Claim that E':bi = E{l)jq . This follows from case 2, because the support of
Vi —pi_1 is contained within Uj;. O

Lemma 1.48. For any vector bundle p: E — B of rank n, the data of a map
f: B — Grn such that E = f*y,, is equivalent to the data of a map g: E — R*®
which is a linear injection on each fiber.

Proof. Assume we are given a map f: B — Gry, and an isomorphism E = f*yy,.
We have the data of this diagram:

E— f*yn Yn R®®

L

B —— Grn

The map g is the composite along the top row of this diagram.
Conversely, given a map g: E — R that is a linear isomorphism of each
fiber, define
f(b) = g(p~"' (b)) € Grn.

Note that p~'(b) is an n-dimensional vector space, as a fiber of p: E — B. Then
applying g, we get an n-dimensional subspace of R*°.
The vector bundle isomorphism E — f*y,, is as follows:

E—— ffyn

e — (ple), gle))

Note that g(e) € g(p~'(p(e))) since e € p~'(p(e)). This is an isomorphism
because g is a linear injection on the fibers; we can recover e uniquely from p(e)
and g(e). O

Proof of Theorem 1.43. We will prove both injectivity and surjectivity.
Injectivity. Suppose that E = f*y,, = (f')*y,,. We want to show that f ~ f’.
By Lemma 1.48, take g,g": E — IR* corresponding to these maps. Claim that it
suffices to show that g ~ g’.
Why? Suppose that G: E x I — R* is a homotopy from g to g’ such that
Glg x1ty is a linear injection on fibers for all t € [0, 1]. Then we may define a
homotopy F: B x I — Gry, between f and f’ by

F(b,t) = G(p~'(b), 1) C Grn .
It's tempting to define

Glet) =gle)t+g'(e)(1—1), (1.1)

13



Lecture 05: Classification of Vector bundles 1 September 2017

but this doesn’t necessarily work! This may pass through 0, but if g(p~—' (b))
and g’(p~ (b)) only intersect at O for all b, then we're fine. Since we’re working
in R*°, we have lots of space, so we can homotope things around.

Define homotopies

Lo((X1,X2,...),t) =t(x1,...)+ (1 —1)(x1,0,%x2,0)
Le((X],Xz,...),t) =t(x1,...)+(1—=1)(0,%1,0,%2,0,...)

Then we may construct a homotopy from g to g’ via the following procedure:
(1) Homotope g to be in all odd coordinates.
(2) Homotope that to g’ living in even coordinates using (1.1).
(3) Homotope from even coordinates back to all coordinates.

This shows that the map [B, Grn,] — Vecty (B) is injective.

Surjectivitiy. Suppose E is trivial, say E = B x R*. Then take by Lemma 1.45
a countable cover {U;} with subordinate partition of unity {¢;}. Then define
gi: E — R™ as follows:

e above U, take the composite

Elu — UXxR"™ —— R"

(b/v) — d)iv

e outside of U, send everything to zero.

Then we can define g: E — R* = (R™)* by

e (gile), gale),...)
By Lemma 1.48, this corresponds to the required f: B — Gry,. O
Definition 1.49. The classifying map f: B — Gry, of an n-dimensional vector
bundle p: E — B is the preimage of [p] € Vect, (B).
Remark 1.50. If instead we want to classify principal G-bundles for some group

G over a base X, then the same proof gives a bijection Vect, (X) = [X, BG].

Definition 1.51. The Whitney Sum of two vector bundles E — Band E’ — B
is a new vector bundle E @ E/ — B, which is the direct sum on fibers.

Here are two descriptions of the Whitney sum:

14
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(1) as a pullback
ExgE —— E/

| |

E— B

(2) Using Theorem 1.43, we have an isomorphism between vector bundles
over B and homotopy classes of maps B — Gry. If E corresponds to
f: B = Grm and E/ corresponds to Gry,, what does E @ E’ correspond to?

fO BB xB % Grm x Grn 2 Grman

The map @: Gry X Grn — Grm4n comes from interleaving two copies of
R* and sending (w, §) € Grm X Gry, to the image under the interleaving.

2 Cohomology and Characteristic Classes

Definition 2.1. The loop space of a pointed space X is the space (X consisting
of all loops S — X with the weak topology.

Definition 2.2. Let Z be a space. We write Z for the space Z with a disjoint
basepoint added, Z = Z LI {x}.

Remark 2.3. Adding a basepoint is often a stupid operation when we’re trying
to look at maps into a space. For example, pointed maps S™ — Z are stuck at
the basepoint, so the homotopy groups are all trivial.

On the other hand, maps out of Z_ are perfectly fine to think about.

Definition 2.4. Let CW denote the category of CW-complexes.

Remark 2.5. We will not think about pairs of spaces (X, A); instead, we will look
at the space X/ A, and declare that the image of A under projection X — X/A is
the basepoint.

Definition 2.6. The mapping cone of an inclusion «: A — Xis

XTJCA
coa =X e

Definition 2.7. A generalized cohomology theory is a sequence of functors
h™: CW.°P — Ab together with natural suspension isomorphisms

oi: KMH1(EX) = hY(X)

such that the following axioms hold.

15
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(a) homotopy invariance: If f{,f;: X — Y are homotopic, then hi(f;) =
hi(f2).

(b) exactness: If oc: A — X is an inclusion 3: X — Ca«, then the sequence
hi(Ca) — h{(X) — h'(A)
is exact.

(c) additivity: If {X;} is a collection of pointed spaces, then
ht (\/ xj> =~ Hhi(xj)
j j

Remark 2.8. There is an additional axiom, known as the dimension axiom.
Z i=0

(d) dimension: h(S%) =
0 otherwise

But we don’t include it because there is exactly one cohomology theory that
satisfies all axioms (a)-(d): ordinary (singular) cohomology.

If you've seen cohomology before, you are probably wondering where the
long exact sequence comes from. The axioms only have three-term sequences
which are exact at the middle. But that’s enough to reconstruct the long exact
sequence.

Consider the sequence of maps

B

A—%5 X Cax — CB

Notice that Cax >~ X/A, and C3 ~ XA, and Cy ~ XX. Then using the suspen-
sion isomorphisms, we have the long exact sequence of cohomology.

- — hY¥(ZX) — h}(ZA) — h}(X/A) — hi(X) — hi(A) — ---

Elo'i—l Elci—l

hif1 (X) hif1 (A)

Theorem 2.9. Suppose that we are given a sequence X, X1, . . . of pointed spaces
and weak equivalences X; — QX1 for all i. Then the sequence of functors
h™: CW.°P — Ab defined by

wngy) = VX n>0
Ty, QX n<o0

is a generalized cohomology theory.

16
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Remark 2.10. The converse of this theorem actually holds as well; it’s called
the Brown Representability Theorem.

Example 2.11. Let X; = K(Z, 1) be an Eilenberg-MacLane space. Then
HY(Y) = [Y,K(Z,1)]

Z i=0

HY(S%) = [S°,K(Z,1)] = moK(Z,1) =
0 otherwise

More generally, we can replace Z by any discrete group G to get singular
cohomology with G-coefficients.

Proof of Theorem 2.9. First, let’s define the suspension isomorphism. We want to
show that h" 1 (ZY) = h™(Y). We have that

R EY) = [ZY, Xg1] = [V, QXn 1] 2 [V, Xn) = h™(Y)

We must also check the three axioms of a generalized cohomology theory.
Homotopy invariance is clear, because we are only dealing with homotopy
classes of maps.
Additivity follows from the universal property of the product.
It remains to check exactness. Consider

Y %37 — Ca

where

ZUYXI/

Cou:=ZUys CY = (y,0) ~ (y’,0)

(Y, 1) ~ aly)-
We want to show that

is exact at the middle.

To show that the composite is zero, suppose that we are given f: Cax — Xy,.
Then fl|y is null-homotopic, with a null-homotopy flcy: Y x I — Xy, which is
constanton Y x {0}.

Conversely, let f: Z — X, be such that f|y is null-homotopic. Then there
exists h: Y x [ — Xy, such that hly, oy is constant and hly (1 = fly.

Define g: Cox — Xy, by

{9(2) =f(z) zeZ
gy, t) =h(y,t) (yt)eYxL

Then g is a map whose image under [Ca, Xn] — [Z, Xy ] is f. O

17
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Remark 2.12. Our goal is to use this to understand [B, Gry,]. As remarked before,
however, this is hopeless. But, we understand [B, K(Z, 1)] and [Gry, K(Z,1)].
Then given [f] € [B, Grnl, we get amap *: [Grn, K(Z,1)] — [B, Grnl.

(Grn, K(Z,1)] —— [B,K(Z,1)]

- I

HY(Grn,) ——— Hi(B)

Although we have no hope of computing homotopy classes of maps [B, Gry,]
even for spheres, we do know the cohomology of spheres! The moral is that
these maps give invariants of vector bundles, which we can compute. These are
called characteristic classes.

The strategy is

(a) compute H*(Grn, Z./2),
(b) compute im f* as an invariant of E — B,

(c) hope that this retains useful information.

21 Cohomology of Grassmannians

Example 2.13. Let’s first consider the case n = 1, where Gr; = RIP*°. This
has another useful description of RIP* as a quotient of S* by a Z/2 action.
S has a cells structure with two zero-cells, two one-cells, two two-cells, etc.
The action of Z /2 = {£1} switches the cells in each dimension. Depending on
whether or not the dimension is even, the action of Z /2 switches the orientation
when it swaps the cells. Hence, the dimension of the boundaries is 2 in even
dimensions and 0 in odd dimensions. But with Z /2 coefficients, the dimension
of the boundaries is always zero. Hence,

H* (RP™, %/3) = %/,
in each dimension, and as a ring,
H*(RP™, %/5) = %/, 1],
with x in degree 1.

We could theoretically do a similar thing using the Schubert cell structure on
Grassmannians, but that uses a lot of (really cool) combinatorics that we don’t
have time for. So we'll do something harder.

Remark 2.14. The next theorem is one of those theorems whose proof is less
useful than its consequences.

18
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I used to think that proofs were important and theorems were just
made up, but now I think that theorems are important and proofs
are just made up.

— Mike Hopkins (paraphrased)

Definition 2.15. Let B be a paracompact space, and p: E — B a vector bundle
over B. Let D(E) be the unit disk bundle, and S(E) the sphere bundle (boundary
of the disk bundle). Then define the Thom space of E

i) =gy

For general B, we define Th(E) as the one-point compactification of E.
Example 2.16. Let E = B x R™. Then Th(E) = B4 AS™.

Theorem 2.17 (Thom Isomorphism Theorem). Letp: E — B be ann-dimensional
fiber bundle. There exists a natural class c € H™(Th(E), Z/2) such that the re-
striction of c to any fiber F is a generator of H™(S™) and the map

Hi(B,,Z/2) —2 A ™ (Th(E),Z/2)

br——— p*(b) —c
is an isomorphism for all i. (This is not a ring map!)

Definition 2.18. The class c in the Thom Isomorphism Theorem is called the
Thom class.

Remark 2.19. The Thom class c of a bundle p: E — B is natural in the following
sense: given f: B’ — B, the Thom class of f*(E) is f*(c), where f*: H™(Th(E); Z/2) —
H™(Th(E); Z/2).

Theorem 2.20. As a ring,
H*(Grna, Z/2) = %/50wr, ..., wnl

with w; in degree i.

Remark 2.21. If we have an oriented bundle, then the Thom isomorphism
theorem holds with Z coefficients. The problem with unoriented bundles is that
we struggle choose generators.

Remark 2.22. In algebra, we often add together elements of different degrees.
But in topology, the different degrees in a cohomology ring come from different
dimension. So adding elements of different degrees is weird and doesn’t quite
make sense. Yet we do it anyway when we define total Chern classes and total
Whitney classes. Allen Knutson calls these “abominations.”

If we're topologists, we try to avoid working with elements of mixed degree.
So we won't talk about total Chern classes or total Whitney classes here.
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Definition 2.23. Let p: E — B be a vector bundle and let ¢ be the Thom class of
E. Letj: D(E) — Th(E) be the projection from the disk bundle onto the Thom
bundle.

Define e := (p*)~'(j*c) € H™(B;Z/2). We will call this the Z /2-Euler class
(this is not standard terminology!).

Remark 2.24. Like the Thom class, the Z /2-Euler class is natural in the sense
that given a vector bundle p: E — B with Z/2-Euler class e and a function
f: B’ — B, the Z/2-Euler class of f*(E) is f*(e).

Remark 2.25. Here is a geometric description of the Euler class. Letp: E — B
be a vector bundle where B is a manifold. Let s: B — E be a generic section. Let
{ be the zero section. Then s(B) N {(B) is the Poincaré dual of e. Therefore, a
nonzero Euler class implies that there do not exist everywhere-nonzero sections,
and hence the bundle is nontrivial.

Lemma 2.26. For y,, — Gry, the Z /2-Euler class is nonzero.

Proof. By Remark 2.24, it suffices to find any bundle with nonzero Z /2-Euler
class. If we find such a bundle, it will be a pullback of the universal bundle by
the classification of vector bundles (Theorem 1.43). Therefore, a bundle with a
nonzero Z /2-Euler class shows that the Z/2-Euler class of the universal bundle
is nonzero.

We will show that the universal bundle

Ynn+1l — Grn(]RnJr] )

is nontrivial. Notice that Grn (R™*') = Gr;(R™"') = RP™ by taking the
orthogonal compliment of any n-plane.

Now consider the isomorphism RIP™ = S™ /{£1}. We may think of Y n41
as the quotient of a bundle over S™ by £1. In particular, the identification is
(x,v) ~ (—x,Vv).

We must show that this bundle over RIP™ has a nontrivial Z /2-Euler class.
By Remark 2.25, it is enough to find a section of this bundle that intersects the
zero section transversely. Then the Poincaré dual of that will be the Z /2-Euler
class.

The section we choose is s: RIP™ — vy, 41 that takes a point x to the projec-
tion of (1,0,...,0) onto x*. This is zero only at (1,0,...,0) and at (—1,0,...,0)
in RIP™, so intersects the zero section transversely.

Hence, it defines a nonzero element of Ho (RIP™; Z/2) = Ho(Grn (R™+1):Z/2),
and its Poincaré dual is a nonzero element of H" (Grn, (R™ 1)), and therefore
the Z /2-Euler class of y;, 41 is nonzero. O
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Definition 2.27. We have Th(E) = D(E)/S(E). This yields a long exact sequence
in cohomology

- —— AYTh(E;Z/2) —— AUD(E;Z/2) — HH(S(ESZ/2) — AU (Th(ERZ/2) — -

Now apply the Thom Isomorphism Theorem (Theorem 2.17), and notice more-
over that H}(B) = H}(D(E)) since B ~ D(E).

Sk

- —— HY(Th(E);Z/2) —— HY(D(E};Z/2) —— HY(S(E);Z/2) — H"(Th(E;Z/2) — -

- 1 | 1

—— M B43Z/2) — HY(B;Z/2) —— H(S(E;Z/2) —— HV™M1(BiZ/2) —— -

The bottom row here is called the Gysin sequence.

Proof of Theorem 2.20. Proof by induction on 1, using the Gysin sequence for the
universal bundle y;, — Grn.

If n =0, Grp is a point, and H*(Gry;Z/2) is a polynomial ring on zero
generators.

If n > 0, assume that H*(Gr,_1;Z/2) = Z/2[wy,...,wn_1]. The sphere
bundle on the universal bundle vy, is

Styn) ={lwv) [vew, |v[[=1}

There is a natural projection p’: S(yn) — Grn_7 given by

S(yn) —— Grp_1

(w,v) —— wnNvt

This defines a fiber bundle with fiber S* consisting of all unit vectors orthogonal
to w Nvt. Since S is contractible, p’ induces isomorphisms on all homotopy
groups by Theorem 1.27 and therefore also on cohomology rings:

H*(S(vn);Z2/2) = H"(Grn—1;,Z/2).
The diagram
Grn «— S(yn) — Grn_1
Gives a ring homomorphism
n: H*(Grn; Z/2) = H*(S(yn); Z/2) = H*(Grn—1;Z/2) (2.1)

So we may replace the terms HY(S(yn);Z/2) in the Gysin sequence for the
universal bundle v, — Grp, to get the following sequence.

- HTM (G5 Z/2) —% HY(GrniZ/2) —— HYGrn 1;2/2) —— H W (G Z/2) —— -
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For i < n—1, the ring map n is an isomorphism because the groups
H""1(Grp 43 Z/2) and H ™ (Grp 4 ; Z/2) vanish. This moreover means that
for each generator w; € H*(Gry,_1;Z/2), there is a unique wj’ € H*(Grn; Z/2)
such thatn(wj’) =wjforj<n—1.

For i = n—1, the map HO(Grn;Z/2) =% HY(GrnZ/2) is injective by
Lemma 2.26. Therefore, we have the following diagram.

0 —— H™ 1 (Gry) — H™ 1 (Grn 1) — HO(Grny) —% H"(Gry)
Al
Z/2
W
l— e#0

This shows that 1 is an isomorphism in degree n — 1. This means that there must
besomew, ;€ H*(Grn; Z/2) such thatn(w), ;) =wn_1 € H*(Grn_1;Z/2).

Now because H*(Gry,_1;Z/2) is generated by wy,...,wn_1 as a ring and
7 is a ring homomorphism, it must be surjective in each degree. Hence, the
Gysin sequence splits into short exact sequences for all i:

0 —— H" ™ (Grny) —% HY(Grn) — HY(Grp_1) —— 0.

So define w!, = e € H™(Gry).

Claim thatw}, ..., wy, are generators for H*(Grn;Z/2) as a polynomial ring.
To show this, it suffices to show that for all 1, every element of HY(Grn;Z/2)
can be uniquely written as a polynomial in wi, ..., w},. For i < n, this follows
because 1 is an isomorphism H'(Gr,,_1;Z/2) = H'(Grn;Z/2). Fori > n, we
proceed by induction. Let x € H*(Grn;Z/2). Thenn(x) € H{(Gr,_1;Z/2) is
polynomial in wy, ..., wy_1. Since ker(n) = im(~— e), we may write

x=pWi,...,wi_1)+wy -y

fory € H""™(Grn;Z/2). By induction, y is polynomial in w},...,w/,, and
therefore x is as well. So any element of H*(Grn;Z/2) may be written as a
polynomial in wj,..., wj,. O

2.2 Characteristic Classes

Definition 2.28. A characteristic class for n-dimensional real vector bundles is a
function ¢ assigning to each vector bundle E 2, B an element £(E) € HY(B;Z/2)
for some 1i such that:

(a) £(E) depends only on the isomorphism class of E;
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(b) forany f: B’ — B, £(f*(E)) = f*(£(E)).

Lemma 2.29. Characteristic classes for n-dimensional real vector bundles corre-
spond to (homogeneous) elements of HY(Grn;Z/2).

Proof. First, given a characteristic class {, we get an element &(yr ) of HY(Grn;Z/2).
On the other hand, given a cohomology class ¢ € H'(Grn;Z/2), we get
a characteristic class ¢ defined by £(E) := f*(c), where f: B — Gry, is the
classifying map for E — B.
One can check that this is a bijection. O

Here is another proof of Lemma 2.29.

Proof. If we identify n-dimensional real vector bundles with their classifying
maps, then we may think of such bundles as the collection of morphisms
represented by the functor [—, Gry]. In this situation, a characteristic class is a
natural transformation

[—;Grn]l = H'(—;2/2),
which corresponds by the Yoneda lemma to an element of H*(Grn;Z/2). O

Recall that H*(Grn;Z2/2) = Z/2[wy, ..., wn] with w; in degree i. In the
course of the proof, we constructed in equation (2.1) a map

n: H¥(Grn; Z2/2) — HY (Grn—1;,Z/2)

that is an isomorphism in degrees less than n. This is the map of polynomial
rings that evaluates the last generator wy, at 0.

Z/2w1,...,wnl —— Z/2lwy,..., Wn_1]

W | 0

We also canonically defined w,, = e when demonstrating Theorem 2.20 by
induction.

Definition 2.30. The Stiefel-Whitney classes are the ones associated via Lemma 2.29
to the generators w; of H*(Grn;Z/2). They are written w; (E) for a vector bun-
dle E — B.

Remark 2.31. Since all elements of H*(Grn;Z/2) are polynomial in the wy, it
follows from Lemma 2.29 that we can learn everything about characteristic
classes by studying the Stiefel-Whitney classes.

Usually, when characteristic classes are introduced, they are given with four
axioms. Here, we will prove these axioms.
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Lemma 2.32. Given f: B’ — B, w; (f*E) = f*(w;(E)).

Lemma 2.33. For any vector bundle E — B, w;i(E @ ¢¥) = w;(E), where ¢ is a

trivial bundle of rank k.

Proof. It suffices to show this for k = 1. Let f: B — Gry, be the classifying map
for E — B. Consider
Ede! —— Yn B ¢!

|
84f>(3rTl

By Lemma 2.29 and the pullback property of characteristic classes, we have that
Wi(EDe) =wi(f (yn®e')) = (wilyn ®e')
On the other hand,
wi(B) = wi(f*(yn)) = " (wi(yn)).

So it suffices to show that wi(yn @ €') = wi(yn).
To compute wi (yn @ '), we first need to find its classifying map g: Grn —
Grn. 1. Then

Wilyn @ ') = g*(wi) € H*(Grn; Z2/2)
Wi(yn) :=w; € H*(Grn; Z/2)

Note that in the first line, w; is the polynomial generator of H*(Gr, 1 1;Z/2),
and on the second line, w; is the polynomial generator of H*(Grn;Z/2).

If g =n: H*(Grny1;2/2) — H*(Grn; Z/2), then we're done. This is what
we claim.

To that end, recall that 1 constructed as follows. The map

S(Yn+1) —— Grn

(w,v) —— wNvt

defines a fiber bundle with fiber $°°; since S*° is contractible, the long exact
sequence of homotopy gives an isomorphism

H*(S(vn+1);2/2) = H'(Grn; Z/2).
Then 1 is the composite of this map with the map induced on cohomology by

S(Yn+1) = Dlyn41) — Grpg1-
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Altogether in one diagram, the map on cohomology induced by the following
determines 1.

Grns+1 «—— D(yns1) ¢ S(yn+1) —— Gry
(w,v) —— wNvt

To see that g* =, let’s verify that the pullback of y+1 — Grn41 along g gives
vYn @ ¢'. This involves two pullbacks — we first pull back v 41 — Gryp 41 along
the map S(yn+41) — Grn1 and show that it splits as t @ t with t trivial, and
then show that t! is isomorphic to the pullback of y, — Gry, along the weak
equivalence S(yn41) — Grn.

First, pull the universal bundle y,+1 — Grn4+1 back to a bundle E over
S(Yn+1). An element of E looks like (w,v,u) with v, u € w and v a unit vector.

Yn+1 E

! )

Grny1 «—— D(ynyi1) ¢ S(yni1)

This has a section t: S(yn1) — E given by
(w,v) = (w,v,V)

Because v is a unit vector, this is an everywhere nonzero section. Therefore, E
contains a trivial bundle given by the image of t. So we decompose E = t @ t.
Note that elements of t look like (w, v, u) with u € v+ and v a unit vector.

Now remains to see what the pullback of the universal bundle v, — Grn,
along S(yn+1) — Grn looks like. We hope it looks like tt.

Given (A,w) € vyn, the pullback along the map S(yn41) — Grn looks like
(A, v,w) withw € v NA. This is exactly t+.

Now, the pullback of y;, all the way along g: Grn — Grpy1isyn @ ¢!, This
shows that g* = 1. We now know that

wilg" (Yn+1)) =nwilyni1).

Therefore,
0 ifi>n+1
Wi ifi <n

NMWi(Yns1) = {

=wi(vn)
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O
We will write the Kiinneth Theorem down here, because we will need it.

Theorem 2.34 (Kiinneth). For cohomology with coefficients in a field k,

H* (X x Y k) = H*(X; k) @1 H*(Y: k).

2.3 Axioms for Stiefel-Whitney classes
Theorem 2.35 (Whitney Sum Formula).
Wi(E@E)= >  wj(E) — wi(E)
jHk=i

Proof. We will first prove this for Grassmannians, as usual.
Consider the bundle v, X yn — Grm X Grn. The classifying map of this
bundle is
®: Grm X Grn — Griman

We want to compute @*(w; ), which is by Lemma 2.29 the i-th Whitney class of
the sum y, @ yn.-

Proof by induction on m +n. The base case is trivial.

Form+mn >0, let gn: Grn_1 — Gry, be the map that induces

n: H*(Grn; Z/2) — H* (Grn, —1;Z2/2),

where n(w;) = w; fori < nand n(wy) =0.
We know that

H*(Grn X Grm;Z/2) = Z/2wn1, ..., Wnnl ® Z/2[wm1, ..., Wmm]
Moreover, &*wj is some polynomial in the wyj, say
O (Wi) = qi(Wm1,..., Wnn).

Now consider
gm X 1: Gryp1 X Gry — Gry X Gryy .

Evaluating on ®*w;, we have
(gm X 1)* o~ Wi = qi(wme] 7o Wm—1,m—1 ,0,Wnt,...,Wnn) (2-2)

On the other hand, g, is the classifying map of the bundle y;,_1 ® el
Therefore, by Lemma 2.29, we have

(gm X 1" ®* Wi =Wi(ym_1®e' ®yn)
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Now by Lemma 2.33, this is

Wi(Ym—1@vYn)

And then by induction, we have

Wil¥mo1 @¥n) = Y Wj(ym—1) — wk(yn) (2.3)
j+k—i

Equating (2.2) and (2.3), we have

qi(Wmi,..., Wnn) = Z Wmj ~ Wnk (mod wWimm).
k=i
Analogously,
qi(Wmi,.--, Wnn) = Z Wmj ~ Wnk (mod wnn).
j+k=i

So by the Chinese Remainder Theorem,

qi(Wmi,..., Wnn) = Z Wmj ~ Wnk (mod WinmWnn).
k=1

If i < m + n, this congruence must be equality because Wy mWnn has grading
m+n. Ifi>m+mn, w; =0, so its pullback must also be zero, and the formula
on the right is zero as well.

The only case that remains to check is when i = m +n. That is, we must
check that

O (Wm+tn) = WmmWnn.

Notice that W 4n, is the Z/2-Euler class of Y1+, Wmm is the Z/2-Euler class
of Y, Wnn is the Z/2-Euler class of y,.

This equality is true for Thom classes by the Kiinneth theorem, since

H* (D(EXE/)/S(EXE’)§Z/2) = H* (D(E)/S(E);Z/Z) ®H (D(E/)/S(E’)§Z/2>

This implies that it is also true for Z/2-Euler classes, since the Z/2-Euler class
is a pullback of the Thom class.
Hence, we have shown that

Wilym X¥n) = D Wmj — Wn.
j+k—i

Now let E, E’ be any two bundles over B, of dimensions m and n. Assume
that E and E’ are classified by maps f, f’. Now consider the pullback diagram

E®E Ym+n

| !

fxf!
B—2 .BxB X, Grm X Grp, i>GrmJrn
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Then

wi(E® E/) = A*(f x f/)* O* wy

:A*(fx fl)* Z Wm) ~ Wnk
j+k=1

=A"| > wy(E) — wi(E)) | € HY(B x B;Z/2)
j+k=i
= > wi(E) — wi(E') € H*(B; Z/2)
j+k=1i

O

Remark 2.36. Another way to see the that the product of Euler classes is again
an Euler class, at least for manifolds, is to use the fact that the Euler class is
Poincaré dual to the intersection of a generic section with the zero section. Given
sections P: Griyy — ym of ym, and ¢: Grn — yn of vn, this gives a section
P x ¢ of yim X yn. The product of the intersection of { with the zero section
and the intersection of ¢ with the zero section is equal to the intersection of
P x ¢ with the zero section of Yy, X Yn-

Remark 2.37. There is another easier proof of the Whitney sum formula that
uses the splitting principle to reduce the proof to the case of line bundles. From
there, the only ingredient is the Thom isomorphism theorem.

Let’s summarize what we know about Stiefel-Whitney classes.
Theorem 2.38 (“Axioms” for Stiefel-Whitney Classes).

(1) Foreveryj > 0, there is a Stiefel-Whitney class wj(E) € H(B;Z/2), with
wo(E) =1 and w;(E) = 0 if j is larger than the rank of E.

(2) Given any map f: B’ — B, w;(f*(E)) = f*(wj(E))
3) wi(ESE)= Y  wj(E) — wi(E)

k=i
(4) For yn — Grn, wn(yn) #0.

These are often taken as the axioms for Stiefel-Whitney classes, and in fact
characterize them uniquely. We will prove this later once we’ve discussed the
splitting principle.

To see the utility of these axioms, let’s prove Lemma 2.33 using them.

Lemma 2.39 (Lemma 2.33, repeated). For any vector bundle E — B, w;(E) =
wi (E @ ), where ¢ is a trivial bundle of rank k.
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Proof. Claim that wi(ek) = 0fori > 0 orwi(e®) =1fori=0over any base.
Given a trivial bundle e — B, the classifying map factors through a point

k
€ — 7 Yk

! |

B —— % —— Gry

Therefore,
1 i=0

wi(ek) = 1" (wi(ek — 0)) = {0 else

Now by the Whitney Sum Formula,

(E@e™) = D wi(E) — wi(e™) = wi(E).
j+k=1

24 Some computations

In this section, we will only use the four axioms of Stiefel-Whitney classes that
we proved previously in Theorem 2.38.

Proposition 2.40. If E = E’, then wi(E) = w;(E’') for all i.
Proof. If E = E/, then their classifying maps are homotopic. O
Proposition 2.41. For alli > 0 and any base B, wi(ek) =0.

Proof. Consider the pullback diagram.

skﬁak
[
B2

This shows that wi(e¥ — B) = pr*wi(sk — {*}). And wi(ek — {x}) €
Hi({x}) = 0. O

Proposition 2.42. If E is a rank n bundle over a paracompact base B with an
everywhere nonzero section, then wy (E) = 0. Moreover, if E has k everywhere
independent sections, then

wn(B) =wn 1 (E) =" =wn_41(E) =0.
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Proof. Letsy,..., sk be everywhere independent sections of E. Let E’ be the span
of s1,...,8; itis a trivial bundle of rank k: E’ = ¢*. Let E” be the orthogonal
compliment of E/, so E” = (E’)* (this is where we use paracompactness). Then
EXE @t :£k®E".

Now we may use the Whitney sum formula

wilE) = ) wi(e") — wi(E") = wi(E").
j+k=i

Note that E” has rank n — k. Therefore, w; (E) = 0ifi >n —k. O

This gives a bound on the number of possible linearly independent sections
of E.

Proposition 2.43. For every k, there exists a unique polynomial q; such that

~

whenever E ® E/ = ¢™,
wi(E") = qi(wq (E), w2 (E), ..., wi(E)).

Proof. By induction on i. Wheni =0, wo(E’) =1.
Wheni=1,

wi(e™) =wo(E) — wi(E) +wq(E) — wo(E')
But wq (™) = 0 by Proposition 2.41, and wy (E) = wy(E’) = 1. Hence, we have
w1 (E') = —wi(E) = wq (E),

where the last equality holds because we work mod 2.
Now suppose that qo, ..., qi_1 exist. Then

0=wji(e") = Z wi(E) — wj(E")

k-+j=i
=w;(E") + Z wi(E) — wj(E")
k+j=i
<1
=wiE)+ Y wi(E) — qj(wi(E),...,wj(E))
k+j=k
j<i

Then by rearranging, we have

Wi(E') = qi(wi(E),...,wi(E) := > wi(E) — q(wi(E),...,wj(E)) O
k+j=i
j<i

Definition 2.44. We write W; (E) for q;(wq(E),...,wi(E)). These are called
many things, among them dual/orthogonal/normal Stiefel-Whitney classes.
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Definition 2.45. The total Stiefel-Whitney class of a bundle is
W(E) :==wo(E) + w1 (E) +wa(E)+... € H*(Grn;Z/2).
This is well-defined because for j > rank(E), w;(E) = 0.

Remark 2.46. We call total Stiefel-Whitney classes an abomination because they
sum elements of mixed degree, and therefore doesn’t have a clear geometric
interpretation.
Using the total Stiefel-Whitney class, we can rewrite the Whitney sum for-
mula as
wEW(E)=w(ES®E).

In the case of Proposition 2.43, the dual Stiefel-Whitney classes of E are the
coefficients of the inverse power series of w(E), so

w(E)W(E) =1.
Sometimes, it is convenient to use an abomination.

The following is a consequence of Proposition 2.43.

Lemma 2.47 (Whitney Duality Theorem). Let TM be the tangent bundle to
M — RN, and let v be the normal bundle. Then w; (v) = Wi (TM).

Remark 2.48. Note that w;(TM) is independent of the embedding! Hence,
the class of a normal bundle is independent of the embedding of M into RN
for some N. In fact, we need an embedding TM — RN, but instead only an
immersion; the tangent bundle doesn’t notice if two places far apart map to
the same place in R™, only that the tangent space is locally nicely included in
RN. This can give us bounds on the dimension N into which we can immerse a
manifold.

Proposition 2.49. Let E — B be a bundle, and assume that B is compact. Then
there is some E/ such that E © E/ = ¢N for some N.

Proof. As in Lemma 1.48, it suffices to construct g: E — RN that is a linear
injection on fibers.

For each x € B there is some Uy such that p_] (Ux) = Uy x R™ By
Urysohn’s Lemma there is a map ¢x: B — [0,1] which is 0 outside of Uy
and nonzero at x.

Then {5 1(0,1]}is an open cover of B. Since B is compact, there is a finite sub-
cover Uy,..., Uy, defined by ¢1,..., dm. These define maps g1,...,gm: Uy —
R™ defined by

gi: (x,v) — di(x)v.
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Then paste these together to get
g8 —— R"™
e — (gi(e),...,gml(e)) O

The following example shows that we definitely need the compactness
assumption in Proposition 2.49.

Claim 2.50. There is no bundle E — RIP*° such that E© vy, = e™.

Proof. 1 has two nonzero Stiefel-Whitney class: wo(y1) = 1 and wq (y1), with
wi(y1) =x € H(RP*) = Z/2[x].

By the Whitney sum formula,

wile™) = Y wjlyr)wk(E)

j+k=1

But wi(e™) = 0, and the only nonzero classes wj(y1) are wq(y1) and wo(y1).
So
0 =wi(B) +wi(y1)wi—1(E) = wi(E) =xw;_1(E).

This inductively shows that w; (E) = xt

In particular, these are never zero in H*(RIP*°) = Z/2[x], so the hypothetical
bundle E must have infinite dimension (else w;(E) = 0 for j > rank(E)). But
E @ v = ¢™ has finite rank, so no such E exists. O

Abominable proof of Claim 2.50. This proof uses total Stiefel-Whitney classes. We
have w(e™) = 1and w(y71) =1+ x. Then

Wiyr) =T+x+x>+...

Hence, if E exists, w;(E) = x! for all i. So E must be infinite dimensional. But
E ®v1 = &™ has finite rank, so no such E exists. O

Example 2.51. Consider TS™ for the n-sphere S™ C R™*!. There is a normal
bundle v — S™ that is trivial. We have TS™ @ v = ¢t and since v is trivial,
this means that TS™ and e™*! have the same Stiefel-Whitney classes. So

wi(TS“) =0

for all i > 0. Stiefel-Whitney classes cannot detect that TS™ is nontrivial. Later
we will see that w,, (TS™) = 2e, where e is the Euler class. Hence, wy (TS™) =0
since we work mod 2.
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Example 2.52. Consider the bundle TRIP™. We can’t compute this directly, but
we can compute w; (TRP™ @ e'). We will use the description of TRIP™ as

TRP™ = TS™ /{11

A point in TRIP™ will be written as a pair ((x,v), (—x, —v)) with x L v. This
determines a linear map

: Rx —— (Rx)*
X ———— v

and vice versa. This canonically identifies the fiber above x with the vector
space Hom(IRx, Rx"), and thereby identifies TRIP™ with Hom(y1n,v1;,)-

TRP™ @ ¢! = Hom(y1n, V1) © Hom(Y1n, Y1n)

= Hom(Y1n,¥Yin ©¥in)

(
(

= Hom(y1n, ")
(

= Hom(y1p, ') *M*+ D)
Notice that all of these bundles are self dual. Hence,

~ ~ ~ 1
Hom(y1n, e")®™1) = Hom((e")Y,yY,) = (v7,) *m 1) =y "+
Z
Therefore, in H* (RP™; Z/2) = /2 [X}/<Xn+1 ¥

W(TRP") = w(TRP™ @ ¢') = w(y{ ") = (14 5™

n

Separating the individual classes from the total Stiefel-Whitney class, this shows
that

w; (TRP™) = (n—f ]>xi (mod 2)

Definition 2.53. A manifold is parallelizable if its tangent bundle is trivial.

Remark 2.54 (Notation). If M is a manifold, we write w;(M) for the Stiefel-
Whitney class w; (TM) of its tangent bundle.

Lemma 2.55. RIP™ is parallelizable only ifn = 2% — 1 for some k.

Proof. From Example 2.52, we know that wi (TRIP™) = ("{1)x! (mod 2) for all
1> 0. Whenn = 2k — 1, this is zero (look at Pascal’s triangle mod 2). O

Theorem 2.56 (Stiefel). Suppose that there exists a bilinear operation P: R™ x
R™ without zerodivisors. Then RP™ ! is parallelizable.
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Remark 2.57.
(a) These can exist only when n = 2

(b) These exist forn = 1,2,4,8: the real numbers, complex numbers, quater-
nions, and octonions.

Proof of Theorem 2.56. We’re going to use P to construct n — 1 everywhere inde-
pendent sections on TRIP™~'. To do this, we will make use of the isomorphism

TRP™ ' = Hom(Y1n—1,¥Y1n_1)-

Given any T: R™ — RR™ linear, we can construct for any line { through the
origin a map
T:t— 0t

that for any x € € assigns the projection of T(x) onto ¢. This defines

- n
T:vYin-1 =2 Yin_1-

Now suppose that we have Ty, ..., T linear such that Ty (x),..., Tn(x) are
linearly independent for all x, and Ty (x) = x. Then for all x, T (x),..., Tn(x)
are linearly independent sections of TRP™ 1.

It remains to construct Ty,..., T. Let ey, ..., en be the standard basis for
R™, and define S = P(—, e7): R™ — R™. This is a linear map, and since there
are no zerodivisors, it has trivial kernel. Therefore, S is an isomorphism. Now
define

Ti(x) =P(S'(x), ei)

Notice that Ty = id.
Moreover, we claim that these T; are linearly independent. For x # 0,
suppose
Ti(x)+...4+cnTh(x) =0

for nonzero real numbers cq,...,cn. Then
P(S’1 (x),c1e1+...+cnen) =0

yet neither S~ (x) nor > ; ciey are zero. This contradicts that P has no zerodivi-
sors. Hence, all the c; must be zero. O

Corollary 2.58. S™ is an H-space only if n = 2% —1.

Corollary 2.59. RIP™ is parallelizable if and only ifn =0,1,3,7.

Proof. Combine Theorem 2.56 and Lemma 2.55. O
Theorem 2.60 (Whitney Immersion). Any n-manifold M has an immersion into

1R2n—1
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Now suppose that an n-manifold M has an immersion onto R™**. How
small can we make k? Well, we have that

™M & V(M) = etk

Then w;i(v) = wi(TM).

Recall that if i is larger than the rank of a bundle E, then w; (E) = 0. Therefore,
if wi(E) # 0, then i < rank(E). Since the tangent bundle of TM has rank n, then
v(M) has rank k.

Recall from Example 2.52 that w; (TRP™) = (“.H)xi.

1

Example 2.61. Let M = RIPY. Then w;(TM) = x' if i € {2,8}. So we may
compute that w; (TM) = xt fori € {2,4,6}. Hence, RIP? cannot be immersed in
anything of dimension 15 or less.

Example 2.62. If M = IR]PZk, then wi(TM) = x! for i € {0,1,2%}. We can
compute that w; (TM) = xtfori€{1,2,...,25—1}. Hence, if RIP2" is immersed
in R2“¢, then ¢ > 2k — 1.

So the bound in the Whitney Immersion Theorem is sharp.

3 Cobordism

3.1 Stiefel-Whitney Numbers

Stiefel-Whitney numbers are a much coarser invariant than Stiefel-Whitney
classes, but they are still surprisingly powerful. Stiefel-Whitney classes allow us
to compare vector bundles on manifolds, while Stiefel-Whitney numbers allow
us to compare things between manifolds, which gives some interesting results.

Definition 3.1. Let M be an n-manifold, and let [M] € H,,(M;Z/2) be the
fundamental class. Let rq,...,rn > 0 such that

Ty +2r4+3r34+...+nrp =n.
Then the (11, ..., )-th Stiefel-Whitney number is
(W1 (TM)TT — W (TM)™2 — - — Wiy (TM)™) ~ [M] € Z/2.

For shorthand, we write

Lemma 3.2. Let M, N be n-manifolds. Then

WIWI2 - W M UN] = Wl w2 - win M+ W w2 - win [N]
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Proof. We have that
Hn(MUN;Z/2) = Hy (M;Z/2) x Ha(N; Z2/2)

and
HY"(MUN;Z/2) = HY"(M;Z/2) x HM(N; Z/2).

The pullback of the tangent bundle of M LI N along the inclusion M — M UN
is the tangent bundle of M, and likewise for the tangent bundle of N.

The result now follows from the fact that Stiefel-Whitney classes commute
with pullbacks of vector bundles. O

Example 3.3. Consider RIP™. Recall that

Wi (TRP™) = (“T 1>xi (mod 2)

Therefore,
AN 1\ "2 ™
WITWI2 -l [M] = <“1+ > <“; ) (“: ) (mod 2).
—_—— —— ——
T]#O Tz;ﬁo rn#O

We only include the term (nﬂ)rj when 1j is not even to avoid defining 0°

(don’t forget that we’re working mod 2!).
Notice that this isn’t always zero. In particular, for n even, we have
Wn (TRP™) = (1+n)x™ =x* (mod 2)
w1 (TRP™) = x
And therefore, when 11 = n or r, = 1, the corresponding Stiefel-Whitney

number of RIP™ is 1.
For n odd, say n = 2k — 1. Then

(1+x)2* = (1+x5)%  (mod 2).

2K\ [k
(Zi> = (1> (mod 2)

2k \
<Zi+1> =0 (mod 2).

This shows in particular that all Stiefel-Whitney classes vanish when n is odd.
Any sequence of (r1,...,T) such that

Hence,

T1+214+3r34+... 4Ny =n

must have odd j such that rj # 0, so inside the product there is at least one zero.
Hence, all Stiefel-Whitney numbers of RIP2¥~! are zero:

wil - wir [RPAR1] = 0.
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Theorem 3.4 (Pontrjagin). If B is a compact smooth (n + 1)-manifold with
boundary M, then all the Stiefel-Whitney numbers of M are zero.

Proof. Consider i: M — B. Then there is a long exact sequence in homology
Hrg1(M;Z/2) —2 Hypy1(B;Z/2) —— Huy1(B,M;Z/2) —2 Ho(M;Z/2) —— Hu(B;Z/2)
B,M] m——— [M]
Soforallve HY(M;Z/2),
vIM] =v(3[B, M]) = (&v)[B, M]

where §: HM(M;Z/2) — H™""1(B,M;Z/2) is the map on cohomology corre-
sponding to 0.

TBIpm = ¢! @ TM, where ¢! is the trivial bundle on M orthogonal to B. Since
adding a trivial bundle doesn’t change Stiefel-Whitney classes,

'wi(TBIm) = wi(i"TBIm) = wi(TM).

Therefore,
wq‘w22~~~w = (&(w --wi*))[B
= (o1 (W] Wz WTH)J[B M]
=0
since 0 o i* = 0 in the long exact sequence of cohomology. O

3.2 Cobordism Groups

Definition 3.5. Let M and N be two n-manifolds. We say that M and N are
cobordant if there is an (n + 1)-manifold such that OW = M LUN. Then W is a
cobordism between M and N.

Remark 3.6. The “co-” in “cobordant” is not the same as the “co-" in cohomol-
ogy. It means “together,” and saying that M and N are cobordant means that
together, they form the boundary of another manifold W.

Example 3.7. ST is cobordant to S! I_IS1,and toSTUST ST,

Example 3.8. Cobordisms are not unique. S' x I is a cobordism between S!
and S', but so is the torus with two ends chopped off.

Definition 3.9. The unoriented cobordism group 9, is the abelian of mani-
folds up to cobordism.
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Lemma 3.10. 91 is an abelian group.

Proof. The addition is defined as [M] + [N] = [M UN], with unit 0 = [@]. Thus, a
manifold is in the class of the identity if it is the boundary of an (n + 1)-manifold.
The inverse of a class [M] is itself, because there is a cobordism M x I with
boundary [M U M], so [M] + [M] = 0.
This group is abelian because [M LI N] = [N U M]. O

By Theorem 3.4, we can determine when a manifold is the boundary of
another. This is useful for the purposes of cobordism.

Corollary 3.11. If [M] = [N] in 0, then their Stiefel-Whitney numbers are equal.
Proof. Combine Theorem 3.4 and Lemma 3.2. O

Question 3.12. Is the converse of Theorem 3.4 true? If M and N have equal
Stiefel-Whitney numbers, are they cobordant?

We will spend the next few lectures investigating the answer to this question.
Spoiler alert: Thom proves that the answer is yes, and moreover he identifies
the structure of the cobordism groups. For this, we need to understand Thom
spaces better.

3.3 Geometry of Thom Spaces

Recall that for a vector bundle p: E — B, the Thom space of E is
D(E
Th(e) = )/S(E)'

This is alternatively described as the one-point compactification of E, but that’s
not always quite true (although it is for the cases we care about).

Example 3.13. The Thom space of a trivial bundle ¢¥ over a point is S¥, because
Sk is the quotient of the unit ball in R¥ by its boundary.

Definition 3.14. The smash product of two pointed spaces (X, xp) and (Y, yo)
is
_XXY
XAY=27 1% x fyol) U (fxol x V).

This works a lot like a tensor product does: a tensor a ® b is zero if either a
or b are zero. Similarly, a point (x,y) € X\ Y is the basepoint if either x or y is
the basepoint of X or Y.

The smash product is useful because it’s easy to state the Kiinneth theorem
for the smash product of pointed spaces with coefficients in a field.

H*(XAY; k) = H*(X; k) @ H*(Y; k)
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Example 3.15. S™ A S™ = SN Why? Write St = 11 /9I'. Therefore,

I xIm

stAsm =T AT = /
= Jom/N Jorm = (1™ x I™) U (I x 3I™)

o " x1m _ gn+m
= fo(rm x 1) =S

Example 3.16. For any space X, S! A X is the reduced suspension X of X.

1 L CIxX B
STAX = /almx_ /( )_zx

ol x X) U (I x {xo}
Lemma 3.17. For any two bundlesp: E — Bandp’: E/ — B/,
Th(E x E') = Th(E) ATh(E')

Proof. Th(E x E') is the one-point compactification of E x E’. Therefore, Th(E) x
Th(E’') is the product of the one-point compactifications, so it is compact and
contains E x E’. We have a map

g: Th(E) x Th(E/) —— Th(E x E/)

that is the identity on E x E/ C Th(E) x Th(E’). Then g takes everything to the
extra point in Th(E x E’). In particular,

(EU{) x (xTUE") = (Ex (* DU ({x} x E) = {}

So g factors through Th(E) A Th(E’), and it isn’t difficult to check that this is a
bijection on points. O

Lemma 3.18.
Th(E @ £*) = S* ATh(E).

Proof. Note that E & e* = E x ¢, when we think of ¢¥ as a trivial bundle over
a point. Then use Lemma 3.17.

Th(E & €*) = Th(E x €¥) = Th(E) ATh(e") = Th(E) A S¥
The last equality comes from Example 3.13. O

Definition 3.19. A space X is n-connected if 7; (X) =0 for alli < n.

Definition 3.20. Given a space X, the suspension homomorphism 7; (X) —
mi41(ZX) is given as follows. A class [f] € 7;(X), is represented by f: St X,
and the corresponding class in 7; 1 (£X) is Zf: LSt — IX, since LSt = Si*1.
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Exercise 3.21. Prove that the suspension homomorphism is well-defined: if f
and g represent the same class in 7; (X), then f and Zg represent the same class

Theorem 3.22 (Freudenthal Suspension Theorem). If X is an n-connected CW
complex, then the suspension homomorphism

7 (X) — 741 (2X)
is an isomorphism for i < 2n and a surjection for i = 2n.

Theorem 3.23 (Hurewicz). For any space X and any positive integer i, there is a
homomorphism
i (X) —= Hi(X)
f ——— f.[S1]
When X is (n — 1)-connected, this is an isomorphism for i < n and surjective
fori=n+1.

Definition 3.24. The map h in Theorem 3.23 is called the Hurewicz homomor-
phism.

Lemma 3.25. For k > n, the group 7, 4« (Th(yx)) is independent of k.

Remark 3.26. Th(vyy) is often referred to as MO(k) in other sources. For com-
plex vector bundles, it is called MU(k), and for oriented bundles, it is called
MSO(k).

The following proposition from Thom's original paper is quite horrible to
prove, so we present it without proof.

Proposition 3.27. Let X and Y be simply connected CW complexes and let
f: X — Y. Suppose that for all primes p, the induced map f*: H'(Y;Z/p) —
HY(X;Z/p) is an isomorphism for all i < k and injective fori = k.

Then there is some g: Y(¥) — X(%) such that f o glyx—1 =~ Tyx—1 and g o
flye—1 = Ty

What this is really saying is that, if f: X — Y induces isomorphisms on all
mod p-cohomology for i < k and is injective for i = k, then X and Y have the
same homotopy k-type.

Proof of Lemma 3.25. Consider the diagram that induces 1 on cohomology.

Gri «—— S(Yk4+1) —— D(yx+1) —— Griyq1

vinw +— (w,v)

veEw
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Since Gry and S(yk.1) are both CW complexes, and the map S(yy1) — Gry
is a weak equivalence, there is a homotopy inverse Grx — S(yk+1). Hence, we
have some map

i: Grk — Grk+]

that induces 1 on cohomology.
This gives a pullback diagram.

ye®el - > Yk+1

|

Grk 41> Grk+1
This induces a map on Thom spaces
ZTh(yi) = Th(yk @ e') = Th(yi1).

Altogether, we have a map

Tt Th(vi) 5 i1 (ETh(yi)) = 7t a1 (Th(vie @ e')) 25 7m0 ey 1 Th(vie 1)

To show that this map is an isomorphism, we will show that both f and 1.
are isomorphisms.

(1) fis an isomorphism by the Freudenthal suspension theorem if we can
show that Th(yy) is k-connected; the Freudenthal suspension theorem
applies because n < k.

HY(Th(yy)) = HY"¥(Gry,1) if i < k. Therefore, Hi(Th(yy)) = 0 for
i < k. If we know that Th(yy) is simply connected, then we can apply the
Hurewicz theorem to conclude 7t (Th(yy)) =0 fori < k.

So it suffices to show that 7t7 (Th(yy)) = 0. Notice that Th(yy) = D(yx)/S(v),
so 11 (Th(yy)) is a quotient of 7ty (D(yx)).

We have a long exact sequence of homotopy groups coming from the fiber
sequence

O(k) — EO(k) — BO(k).
This gives isomorphisms 7t; (BO(k)) = m;_1 (O(k)) because EO(k) is con-
tractible. In particular, 711 (Gry) = mp(O(k)) = Z/2. Hence,

71 (D (vi)) = m (Gry) = 711 (BO(k)) = mo(0(k)) = Z/2.

Since Th(yk) = D(vx)/S(vk), we need to know that the quotient by S(vy)
collapses the Z/2: we know

)= (Grk)/

1 Thivi im 7y (Gry—1)
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To show that 7t1 (Th(yy)) = 0, it now suffices to show thati.: 71 (Grx_1) —
11 (Gry) is surjective, so the image of 711 (Gry_1) inside 711 (Gry) is all of
Z./2. But this is induced b the map O(k — 1) — O(k) given by

Ok—1) ——— 0O(k)

A 0
v )

This is surjective on connected components, which implies that the in-
duced map m1BO(k — 1) — 71 BO(k) is surjective. Finally, we know that
Gr; = BO(i), so 71 (Gri—1) — m1(Gry) is surjective. Hence,

71 (Th(y)) =0,

so the Hurewicz theorem applies and we may conclude that 7; (Th(yy)) =
0fori< k.

(2) Now we need to show that i, is an isomorphism. On cohomology, i* is
an isomorphism HY(Gry,1) — H*(Gry) up to degree k + 1. Hence, for
cohomology of the Thom bundles, i* is an isomorphism for j < 2k + 2:

i*: H(Th(yk1)) = H(Th(yk @ e')).

Hence, Proposition 3.27 applies and therefore i, is an isomorphism up to
dimension 2k. In particular i, is an isomorphism on homotopy groups
Tkt (—) forn < k. O

Theorem 3.28 (Thom). Fork > n + 2,

MNn = 1k (Thvy))

Notice that the right-hand-side of this isomorphism is well-defined by
Lemma 3.25 for k > n.

3.4 L-equivalence and Transversality

To prove Theorem 3.28, we need a lot of results about smooth manifolds. Since
the point of this class isn’t to learn about smooth manifolds, we will cite a lot of
these things without proof. Most of it comes out of Thom's original paper.

Remark 3.29. We will abuse notation and abbreviate Gry = Gri(RVN) for
N > 2k + 5. In the cases we care about in the lemmas below, we need a compact
manifold; Gr (RN) is compact. Moreover, maps here are well-defined and
independent of N when N is sufficiently large. Likewise, write vy := yxN.
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Definition 3.30. Let f: X™ — MP be a C™ map from an n-manifold to a p-
manifold. Let NP~9 C M be a submanifold of M of codimension q. Fory € N,
TyM D TyN. Letx € f~1(y). We say that f is transverse to N at y if

WM
dfy: GhX=>TyM — 'Y
x- Ix y /TyN

is an epimorphism.
f is transverse to N if this holds for all x, y.

Notice that if f~! (y) = @, transversality automatically holds.

Example 3.31. Let X = R, M = R?,and N = R.

M

Aty, TeX — T M/TUN is transverse.

0 .
Aty/, X = T‘J’M/TH,N is not transverse.

Definition 3.32. A homotopy X x [0, 1] =Y is an isotopy if for all t € [0, 1], the
map X x {t} — Y is smooth.

Definition 3.33. Let N be a submanifold of a manifold M of codimension q. A
tubular neighborhood of N in M is an embedding of a g-disk bundle on N into
M such that N is the zero section.

Theorem 3.34. Assume that
e X is a smooth n-manifold;
e M is a p-manifold;

e N C M is a paracompact submanifold of M of codimension q;

T is a tubular neighborhood of N in M;

o f: X = MisaC" map;

y € TyMandx € f=1(Y).
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Then we may conclude the following.

(a) Iff: X — M is transverse to N, then f—1(N) is a C™ submanifold of X of
codimension q.

(b) There is a homeomorphism A of T arbitrarily close to the identity and
equal to the identity on 0T, such that A o f is transverse to N.

(c) If f: X = M is transverse to N, then N is compact. Then for any A (as in
(b)) sufficiently close to the identity, A o f is transverse to N and f~1(N),
(Aof)~T(N) are isotopic in X.

Remark 3.35. Theorem 3.34(b) says that we may always wiggle the tubular
neighborhood a little bit so that, after with composing with f, it is transverse
to N. Theorem 3.34(c) implies that f~1(N) and (A o f)~(N) are isomorphic.
Similar results hold for manifolds M with boundary.

Now let’s relate this to cobordism.

Theorem 3.36. Let f,g: X — M be C™ maps where m > n, both transverse to
a submanifold N of codimension q. If f and g are homotopic, then f~1(N) is
cobordant to g~ (N).

Proof. We may assume that this homotopy is smooth. So consider F: X x I — M.
By Theorem 3.34(b) there is some A such that A o F is transverse to N. By
Theorem 3.34(c), f~T(N) is isotopic to (A o F\XX{O})_1 (N). In particular, this
implies that f~1(N) is cobordant to (A o F|X><{O})_] (N). Likewise, g~ (N) is
cobordant to (A o HXX{”)*1 (N).

Now by Theorem 3.34(a), (A o F)~1(N) is a submanifold of X x I with bound-

ary
(A0 Flxsxi013) " (N) = (Ao Flxuio1) ™ (N)U(AoFlxyo) (N

Composing with the cobordisms in the first paragraph, we obtain a cobordism
between f~'(N) and g~ ' (N). O

This motivates the following definition.

Definition 3.37. Let W,;, W; be two k-submanifolds of an n-manifold X. Then
we say that Wy and Wy are L-equivalent in X if there exists a manifold Y with
boundary Wy LI W7 and an embedding f: Y — X X I such that

X x{0) =Wy and £ (X x {1}) = W;.

We write Ly (X) for the set of L-equivalence classes of k-submanifolds.
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Example 3.38. If Wy, = S' US! and W; = S! inside the plane X, but Wy N
W7 # @, then there’s no embedded cobordism between them. But there is an
embedded pair of pants linking them in X x 1.

Lemma 3.39. If n > 2k +2, then Ly (S™) is an abelian group. The map ¢: Ly (S™) —
Ny taking the L-equivalence class of W to the cobordism class of W is an iso-
morphism.

Proof. For n > 2k + 2, any two embedded k-submanifolds can be homotoped
(and indeed, isotoped) to be disjoint. Thus, disjoint union is a well-defined
operation on Ly (S™).

We say that [@)] is the identity in Ly (S™).

Lk (S™) has inverses given by the horseshoe L-equivalence: Therefore, 2[W] =
0, so [W] = —[W]. Hence Ly (S™) is a group.

Now to show that the map ¢: Ly (S™) — Ny is an isomorphism, it suffices
to check that this is a bijection since these have the same group structure.

To check surjectivity, assume [W] € 91y. Then there is an embedding

W R2KH2 <y g1

(recall that we are assuming that n > 2k + 2 Remark 3.29). So [W] is a class in
Li(S™).

To check injectivity, consider an embedded submanifold W — S™ such that
[W] = 0 in D%.. Write W = 0B for a (k + 1)-manifold B. Embed B into S™ via

f: B R2HD oy g1,

Use Urysohn’s Lemma to pick a function ¢: B — I. Then ¢~ 1(0) =W, and
¢~ (1) = @. Then (f, $): B — S™ x [ witnesses an L-equivalence between W
and @. Hence, [W] = 0in Ly (S™). O

Construction 3.40. For X an n-manifold, we define a map J: L,,_«(X) —
[X, Th(yy)] by first choosing an embedding X — RN. Then for each w € W, we
have a normal bundle at w inside X:

Ny W = (TwW) Lt N TwX.

Then N,,W is a k-plane in RN, so an element of Gry = Gri(RN) (see Re-
mark 3.29). This gives a map f: W — Gry,.

Now let N be a tubular neighborhood of W in X; think of it as a pullback of
the disk bundle of yi: N = f*(D(yy)). Then f induces a map f: Th(f*(vi)) —
Th(vyy). So define

f': X — Th(yy)
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by
f’(x):{* ifx ¢N,

f(x) ifx e N.

The image of W under J is this map f’: X — Th(yy).
Now, Gri embeds into Th(yy ) as the zero section. So

()71 (Gry) = W.

Why do we find this construction useful? Let X = S™**. Then we have a
map
Ln(sn+k) — Ttk Th(vi).

To prove Theorem 3.28, we want to show that this is an isomorphism of groups.
Then we may apply Lemma 3.39 to conclude that

My = L (S™TF) = 7, 1 Thvy)

Remark 3.41. When might we expect [X, Y] to be a group?
If we have f, g: X — Y with X cogrouplike, meaning that it has a nice map
p: X = XV X, then we might define the product of f and g by

X2 xvx e yyy foldy

For example, the pinch map S™ — S™ V S™ satisfies this property.
Alternatively, if we had a retraction map r: Y X Y — Y V'Y, then we might
define the product of f and g by

fold

.
X2 X 9y vy Sy y

Classically, the conditions for this second approach to work were answered
in cohomotopy theory, which studies homotopy classes of maps into spheres
instead of out of spheres. This theory is now pretty much defunct.

Lemma 3.42. ] is independent of the choice of X — RN.

Proof. If ip,i1: X — RN, we may assume for large enough N that ip(X) N
11 (X) = @. Moreover, we may assume that there is an embedding X x I — RN
that is iy on X x {0} and iy on X x {1}. Finally, we may assume that X x I is
embedded orthogonally to its boundary.

Let W be some k-submanifold of X. The embedding above restricts to an
embedding of W x I — RN. A tubular neighborhood N of W x I under this
embedding is orthogonal to the boundary of X x I by our assumption; thus
N N X x {0} is a tubular neighborhood of ip(W) and N N X x {1} is a tubular
neighborhood of i1 (W). We can then apply the construction of ] to this N and
the embedding of W X I to produce a map X x I — Th(yy). This restricts to the
maps constructed for W under iy and iy, respectively. Thus, the two maps are
homotopic. O
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Lemma 3.43. L-equivalent submanifolds give homotopic maps under J.

Proof sketch. Let Wy, W7 be L-equivalent. So there is some submanifold B C
Stk x Twith BN (S™% x {i}) = W;. Let T be a tubular neighborhood of B.
Then TN (S™+¥ x {i}) is a tubular neighborhood of W;. We get a map

SR % T — Thivy)

that is a homotopy. O

Now claim that ] is a group homomorphism.

Given W, W/ C S™*¥k and tubular neighborhoods N, N’ of W and W' inside
S™k N U N’ is a tubular neighborhood of W LI W’. Applying J to W and W',
we get two maps f: W — Gry and f': W — Gry. The group operation on
Ln (S™*¥) is given by disjoint union, so if we collapse everything outside of a
tubular neighborhood of W LI W' inside S™**, we can realize the disjoint union
of f with " as

gtk gty gk VI o o0 ) Thive) 5 Thive).

This is exactly the same as the group operation on [S™*¥, Th(y})]. Hence, ] is a
group homomorphism.
This next lemma shows that ] is injective.

Lemma 3.44. Let f, f': X — Th(yy). If f is homotopic to f' and both are trans-
verse to Gry, then f—1(Gry) is L-equivalent to (')~ (Gry).

Proof sketch. Let F: X x I — Th(yy) be a homotopy. Then F~1(Gry) is a sub-
manifold, and gives the desired L-equivalence. O

This lemma actually gives us something more: an inverse to ] sending
f: SMHK 5 Th(vy) to f~1(Gryk). Hence, we have shown the following.

Lemma 3.45. L, (S™+%) = 7, (Th(vy)).

Modulo checking some details, this in fact shows Theorem 3.28.

3.5 Characteristic Numbers and Boundaries

Corollary 3.46 (Corollary to Theorem 3.28). If M is an n-manifold all of whose
characteristic numbers are zero, then M is the boundary of an (n + 1)-manifold.

Proof. Suppose that we have an n-manifold M and an embedding M — S™*k
(recall k > m + 2, so such an embedding exists). Under the isomorphism
Ln(S™*) = my 4 (Th(vy)), we have a map f: S*** — Th(yy) with M =
f~1(Gry). Thus, f restricts to a map f: M — Gry.
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f sends M to the zero section of vy, and f* (Yk) = vm is the normal bundle
to M inside S™**. So f is the classifying map of va1. Since var ® TM is a
trivial bundle, the characteristic classes of TM are uniquely determined by the
characteristic classes of TM.

Recall that M is a boundary if and only if f is null-homotopic, by Lemma 3.45.
So it suffices to show that the characteristic numbers of v are zero implies that
f is null-homotopic.

If there is some « € H™(Gry;Z/2) such that f*(«) € HY(M;Z/2) is
nonzero, then ?*(oc) ~ [M] # 0. If « is additionally monomial in the gen-
erators of H™ (Gry; Z/2), then it follows that tehre is a characteristic number of
vm (and thus a characteristic number of M) which is nonzero. So it suffices to
show that f is null-homotopic when all elements « € H™(Gry;Z/2) pull back
to zero along f.

Consider the following diagram, where N is a tubular neighborhood of M,
(and can be considered as a disk bundle of M)

N Stk T o Thiyy)

J N J

M f Grk

From this, we get the following diagram

HMPR(NSZ/2) 45— HVPR(SMG 2/2) +—— MY R(Th(yi ) Z/2)

T T

HM(M;Z/2) = H™(Gry; Z/2)

where the vertical maps are Thom isomorphisms. Notice that the map g is
nonzero, since N is a disk bundle over M. Since the vertical maps are isomor-
phisms, we now know that f* =0 <= f* =0.

So finally, we want to say that f* = 0 (iff f* = 0) implies that f is nullhomo-
topic. We leave this last statement without proof in order to avoid a detour into
the Steenrod algebra. O

This theorem is really cool because it classifies cobordism in terms of char-
acteristic numbers! This comes from a classification of cobordism in terms of
homotopy.
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4 K-Theory

4.1 Bott Periodicity

Now that we’ve calculated the cohomology groups of Grassmannians (and
therefore the homology), let’s turn our attention to their homotopy groups. In
general, these are not known. However, we can recover some of their homotopy
groups using Theorem 1.40. Recall that this gives a weak homotopy equivalence
Grn ~ BO(n). So to study the homotopy groups of Grassmannians, we will
study the orthogonal groups O(n).

Lemma 4.1. 1;O(n—1) = 1;O(n) fori <n—2.

Proof. Consider the action of O(n) on R™. This induces an action of O(n) on
S™~T, and the stabilizer of a point is O(n — 1) - rotations of the sphere fixing
the axis through that point and the origin. Hence, s =0(m)/0(n—-1) by
the orbit-stabilizer theorem, and there is a fiber sequence

Omn—1)—=0(n)—s™ .
Thus, there is a long exact sequence in homotopy
coe o ST 5O —1) 5 mOMm) -5 mS™tT! -
Wheni<n—1,mS" " =0. Hence, fori <n—2, ;;0O(n—1) =2 m;O(n). O

This lemma says that the homotopy groups of the orthogonal group are
stable. Moreover, we may put together all of the orthogonal groups to get
the infinite orthogonal group O. We will study this instead of the individual
orthogonal groups.

Definition 4.2. The infinite orthogonal group is the colimit of the finite orthog-
onal groups over the inclusions O(n) — O(n + 1) as the upper-left-corner of
Om+1).

We may likewise define similar constructions for other Lie groups.

Definition 4.3. The symplectic group Sp(n) is the group of 2n x 2n matrices
that preserve the inner product defined by the block matrix

0 -1
I 0
Definition 4.4. Sp is the infinite symplectic group, SO is the infinite special

orthogonal group, and U is the infinite unitary group. Each are colimits of the
finite versions along inclusions G(n) — G(n+1).
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Theorem 4.5 (Bott Periodicity).
(@) mu=m U
(b) ™0 =74 80
The proof of Bott Periodicity relies entirely on the following lemma.

Lemma 4.6. There are weak equivalences

®: BU — QU
and
®q:BSp — Q(U/ Sp), ®,: BO —- Q(U/0),
D3:U/Sp — Q(SO/U), D4:U/O0 — Q(Sp/U),
®5: SO/U — QSO, ®s: Sp/U— QSp,
called Bott maps.

Before we prove this lemma, we will illustrate how it proves Theorem 4.5,
together with the lemma below.

Lemma 4.7. Fori > 2,

(a) ;yBX = m_1X

(b) mX =m_10X
For a topological group G, there is a weak equivalence OBG ~ G.
Proof.

(a) BX = EX/X, and EX is contractible. Hence, have a fiber sequence
X — EX — BX.

Passing to the long exact sequence of homotopy, we obtain the desired
result.

(b) For all spaces Y, there is a fibration sequence
QY - PY Y

where PY is the paths in Y starting at the basepoint and ending who knows
where. Passing to the long exact sequence of homotopy, we obtain the
desired result.

Finally, when X is a topological group, 717 is abelian and 71 is a group, so these
equivalences hold for all i. O
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Proof of Bott Periodicity (Theorem 4.5).

(a) To show that 7i; U = 7 ; U, observe that there is a weak equivalence by
Lemma 4.6.
U~ 0BU- 02u.

(b) We will show ;O = 713, gO in two steps. First, we show m; Sp = m;,40:

3
Sp ~ QB Sp 21 2 (U/ Sp) 223 a3(so/u) 2225, 0%s0 ~ %0
Second, 71; O = 715 4 Sp because

2 3
0 ~ 0BO 222, 02(u/0) 2224, 03(sp /u) 228 0t sp.

Putting these two together, we obtain the desired result. O

Remark 4.8 (Note to reader.). It's probably best if you read Inna Zakharevich’s
notes on this part. I didn’t quite follow the proof of Bott periodicity, and I'm
certain some stuff in here is wrong (or at least misleading!). On the other hand,
if you want to read it and send me all the errors, I would really appreciate that.

So to complete the proof of Bott periodicity, we must prove Lemma 4.6. We
will construct only the map ®: BU — QU. To do so, we need the following
theorem about H-spaces.

Theorem 4.9. If f: X — Y is an H-map of connected H-spaces that induces an
isomorphism on homology, then f is a weak equivalence.

We will also need the following calculation of the (co)homology of L.
Proposition 4.10. H* (BU) = Z|[c; | i € IN] with c¢; in degree 2i.

Proof. H*(BU(n)) = H*(Grn (C*)) = Zlcy, ..., cn] with ¢ in degree 2i. Then
H*(BU) = limH*(BU(n)) = Z[c; | 1 € NI O

Fact 4.11. H. U is an exterior algebra generated by elements x,;_1 fori > 1.
The final ingredient is the following theorem.

Theorem 4.12. Let X be an H-space such that H, X is a transgressively generated
exterior algebra. Then H.QX is a polynomial algebra generated by the adjoints.

This theorem uses the Serre spectral sequence applied to the fibration se-
quence OX — PX — X under some assumptions for X.

The product structure on homology might come from an H-space structure
u: X x X = X, then

HiX % HjX — Hiy (X x X) 25 Hi X
gives a graded ring structure on homology. This structure is called the Pontrja-

gin ring.
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Theorem 4.13. The Pontryjagin ring of U(n) is given by the exterior algebra
H.U(n) = A\ Zley, e3,...,ean_1l.
with e; in degree i. The map U(n) — U(n+ 1) takes e; to e;.
Proof sketch. Recall that U(n) = S1 x SuU(n). So by the Kiinneth theorem,
H.U(n) = H,S' ® H,SU(n)
and notice that H,S' = Nzleil, so
HU(n) = A\ Zley] ® H.SU(n)

So we just need to know what H.SU(n) looks like.
Put coordinates on points (6,x) € rCP™! = STACP™ ! with © €
[—7/2,m/2] and x € CP™ ! a unit vector (x1,X2,...,xn) € C™. Then define

fn: ZCP™ ' — SU(n)

by
. |X] |2 XIX2 X e*Zie
fn(0,%x) = | I, —2e'® cos(0) : : : { . }
n—1
XnX1  XnX2 cet |Xn‘2
If we think of ZCP*~ ! as sitting inside YCP™ ! as the first k coordinates, then

we have a map which factors through SU(k) — SuU(n).
Forn > kg > kz > -+ >k; > 2, we have a map

fiey,o iyt ZCPFITT s SCPR T — SU(N)

which is the product of fy,, fy,,..., fkj. This gives one cell of SU(n), and all of
these together give a cellular structure on SU(n).
From this, we can read off the structure of the Pontrjagin ring. O

Remark 4.14. When X = U, the Pontrjagin ring structure on H,U is homotopy
commutative, because given two elements A and B of U, they live in some finite
stage of the colimit U = colimn U(n), say A, B € U(N). Then we may represent
these in U(2N) by block matrices

B O

o

A 0
0 I
Then we may homotope B to live in the odd-indexed rows and columns, and A

to live in the even-indexed rows and columns, so the multiplication is commu-
tative up to homotopy in U. Hence, H,U is a commutative ring.
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Proof of Lemma 4.6. We have two colimits:

BU = colim BU(n)
n

BU(n) = Grp (C®) = colim Grn(CN)
By properties of colimits, we can therefore rewrite BU as

BU = colim Gry, (C?™M).
n

Recall that Gry, (C2™) = V,(C2™)/U(n). This is how we proved that this
Grassmannian is the classifying space of UL

We can consider Vi, (C2™) as U(2n)/U(n), where U(n) acts on the last n
column vectors. Hence,

GI‘n(Czn) = U.(ZTL) /U(T‘L)/u(n);

the second quotient acts on the first n column vectors in the Stiefel manifold.
Hence,

ny ~ U2

Now define

O U(Hn)/u(k) 5 QU(k+n)

x U(n)
by sending a matrix T to

T (e — T T oce_])

where ag (X, ) = (9%, e7194) for (X,7) € C* x C™.
In particular, we have

Dpn: u(2“)/u(n) L Uy = QUEN).

Now define
O = colim O .
n

Notice that « is natural in the sense that

Ck x C" L Ck+n

[ [

cx xcn’ %o cK+n’
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This implies that the following diagram commutes, which shows that @y ., is
natural in k and n.

u(k+n)/u(k) Ul P L OU(k+n)

i |

I ! Dyr
u(k +T1 )/u(k/) X u(n/) *>k, Qu(k/+nl)

Now letn =1 and k’ = n’ = n. Then the diagram above becomes

l |

U(Zn)/u(n) x U(n) 4% Qu(2n)

Whatis U(T+n)/U(1) x U(n)? It's the Grassmannian of 1-planes in c™t1 or
CIP™. Hence, when we take the colimit along n in the above diagram, we get

b lﬂl 4.1)

Where J: U(1 +n) — U(2n) is the inclusion of the first 1 +n coordinates, and ]
is the map induced on the quotient.

Recall that our goal is to show that ® an equivalence. To this end, we will
use Theorem 4.9 and show that BU, QU are connected H-spaces.

Bl is an H-space because there are maps U(n) x U(m) — U(n+m) given
by block diagonals. The functor B preserves products, because B = N|—|, and
the nerve functor N is a right adjoint, and the geometric realization | — | preserves
products by its construction. Hence, B(U(n) x U(m)) = BU(n) x BU(m) and
there are maps BU(n) x BU(m) — BU(n + m). Taking the colimit in both n
and m, we obtain BU x BU — BU and BU is then an H-space.

QU is an H-space by composition of loops; alternatively, there is another
description of the H-space structure because we may pointwise multiply loops
using the group structure. But to apply Theorem 4.9, we need to know that BU
and QU are connected. But QU may very well not be connected!

Nevertheless, recall that @y r, is defined via a commutator Txg 7! ocg] ,and
the determinant of a commutator like that is always 1. Hence, @y , lands in
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QSUinstead of QU; QSU is connected. Hence, we really care about the diagram

CP>*® —— QSuU

b lm 4.2)

BU —2— QSsu
To show that @ is an H-map of H-spaces, consider the following diagram

Qi X yes

U(k+n)/u(k) U(k,-l—n/)/u(k/)

|

Uk+k +n+n')

QuU(k+n) x QUK +n/)

x Umn) * x U(n')

q)k+k/,n+n/

QU(k+k'+n+n')

Taking the colimit over all n, k, n’, k’ shows that @ is an H-map of H-spaces.

Now, Theorem 4.9 applies and we only need to check that @, is an isomor-
phism on homology.

To show that @ is an isomorphism on Homology, we will prove that the
other three maps in the diagram (4.2) are isomorphisms on homology, and
therefore @ is as well.

For the first map, QJ, we will show that J: U(n+ 1) — U(2n) is an isomor-
phism on Homology up to degree 2n + 2. Notice that J: SU(n+1) — SU(n +k)
is an inclusion of cells which is an isomorphism on homology up to degree
2n + 1. Hence, | is an isomorphism on homology in the colimit as n — oo.

Then by Theorem 4.12, H,QSU is generated by the adjoints of the cells
fi.: ZCPP*—1 — SU, which are explicitly the maps

fi.: CP* 1 - Qsu.

Now, we know that H,; CIP* = Z{b,;}; then b,; mapsto a polynomial generator
of H,QSU. So it suffices to show that H,BU = Z[z5; |1 > 1] and by — z55.

On cohomology, we know that H*(BU) = Z[c,; | i > 1] and H*(CP*°) =
Z[x], with x in degree 2. The map induced

BU(1) = CP*™ — BU

is given by c; — x and c; — 0, for i > 1. Then (skipping some steps) on
homology, we have that by; — z2i, where z; is the dual of by;.

Hence, @ is an isomorphism on homology. Thus, 7, (BU) = m, QSU. But we
wanted to know that 7ty U = 7, 5 (U). But we know

Z i=1,

mU=m (S xSu) =
=l ) {msu i>1.
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Therefore,
Z i=0,
mQU =
T QSU 1> 0.
So we have shown that 7r; (BU x Z) = 7r; QU for all 1. O

Using Bott periodicity, to know all of the homotopy groups of U, we only
need to know mpU and 7t1 U. Soon, we will compute 717 U.

4.2 The K-theory spectrum

Definition 4.15. A spectrum is a sequence of spaces X = Xp, X1, X3, ... together
with maps XX; — Xj41, or equivalently, maps X; — QXj41.

Definition 4.16. The K-theory spectrum KU is the spectrum

Z x BU 1ieven
KU; =
u i odd.

By Bott periodicity, the maps KU; — QKU; 1 are weak equivalences.

Question 4.17. What cohomology does this spectrum give? By Remark 2.10,
there is an associated cohomology theory.

Theorem 4.18. For any compact connected space X, the cohomology theory
defined by the spectrum K has 0-th space isomorphic to the free abelian group
generated by vector bundles over X, subject to the relation that [E ® E'] =
[E] 4 [E'] for vector bundles E and E’ over X.

Proof. Let A be the free abelian group generated by vector bundles, subject to
the relation [E @ E'] = [E] + [E'].

By definition, K®(X, ) = [X,,Z x BU]. Amap f: X; — Z x BU has image
in some {i} x BU, since X4 is connected. So we may just consider f: X, — BLL

Now write BU = colim BU(n). Since X is compact, f factors through some
BU(n) for some n. Hence, this gives a rank n vector bundle E on X. However,
this n is not necessarily well-defined. Composition with the inclusion BU(n) —
BU(n + 1) gives a classifying map for E @ ¢'. So define a map

Xy, ZxBU — 5 A

[f] ——— [E] — [e4imE~)

This is well-defined, because

[E] =[5 = [E@e!] — [UmEHT Y.
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Moreover, we say that [e™"] = —[¢™].

Why is this a group homomorphism? Well Z x BU ~ QU, and the group
operation on BU is given by &: BU x BU — BU that takes the alternating-rows-
and-columns block sum of matrices. For classifying maps, this corresponds to
the Whitney sum of vector bundles.

Now we must check that this is both injective and surjective. Surjectivity
first. For any aq[Eq] +...+ an[En] in A for integers aj, we may write this as
[E] — [E']. Since X is compact, there is a vector bundle F such that E' © F = ™.
Therefore, [E] — [E'] = [E @ F] — [¢™], so let f be the classifying map of E @ F and
let i = dim(E @ F) —n. Then the image of [f] is }_; a;[Ei].

To check injectivity, suppose that [f] — 0. We know that f factors through
{i} x BU(n) for some n.

X f {i} x BU

o~ 7

{i} x BU(n)

If E has dimension n with [f] — [E], then [E] — [¢dimE~1] =0 implies thati =0
(the bundles must be the same dimension to cancel). Hence,

[E] — [Edim E] —0.

Thus, there is some vector bundle F such that E® F = ¢4mE ¢ F. Moreover, there
is F/ such that F® F/ = ¢™, and therefore E @ e™ = ¢dimE+™ The classifying
map for E@ e™ is

X — BU(dim E) < BU(dim E + m).

Yet this is homotopic to the classifying map of ¢dim E+m

Then the composite

, so this is null-homotopic.

X — BU(dim E) — BU(dimE +m) — BU
is null-homotopic. Hence, X — BU is null-homotopic, so [f] = 0. O
Proposition 4.19. Fori > 0, K}{(X ) = KO(Z1X).
Proof. In general,
KHX4) = X4, Ky
=Xy, QYZ x BU)]

=[Z£'X,,Z x BU]
=KO(£iX4) =KO(£iX) 0

57



Lecture 22: Some properties of K-theory 23 October 2017

Remark 4.20. Topological K° is the group completion of the monoid of vector
bundles under Whitney sums. But these group completions are not always so
nice —just in this case, we can say nice things about them.

For example, the additive monoid R U {oo} with a + 0o = 00, 00 +b = o0,
and oo 4 0o = oo has trivial group completion. Usually, the best we can say
about a group completion is I don’t know.”

Remark 4.21. When we don’t want a disjoint basepoint, if X is a pointed com-
pact connected space, then any map f: X — Z x BU always lands in the compo-
nent {0} X BU of Z x BU. In this case, we get sums of classes of bundles of total
dimension zero. Sometimes the notation K°(X) is used for this group — this is
entirely consistent with what we have defined.

4.3 Some properties of K-theory

Proposition 4.22. If X is pointed, with basepoint x, then
ROX) = ker(KO(X4) = RO(8%)),

where X is X with a disjoint basepoint and the map i, is induced by i: S —
Xy, 0%, 1 +.

Proof. This follows from the long exact sequence for homotopy:

Here, KO(X) = [S°, U] = 0 since U is connected. Therefore, KO(X) is the kernel
of KO(X,) — KO(S89). O

A consequence of this is that all trivial bundles are zero in K(X), because
the map
KO(X4) = KOS9 =27

is given by [E] +— dim E. Therefore, we get the following:

Proposition 4.23. 1. If [E] = [E'] in KO(X), then there are trivial bundles
¥ and ¢~ such that E® ¢* = €/ @ ¢¥'. In particular, if [E] = 0, then
Edek = ¢k,

2. If[E] € KO(X), and E’ satisfies E & E’ = €¥, then [E] + [E'] = 0 in K°(X).
Definition 4.24. We call a bundle E such that E @ ek = ¢¥’ stably trivial.

We have already used the following proposition, but we may as well write it
down.
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Proposition 4.25. For a cofiber sequence A — X — X/A, we get a long exact
sequence

o KYX/A) = KYX) = KYA) = KT (X/A) — -
Since Q?K; = Kj, then we have
]zl(x) = [X/ Kl] = [X, QzKi] = [ZZX, KI] ~ ]Zi—Z(X)

Therefore, we may rewrite the long exact sequence for K-theory as a periodic
exact sequence

KY{X/A) —— K{(X) ——— KY(A)

| l

Ei+1(A) - Ei+1(x) - Ei+](X/A)

There is a ring structure on K-theory that ultimately comes from a ring
structure on the spectrum K, but we won't talk about that. Instead, we’ll just
define this on K° and work with that.

Definition 4.26. Put a ring structure on KO(X) by [E]l- [E'] = [E®E].

This works on reduced K-theory KO(X) as well.

4.4 An example: K-theory of S?

Example 4.27. What is the ring structure on KO(52)?
We can compute the reduced K-theory of the 2-sphere:

KO(S%) = [$2,Z x BU] = [S$2,BU] = [S°, Q%BU] = [S°,Z x BU] = [S°,BU] = Z.

Then we know that K°(S2) = ker(K°(S2) — K°(S9)) = Z, given by dimension.
With some algebra, we can learn that

KO(s?) = Z?

as a group. What is the ring structure on this?

There are two generators: [e1] and the tautological line bundle y;7 on
CP' = S2. Let H be the class of the tautological line bundle.

How do we know that H # [¢']? If y; 18 ek = ¢*t1 then the characteristic
classes of 1,1 would be all zero. However, we know that the first Chern class
of this bundle is nonzero c1(y1,1) # 0. Therefore, KO(S2) = 72 generated by
[¢1] and H.

Now claim thaty; 1 @ v1,1 = (v1,1®v1,1) D ¢!. We will return to this in a
second.

59



Lecture 22: An example: K-theory of S? 23 October 2017

Consider an n-dimensional bundle E over S2. This has a classifying map
$2 — BU(n), which comes from £S' — BU(n). Under the adjunction £ 4 Q,
this corresponds to a map

s — QBU(n) ~ U(n).

Such a function is called a clutching function. (Notice that nothing about this
depends on using S? — we could use any sphere.)

Now, if we write $2 = D? U sl DZ, we can take the two hemispheres as
open sets of an atlas for $2. To define a vector bundle over S2, we only need
specify one transition function from the southern hemisphere to the northern
hemisphere. This is what the clutching function does.

Clutching functions play nicely with tensor products and Whitney sums of
bundles.

Proposition 4.28.

(a) The clutching function of a Whitney sum E @ F is the block diagonal of
the clutching functions for E and F.

(b) The clutching function of a tensor product E @ F is the tensor product of
the clutching functions for E and F.

Example 4.29 (Example 4.27, continued). What is the clutching function of y1,1?
There are two open sets of CIP! that we have to worry about, Uy and U; with

Uo ={lzo:z1] |20 =1,1z11 < 1},

Uy ={lzo: z1] 1 21 = 1,120l < 1}.

The transition function between these two charts is given by multiplication by
z1: zo = 1/z7. Hence, the clutching function of y1 7 is f: ST u(), f(z) =z
Therefore, the clutching function of 1,1 ® 1,1 is

o

and the clutching function of (y1,1 ®v1,1) @ el is

P20
0 1
These are clearly homotopic. Hence, in KO(S2), H+H = H2 + 1. So we may

conclude that, as a ring,

~ Z[H

while KO(S2) = Z{(H—1)}as a group.
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Remark 4.30. When most people prove Bott periodicity, they’re proving the
statement that K¥(X) = K'*2(X). This is done by considering an external
product

KO(X) x KO(Y) = KO (X x Y)

and then noticing that when Y = S2, this is an isomorphism. Hence, there is an
isomorphism on reduced K-theory

KO(X) @ KO(5%) = KO(X A S2).
Now notice that K°(S2) = Z, so
KO(X) = KO (£2(X)) = K*(X).

But our approach reveals more about where this is really coming from, and
resembles Bott’s approach (although he proved the same statement that we did
using Morse theory).

4.5 Power Operations

Definition 4.31. A commutative ring R is a pre-A-ring if there exist functions
(not necessarily ring homomorphisms!) A™: R — R satisfying

(L1) A°(r) =1forallr € R,
(L2) A =idg,
n . .
(L3) AM(r+s) =Y A(TA™(s).
i=0
Remark 4.32. Sometimes, pre-A-rings are called A-rings, and in that case the

things that we call A-rings are called special A-rings.

Example 4.33. On KO(X), define A™M[E] = [A™ E], where A" E is the n-th exterior
power. Then notice that A™[E] = 0 if dim(E) < n.

For a genuine A-ring, you should think of the operations A™ as analogous to
the elementary symmetric polynomials.

Definition 4.34. For a pre-A-ring R, let A(R) be the set of power series f(t) €
R[[t]] with constant term 1, considered as an abelian group under multiplication
of power series.

Define a homomorphism R — A(R) of abelian groups by
T A0 AT (M AR ()R 4

This is an abelian group homomorphism by Definition 4.31(L3).
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Construction 4.35. Define multiplication on A(R) as follows. If

x(t) =14+ art+art’>+...
B(t)=T+bit+bat?+...

then suppose that (completely formally)

aft) = (1 +&t)

n>1

Bt) =] +nnt)

n>1

Then write
IO +&mnat) =T+Prt+Pot? 4.

n,m
where P; are symmetric polynomials in £ and 1. So each P, may be written
in terms of the a; and the b;. Each P,, depends on ay,...,an and by,..., by,
Notice that even if each previous step was not well-defined, we end up with P;
that depend only on the a; and b;, not on &; and n;.

Then define o(t) * 3(t) by

o(t) *B(t):=14+P; ((l],b])t+P2(a1,a2,b1,b2)t2 +...
Example 4.36.

Pi=D) &mnn=aby
mmn

PZ = Z gm] sznn] nnz
(mq,mnq)#(mzmnyz)

Z §m1 fmﬂhunnz + Z §3nﬂnmnz + Z §m1 fmzﬂi

my#Em; mmni#En; n,mi#Emy
ny#En,

arbs +b2(a% —2ay) + az(b% —2b>)

= bza% + azb% —3ayby

Proposition 4.37. With this definition of multiplication (), and with the “addi-
tion” (x) given by normal multiplication of power series, A(R) becomes a ring
with unit 1+ t.

Remark 4.38. As sets, A(R) =1+ tR[[t]], but these are not the same as rings.

Definition 4.39. A A-ring R is a pre-A-ring such that the operations A™ satisfy
the additional rules

(L4) A™(1) =0forn>1,
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(L5) A™(rs) = Pn(A1(r),..., A™(1),A1(s),..., A (s)),

(L6) AMA™ (1)) = Ly m AT (1), ..., A™™ (7).

Construction 4.40. We may make A(R) into the universal A-ring as follows. If
a(t) =T+a1t+axt+...,

suppose that we know

aft) = [T +&nt).

n>1
Then write
[ 0+&&, &) =1+Loit+Lot? +...
i< <in
for some L,, i, such that L, ; depends only on ay, ..., ain. Then define the A
operation on A(R)

AMou(t) =T+ Loyt + Lo ot? +... (4.3)
Example 4.41. [ = Z &&=
i<j

Fact 4.42. A(R) is a A-ring, with A-operations given by (4.3).
Example 4.43. KO(X)is a A-ring, with AT [E] = [A" E].
Let sy (y1,...,yk) be the polynomial in yy,...,yx such that
Sk(G]/"'/Gk) = lef

where the o; are the elementary symmetric polynomials. (Look up Newton’s
identities).

Definition 4.44. Let R be a A-ring, and define the k-th Adams operation
$Er) = s (1), A2(1), .. AF()

Theorem 4.45. The Adams operations P are ring homomorphisms KO(X) —
KO (X) such that

(1) PR = p* forall f: X = Y,
(2) PW¥[L] = [L¥] when L is a line bundle over X,
(3) VFopt =Pk,

(4) YPx = «P (mod p) when p is prime, in the sense that for each «, there
exists some 3 € K°(X) such that P« = P +pp

(5) when X = S™, then *(«) = k™a.

Remark 4.46. The Adams operations descend to ring homomorphisms on
reduced K-theory Pk KO(X) = KO(X).
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4.6 When is the Hopf Invariant one?
The attaching map of a 2n-cell to an n-cell is f: $2"~1 — S™.

Z 1ie{0,n,2n},

HY(S™ Up D) =
0 otherwise.

If n > 1, there are no boundary maps between these cohomology groups. If
« € H™(S™ Uy D2™) = Z generates this cohomology group, o — « = hf in
H2"(S™ Us D?™) = Z for some h € Z.

Definition 4.47. This h is the Hopf invariant of f.

Say we have a division algebra structure on R™ given by g: R™ x R™ — R™.
We may use this to construct a map

g: §2n—1 _gn,

Write
§2n—1 =3(D™ x D) = (D™ x D™) U (D™ x dD™),

and similarly write S™ as a union of hemispheres:

S =D" Ugn-1 D™

So define g by
sl y) €D (xy) € 9D x D,y £0
glx,y) = x| g(x,y) € D™ if (x,y) € D™ x D™, x #0

x=0o0ry=20
Claim 4.48. g has Hopf invariant 1.

The Hopf invariant also appears in K-theory. Let X = S™ Uy D?™. Then there
is a cofiber sequence

2
™ X = (ST U DA o ST VDT s gon
that induces a short exact sequence in K-theory
0 — KO(8?™) = K°(X) = K°(8™) — 0

but K(S?™) = Z{a'} and KO(S™) = Z{B’}. Let a be the image of  in K°(X)
and let  be any preimage of B in KO(X). Since K°(S™) has trivial multiplication,
we have (B’)% = 0. By exactness of this sequence, we must have B2 = ha for
some h € Z.
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Fact 4.49. This integer h is the Hopf invariant.

This fact follows from calculations using the Atiyah-Hirzebruch spectral
sequence, which we won'’t discuss here.

Theorem 4.50. h = +1 only ifn = 2,4, 8.

Proof. If n is odd, then the Hopf invariant must be zero: it is the integer h
such that « — « = hp for « € H™"(S™ Us D2™). In particular, « is in odd
cohomological degree, so 0 — « = (—1)“"”""0( — o, hence « — « = 0. So
when n is odd, the Hopf invariant is zero.

So let n = 2m for some integer m. It suffices to show that B2 =0 (mod 2)
unless m = 1,2,4. To do this, we will use Theorem 4.45.

By property (4), 2 =0 (mod 2) — P2B =0 (mod 2). By property (5),
P2B =2MpB +kacand P3p = 3™B + La.

By property (3), b23 = V392, so

T2MB 4+ ka) + o = 2™ (3™ P + L) + ke
Rearranging, we see that
3MEBM™ -1k =2M2M-1)L.

It suffices to show that k = 0 (mod 2). 2™ does not divide 3™, so to show
k = 0 (mod 2), we must demonstrate that 2™ does not divide 3™ — 1 unless
m = 1,2,4. What is the largest power of 2 dividing 3™ — 1? Call this v(m).

If misodd,then3™ —1=3—1=2 (mod 8),so v(m) = 1. Also note that
3Mm 4+ 1=4 (mod 8).

If m is even, then 3™ + 1 = 2 (mod 8). Write m = 27j with j odd. Then
(repeatedly factoring a difference of squares)

320 1=32" 4@ o

— 32"+ 1B N3

H32L3+1 )31 —1).

er

i)

Modulo 8§, the first term is 2 except when L = 0, in which case it’s 4. The
second term is likewise 2. Hence, v(21j) = L + 2. So 2™ divides 3™ — 1 when
nu(25) < L+ 2, with m = 25, This inequality holds when L =0,1,2and j =1,
so we must have m = 255 € {1,2,4}. Hence, n = 2m € {2,4, 8}, as desired. I
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4.7 The Splitting Principle

Theorem 4.51 (Splitting Principle). Let X be a compact Hausdorff space. For any
bundlep: E — X, there is a compact Hausdorff space X' and a map f: X' — X
such that f*: KO(X) — KO(X’) is injective and f*(E) splits as a sum of line
bundles.

To illustrate how this principle is useful, we can use these to prove the
properties of the Adams operations. We will only prove properties (1) - (4).
Property (5) isn’t hard, but it takes time (and it’s in Hatcher).

Lemma 4.52. The pullback of a sum is the sum of the pullbacks.

Proof of Theorem 4.45. First, notice that $*([L;]) = [Li]* = [L"*], and since }¥ is
a group homomorphisms, we know that ¥ applied to the sum of line bundles
is the sum of ¥ applied to these line bundles. Hence,

YL @...ol)) =L ..o LK.

To check (1), it suffices to check it for the A™’s by definition. Consider two
bundles E, E’, and W*(E @ E/). By the splitting principle, let f: X’ — X split E,
so

ffFEQE)=2L1®...0 Ly & fE

Let f': X" — X' split f*E’. Then
) =L10...0Ln0L1...0L,.
We have the following commutative diagram

Ko(x) L ko

(X")
e
ko(x) L5 Kko(x
This diagram shows that X commutes with pullbacks, using injectivity proper-
ties of the splitting maps.

We should check that the Adams operations are also ring homomorphisms.
So consider E @ E’. Again choose a splitting map f: X’ — X for E, so that

FEQE)= (L @...®Lm) @ (E)
Then choose a splitting map f': X" — X’ for f*(E’), so that

(FF) (E@E) = () (L) e...(f) La) el &...eLy) =PI L oL
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Hence, we have split E® E’ as a sum of (products of) line bundles. Then, we
know that for line bundles L; and Ly, $*(L; ® Ly) = ¥ (L )Wk (Ly).

Now we can combine the diagram above and the splitting principle to
conclude property (2).

Property (3) follows from (L®*)®¢ = [2(k0) for line bundles.

To show property (4), write any element o € KO(X) as « = [E] — [E']. Then
for p prime,

FP(E) =P (L1 @...0Ln) =L @...aLh
=L ®...60Ln)P =f(E) (mod p).

O

Definition 4.53. For any bundle p: E — X, define the flag bundle g: F(E) — X
with total space n-tuples of orthogonal lines in the same fiber of E. The fibers of
this bundle are Stiefel manifolds V;; (C™).

Note that F(E) is compact.
Claim 4.54. g*(E) splits as a sum of line bundles.
To prove this claim, we need a few statements that we won’t prove.

Proposition 4.55. As a ring KO(CPP™) = Z[L]/((L—1)"*1) where L is the canon-
ical line bundle on CIP™.

Theorem 4.56 (Liray-Hirsch). Let p: E — B be a fiber bundle with E, B compact
Hausdorff, and with fiber F such that K*(F) is free. Suppose that there are
c1,...,¢cx € K*(E) such that they restrict to a basis for K*(F) for all fibers F. If F
is a finite cell complex with cells only in even dimensions, then K*(E) is a free
module over K*(B) with basiscq,...,Ck.

Remark 4.57. The Leray-Hirsch theorem holds for generalized cohomology
theories, not only K-theory. It is usually stated for singular cohomology H*. It
can be used to prove the Thom isomorphism theorem.

The assumption that F is a finite cell complex with cells only in even dimen-
sion can be replaced by a different assumption on the base B instead.

Proof of Theorem 4.51. Let P(E) be the projective bundle of E, with fibers CIP™~!
if E has rank n. There is a canonical line bundle L — P(E), and classes

(11, [L, L7, ..., [L™ "] € K*(P(E)).

Notice that for t: F — P(E) the inclusion of a fiber, t*[L*] = L¥, so these Lt form
a basis for K*(P(E)).
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These are exactly the conditions for the Liray-Hirsch theorem, so K*(P(E)) is
free over K*(B) with basis [1], [L], [L2],..., [L™']. Therefore, K°(B) — K°(P(E)).
g*(E) contains L as a subbundle, so g*E = L & E’, where E/ has rank n — 1.

Then recursively repeat this process on E’ to get a sum of line bundles for E,
giving a point in the flag bundle F(E). O

5 Where do we go from here?

If you took an algebraic geometer from the 1950’s and took them to a conference
today, they wouldn’t understand everything, but they would understand what
the problems are and why people want to understand them.

If you took a combinatorialist from the 1950’s and took them to a conference
today, they would mostly understand what’s going on.

But with the possible exception of Peter May;, if you took an algebraic topol-
ogist from the 1950’s and took them to a conference today, they wouldn’t
recognize it as the same field.

So far, we’ve done algebraic topology from the 1960’s, but the point of
a graduate class is to introduce you to the stuff that’s going on in algebraic
topology today. So let’s take a while to talk about how these things appear in
modern algebraic topology.

One of the biggest, if not the biggest, open problem in algebraic topology is
computing the homotopy groups of spheres. So why do people care?

Say we're building a space Y by attaching a cell to X via a map f: S*~1 — X.
This defines a pullback

where the homotopy type of Y depends only on the homotopy type of f; all
ways of attaching n-cells to X are determined by 7, _1X. If X is itself built
from attaching cells to smaller cells, we can ask about the basic building blocks
T S™.

Definition 5.1. For a space X, the n-th stable homotopy group is

s ; i
X = colim 71, 1 { 2 X,
1

It’s not immediately apparent, but the stable homotopy groups are usually
easier to think about. One reason why is that stable homotopy groups 7§ form
a homology theory (the homology theory for the sphere spectrum).
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Once we know the stable homotopy groups, the regular homotopy groups
can be determined by a spectral sequence whose input is the stable homotopy
groups, and whose output is the regular (unstable) homotopy groups. The
general attitude of people who work with this spectral sequence is that it’s not
too hard to run.

To compute stable homotopy groups, there’s a number theory trick floating
around in the background. We use the following theorem.

Theorem 5.2. If f,.: Hi(X;Z/p) — H4(Y;Z/p) is an isomorphism for all p, then
Hy (X) — Hy(Y) is an isomorphism as well.

If in addition the spaces are simply connected, then this gives by the Hurewicz
theorem an isomorphism 7, (X) — 7, (Y) as well.

So the idea is to work “mod p.” What does this mean? On homotopy groups,
this is tensoring with Z /p, but this can actually be made sense of as an operation
on spaces.

Unfortunately, this loses too much information. But if you think some about
number theory, it turns out the right thing to do is to localize at p. And if we're
localizing at p for all p, then we’d better look at the rational case as well.

The rational case is very well understood. Rationally, the homotopy groups
of spheres are the same as the rational homotopy groups of an Eilenberg-
MacLane space. In fact, the sphere spectrum is rationally the same as HQ
(written S ® Q ~g HQ).

So what we want to study instead is the localization of the sphere spectrum
S at a prime p, denoted S(y,). To be more general, we localize at any space E by

saying that f: X ~g Y if and only if [Y, E] i> [X, E]. The localization of X at E is

written Lg X.
Theorem 5.3.5(,,) ~ colim ( = Lg)S = LgmS— LE(O)S)

Where Lg ;) is the Morava E-theory. It depends on a prime p, which is
suppressed from the notation. So to compute the homotopy groups of 5,
we want instead to understand the homotopy groups of L ;). This is closely
related to formal group laws.

We know how to do the zeroth level: Lg (o) = HQ. The interesting stuff
starts at the first level: Lg (1) is related to complex topological K-theory KU. We
might say that Lg (1) is the next best approximation to 5, after Lg (o), so we
study Lg(q) instead. The homotopy groups of these are given by the image of
the J-homomorphism.

This is the beginning of the field of Chromatic Homotopy Theory. The idea
is that you take a ray of white light 5(,,) and put it through a prism (the colimit)
to study all of the colors L (;)S separately.

69



Lecture 27: The J-homomorphism 6 November 2017

5.1 The J-homomorphism
Definition 5.4. For a space X, the n-th stable homotopy group is
X = coliim T 1 ZX.
Definition 5.5. The stable homotopy groups of spheres or the i-th stable stem

is the i-th stable homotopy group of S°. It is often written just 7 rather than
78 SO,
1

The J-homomorphism is built from a sequence of homomorphisms 71; O(n) —
Ti4+n S™ such that the following diagrams commute

7;0(n) L T nS™

! I

We may then take the colimit along the vertical maps to get the J-homomorphism
J: 0 — S0 = mS.

Recall that 71; O is periodic, with

Z/2 i=0 (mod 8),
Z/2 i= (mod 8),
0 i= (mod 8),
70 = Z i= (mod 8),
0 i= (mod 8),
0 i= (mod 8),
0 i= (mod 8),
Z i=7 (mod 8).

Notice that O has two connected components, one of which is SO.
Theorem 5.6. The image of J|so is a direct summand of the stable homotopy
group Ty,

Our goal is to compute bounds on the size of the image of ]. We'll start with
a lower bound.

Definition 5.7. The join of two spaces X and Y, written X * Y, is the space

X><Y><I/

~

Where (x,y0,0) ~ (x,y1,0) for all yo,y1 € Y and (xq,y,1) ~ (x7,y,1) for all
X0, X1 € X.
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Example 5.8. The join of two line segments is a tetrahedron. The join of a point
{a} and a space X is the cone CX on X.

{a}x X =CX
The join of {a, b} and X is the unreduced suspension SX of X.
{a,b}* X =SX
The join of n + 1 copies of the zero sphere is S™.
S =60 480 ... 580
The join of an m-sphere and an n-sphere is an (m + n + 1)-sphere.

S xS = gntm]

For any spaces X and Y, the map X x Y x I — S(X x Y) factors through the
join.
XxYxI S(XxY)
\ hV

XxY

We name the map hx y: X x Y — S(X x Y) for future use.

Definition 5.9. Given a map f: X X Y — Z, the Hopf construction of f is the
map

h
XY 2 s(x x v) 25 sz,

Now giveny € SO(n), vy acts on R™ and preserves norms. Hence, it induces
s 5 snl, Any class [f] € m;(SO(n)) for some i > 0, is represented by
f: St — SO(n). This gives (by uncurrying) a map

stxsnl 5 gnt
which by the Hopf construction becomes a map
fo St 5™
This represents a class in 7, 1 (S™).

Definition 5.10. We define the J-homomorphism J: 7;(SO(n)) — m,1(S™)
by JIf] := [f], where f is as constructed above.
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Moreover, it’s not hard to check that the diagram below commutes.

1;0(n) _J T nS™

! Ls

mOM+1) — i S

Therefore, ] induces a map from homotopy groups of the infinite orthogonal
group to the i-th stable stem 71; 0 — 7.
There is an inclusion U(n) C O(2n). Therefore, we have a homomorphism

U — mO0 1, s

By composing with the Adams e homomorphism e: ¥ — Q/Z, we have a
homomorphism

U — O 1, w5 Q.

Hence, if a generator of 7;U is sent to ¢ (in reduced terms), the order of the
image of ;U — 7t{ is at least b.

Remark 5.11. In fact, these denominators b turn out to be Bernoulli numbers.

Over the next few lectures, we will construct the e invariant and exploit the
following theorem to learn about stable homotopy groups.

Theorem 5.12. 7§ = im(J) @ ker(e)

5.2 The Chern Character and e invariant

Proposition 5.13. The set Vect! (X) of line bundles on X is a group under tensor
product. With this structure, the first Chern class c1: Vect! (X) = H2(X) is a
homomorphism. This is an isomorphism if X is a CW complex.

Construction 5.14. The chern character is a ring homomorphism
ch: K°(X) = H*(X; Q)

In particular, this means that ¢y (L1 ® L2) = c¢1(Ly) + ¢ (L;). For line bun-
dles L, the chern character is ch(L) = e¢1(L),
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Given a sum of line bundles E =L & - - - @ L, the chern character is

ch(Li®- - Ly = h(L;)

™

H
Il
=

ec1(Li)

,.
Il
-

I
.I\/]S

Jler(l) I er(La) +...+cr(Ln))

u
Il
=

[ [
3 3
- -

gk 'I\’l8

1)

)

where t; = ¢ (L;). But notice that by the Whitney sum formula,

Cj(L] PB...0LL) :O‘j(’q,.--,tn)
cLi@...oLln) =0+t)(1+t2) - (1 +1tn)

= 1
:n-l—Zj—‘cj(E)
j=1""

Definition 5.15. The chern cheracter of a bundle E is a ring homomorphism
ch: KO(X) — H*(X; Q) defined by

= 1
ch(E) := dim(E Zi

-

The Chern character also descends to a ring homomorphism on from reduced
K-theory to reduced cohomology,

ch: K°(X) = H*(X; Q).

Proposition 5.16. The Chern character KO(S2™) — H*(S2™: Q) is the inclusion
of Z into Q.

Proof sketch. For n = 0, the calculation is easy. Now, for arbitrary n, we check
that this diagram below commutes.

]’ZO(SZn) = KO(SZn+2)

B B

HY($7%,Q) —— H*(S*"%4,Q)
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Remark 5.17. A different proof of Bott periodicity gives a generator for K°(S2™);
namely, [(H—1)®™], where H is the tautological bundle on S2. Our proof of Bott
periodicity should also give us a way to determine this, but it’s not immediately
clear.

Proposition 5.18. The map KO(X)®Q — H*(X;Q) is an isomorphism if X is a
finite CW complex.

Let m > n. Suppose f: §2m—1 _, §2n This defines an element in 7151, _1 (S2™).
The mapping cone C¢ of f is the same as attaching a cell to S*™ along f;
Cy = S$2™ Uy D2™. There is a cofiber sequence

S2M <y Cp — S2™,

This gives two short exact sequences in K-theory and cohomology, and there
are maps between these given by the Chern character.

0 —— K(s2m) — KO(Cy) —— KO(S?") —— 0

lch lch lch

0 —— H*($2™;Q) —— H*(Cr;Q) —— H*(S$?™Q) —— 0

The generator &’ € KO(S2™) is sent to the generator a’ € H*(S2™: Q). The
commutativity of the diagram means that the image « of &’ in KO(Cy) is sent to
the image a of a’ in H*(Cy; Q).

Likewise, there is a generator B’ € KO(S2™) that is sent to a generator
b’ € H*(S?™;Q). The preimage of B’ in K°(C¢) is some p € K°(Cy), and the
preimage of b’ is some b € H*(C¢; Q). The choice of b is determined by the cell
structure of Cy := $2™ U; D2™, and is not a choice on our part.

The only thing that we can conclude about the image of 3 € KO(Cy) under
the Chern character is that ch(f) = b + ra for some r € Q.

KO(S2M) 5 o/ 5 6 € KO(Cg) 3 p ——— B/ € KO(S§2M)

! ! ! |

H*($2™Q) 3 a’ —— a € H(C;Q) 2 b+ra —— b’ € H*(S?™ Q)
Definition 5.19. The e-invariant of f: 2™~ 1 — §2M g the image of rin Q/Z,
with r as above.

Proposition 5.20. The e-invariant is well-defined.
Proof. Suppose p = f 4 co for some ¢ € Z. Then

ch(B) =ch(p+ca) =ch(f)+cch(e) =b+ra+ca=b+ (r+cla

Hence, r has changed by an integer, so it’s image in Q/Z is unchanged. O
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Proposition 5.21. e is a homomorphism.

Remark 5.22. We can use the e-invariant to show that the two definitions of the
Hopf invariant from before are actually the same. Recall that the Hopf invariant
was defined as the integer h such that b? = ha, and we also had 2 = ca.

We want to show that h = c. It suffices to show that ch(f2) = hch(«). To
that end, calculate

ch(p?) = ch()? = (b+ra)? =b? = ha = hch(«)
Soh=c.

Recall that we have a homomorphism J¢: il — ;0 J, 7y, where the first

map is the inclusion U(n) C O(2n).

Theorem 5.23. If f: $2*~1 - U(n)isa generator of mpy_1U then
eoJe(lfl) = £Br/k,

where k is the k-th Bernoulli number.

This theorem in particular implies that the order of the group 77 is at least
the denominator of By /k.
To prove this theorem, we need a few lemmas.

Lemma 5.24. There is a Thom isomorphism ® for K-theory: for a bundle E — B,
with Thom class ¢ € K°(Th(E)), we have

log(®'(ch(c))) = > o ch!(E)
j

where
¢ log means the power series for the natural log;
e «; € Q is a rational number defined by

% 5 1o -1
;j!y 8

e ch/(E) is the part of ch(E) in degree 2j.
Remark 5.25. In fact, o = 3j/j by messing around with power series.

Lemma 5.26. Cj; is the Thom space of the bundle Es — S?* determined by the
clutching function f.
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Proof of Theorem 5.23. Observe that f: §2m=1 _ U(n)isa generator for 7y, 1 U(1).
Moreover, since f is a clutching function, [E¢] is a generator for KO(S2™). There-
fore, ch([E¢]) = ch™(E) is a generator of H2™(S2"). Then by Lemma 5.24,

log ® " ch([E¢]) = amh,

where h is the image of [E¢] in reduced cohomology.
On the other hand, we know that the Thom class c is equal to 3 € KO(C 7f)
by Lemma 5.26. Therefore,

log @ 'ch(c) = logCD’] ch(B) =log O "(b+ra) = log((D’I (b) + 10 (a)).

This number 1 is the e-invariant of J¢[f] by the discussion preceeding Defini-
tion 5.19. By degree considerations, @~ '(b) lands in degree zero, and o '(a)
lands in degree m. Moreover, ® ' sends generators to generators, so

log(CD’1 (b)+ 10 (a) = log(1+rh) =rh,

the last line by the power series for log.
Therefore, x;nh = th. Hence, & = 1 = ¢(J¢[f]). Finally, by Remark 5.25,
Xm = Bm/m. O

To complete the proof of Theorem 5.23, we need to prove the lemmas.

Proof of Lemma 5.24. The key observation is that we may think of the Thom
space of a bundle E as Th(E) = P(E® ¢1)/P(E). The intuition for this is to think
of P(E) as the sphere bundle on E, and the bundle P(E & el) as filling in the
sphere bundle on E.

By the Leray-Hirsch theorem, K*(P(E @& e!)) is a free K*(B)-module with
basis ¢!,L,..., L™, where L is the tautological line bundle over P(E & 1). Like-
wise, K*(P(E)) is a free K*(B)-module with basis ¢!, Lo, ..., qu , where L is
the restriction of L to P(E). This gives a short exact sequence

0 — K*(T(E)) = K*(P(E® ') 2 K*(P(E)) — 0.

What is the kernel of p? It is generated by some polynomial in L of degree n.
We may find this polynomial by writing a monic polynomial of degree n — if
there was another one, we could subtract the two and get a polynomial of lower
degree, but no polynomials of lower degree in the kernel of p.

E over P(E) splits as Lo @ E’ with E/ of rank n — 1. E over P(E @ ¢') splits as
Lo @ E”. We know that A™(E’) = 0 because E’ has rank n — 1. We can also write

AM(E) =AML E”)
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By the identities for A-operations,
n
0=AME") = (=1)" > (=1)A"H(E)L.
i=0
This is an identity in K*(P(E)), so the degree n monic polynomial
n
=)™ (=N E)L!
i=0

generates the kernel of p.

Since all terms of the short exact sequence are K*(B)-modules, this represents
the Thom class U € K*(Th(E)) in K-theory.

Notice that none of the above relies on the fact that we're working in K-
theory, only that we have a cohomology theory that vanishes in even degrees.
So we may write a similar polynomial in cohomology using Chern classes:

cn(E) =Y (~1)ien (B
i=0

Hence, the Thom class u € H*(Th(E)) is represented by this polynomial.
Messing around with power series proves the lemma. (See Inna’s Notes). [

6 Student Presentations

6.1 Yun Liu: Clifford Algebras

We work over R.
Definition 6.1. Given a real vector space V, and a quadratic form Q on V, the
Clifford algebra C1(V, Q) is
av,Q ="
where T(V) is the tensor algebra on V and
Io=(Vav-QWT|veV).

The Clifford algebra CI(V, Q) satisfies the following universal property. It
is the algebra such that for any real algebra A and linear map j: V — A such
thatj?(v) = Q(v)14, thereis a unique i: CI(V, Q) — A such that the following
commutes.
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There is an involution «*: CI(V, Q) — CI(V, Q) on any Clifford algebra
induced by o v — —v. The notation is o(x) = x*.
There is a Z /2 grading on any Clifford algebra C1(V, Q), with components

CI'(V,Q) = {x € CU(V, Q) | w(x) = (1) x}
fori=0,1.
Definition 6.2. We define several particularly important Clifford algebras.
e Cl(1):=(el|le]=1,e? =1,e" = —e)
o Cl(—1):=(f|[fl=1,2=1,f =)
e Cl(n):=Cl(1)®™
e Cl(—n) :=Cl(-1)®"

Remark 6.3. Since we are working over R, the quadratic form Q induces a
bilinear form on V, (—,—): V x V — R. Then we can choose an orthogonal
bass e, ..., en for V with respect to this bilinear form. Then just knowing
dim(V) = n is enough to construct the Clifford algebra; we set Q(e;) = 1. This
corresponds to Cl(n). Likewise, if we take Q(f;) = —1, then it corresponds to
Cl(—n).

Definition 6.4. Two unital associative algebras R and S are called Morita equiv-
alent if their categories of left-modules are equivalent: R-Mod ~ S-Mod. We
write R ~p1 S when R and S are Morita equivalent.

Theorem 6.5. R and S are Morita equivalent if there is an (R, S)-bimodule gMs
and an (S, R)-bimodule sN, such that

RMs ®s sNg = gRr
sNR ®r RMs = sSs

Fact 6.6. Consider the two modules gngq(rn )R and rRRg d(R)- There are equiv-
alences
End(R")RR @R RRE,q(rn) = End(R™)

RREnd(Rn) ©End(R™) End(]Rn)]RE ~R

Lemma 6.7. C1(1) ® C1(1) is Morita equivalent to R.

0

e®1— []

1 2
0} € End(R“)

1®fn—>{o

1 2
o 0} € End(R?)
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Corollary 6.8. Cl(m + n) is Morita equivalent to Cl(m) @ Cl(n), for all integers
n and m.

Example 6.9. C = CI(—1)

Example 6.10. H = CI(—2)

Example 6.11. Cl(—3) — H ® CI(1) with H in degree 0 and CI(1) in degree 1.
fi—i®e

f—j®e
f3—k®e

Example 6.12. Cl(3) — H ® Cl(—1) with H in degree 0 and Cl(—1) in degree 1.

e —if
er)—jiQf
e3 —kef

Now, combining the previous examples, we can see that
Cl(—4) 2m C(=3) @ Cl(—-1) =~ CI(T) @ H Cl(—-1) ~ CI(1) ® C1(3) ~ Cl(4)

So the ClI(n) construction is 8-periodic. Does this remind you of Bott periodicity
for real vector bundles?
To make this precise, we need a few more definitions.

Definition 6.13. Given a topological space X, a vector space object over X is a
space V with a map V — X, together with three continuous maps

+:VxxV-oV 0:X—>V X:RxV -V

such that each fiber of V — X is a vector space under these operations.

Definition 6.14. The germ of a vector bundle E — X over x € X is a pair (U, V)
where U is a neighborhood of X and V is a vector bundle over U. If U’ C Uisa
smaller neighborhood, then we demand that (U', V') ~ (U, V|y/).

Definition 6.15. A quasi-bundle V — E is a vector space object V equipped
with a vector bundle germ Vy at each x € X, and an inclusion i: Vx — V<X>
where V., is the germ of V at x, satisfying some conditions roughly analogous
to that of vector bundles.

Using these quasi-bundles, we can define K-theory. Then the periodicity of
Clifford algebras gives a Bott periodicity theorem for this new quasi-bundle
K-theory.
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6.2 Sujit Rao: Elementary Bott Periodicity
This section outlines an elementary proof of Bott Periodicity.

Theorem 6.16. If X is compact, then the external product p: KO(X) @ KO(§2) —
KO(X x $?) is an isomorphism.

An outline of this proof is as follows.
(1) Classify vector bundles over X x S? by clutching functions.

(2) Approximate clutching functions by a homotopy to Laurent polynomial
clutching functions.

(3) “Linearize” a polynomial clutching function.
(4) Decompose a bundle on X x $? using a linear clutching function.
(5) Define u~! using this decomposition.

Definition 6.17 (Notation). Let X be compact, and view S2 as CP'. Then we
write the upper and lower hemispheres as

Do:={z|lz <1} Doo :i={z|lz| = 1}.
Their intersection Dy N D is ', and we have projections
mo: X X Dy — X
Tloo: X X Do — X
mXVSh X

and amap S: X — X X s2 given by x — (x,(1,0)). Let H be the tautological
bundle over CIP'. Let 1 be the dual bundle of H.

Now we begin step 1.

Definition 6.18. Given a bundle p: E — X, a clutching function is a bundle
automorphism f: E X ST - E x S'. Denote by [E, f] the bundle 7§ (E) Uf 75, (E).

Proposition 6.19. Every bundle p: E — X X S2 is isomorphic to [s*(E), f] for
some automorphism f: S*(E) x ST — S*(E) x ST.

Proof sketch. Since 7y is a homotopy equivalence, then E[xp, is isomorphic
to a pullback of a bundle Ey — X. Likewise for 7, we get a bundle E,, — X.
Thenlet hy: Elxxp, — Ex X Dy, then E = [S*(E), hp o hoj] with appropriate
restrictions. O

Proposition 6.20. If f,g € End(E x S1) are both clutching functions, and f ~ g
via an always-invertible homotopy, then [E, f] = [E, g].
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For step 2, we need the following lemma that we will not prove. It requires
that X is compact.

Lemma 6.21. If f: X x S — C is continuous, then there is a continuous an : X X
S! — C such that (an)neN converges to f uniformly, and an (x,—) is a Laurent
polynomial.

The proof of this lemma requires some analysis, so we will omit it for now.

Definition 6.22. A Laurent Polynomial Clutching Function (LPCF) is a clutch-
ing function of the form

(e,z) — ( Z fk(e)zk,z>

k=—n
for fy € End(E).

Proposition 6.23. Every bundle p: E — X x S? is isomorphic to [S* (E), f] where
f is a Laurent polynomial clutching function.

Proof sketch. It suffices to show that LPCFs are dens in End(S*(E) x S"). For
trivial bundles, use Lemma 6.21. In general, take a partition of unity then take
convex combinations. O

Proposition 6.24.
(a) [E,fz"] = [E, fIJQH™
(b) [Eq,T1]1 @ [Ez, f2] = [E1 B Ey, f1 & f3]

Combined with the fact that any bundle is isomorphic to one of the form
[S*(E), f] for f a LPCE, the proposition above lets us pull apart any bundle into a
sum of tensor products of bundles, where each factor of the tensor product is
either a bundle on X or a bundle on S?, which is just a power of H.

To proceed, we linearize polynomial clutching functions (step 3).

Proposition 6.25. Let E be a bundle over X, and f = fo + f1z+ ...+ fnz™ be a

polynomial clutching function. Define a clutching function for E®(n+1) by
_fO f1 - fng fn_
T 0 0
0 —z --- 0 0
L™(f) .= .
0 0 1 0
| 0 0 —z 1]
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In particular,
L“(f)((e1,. ce et ),Z) = <fo(€] )—zey,T1(e1) +ex —zes, ..., Tn(er) + en>.

Then [E®(+1) 10 (f)] = [E®(H1) [f] @ 1,,], where I, is the identity matrix.
Proposition 6.26.
(a) [E®(+2) Int1(f)] = [ES(+1) I (f)] & [E, 1]
(b) [E®MH2), LT (zf)] = [ES (D), LT (£)] @ [E, 2].
Now for step 4: decomposing a bundle on X x S2.

Proposition 6.27. If az + b is a clutching function, then [E, az+b] = [E,z + c]
for some c.

Proposition 6.28. Given [E, f] where f = z+ b, then E = E4 @ E_ for some
bundlesE andE_,and [E,f] = [E., 1] D [E_,z].

Proof Sketch. Define

1 J .
=5 (z+b)”" dz € End(E)
PO~ omi lz]=1
Then notice that

the last equality because the left side is symmetric in z and w (note that b is an
endomorphism of E, so they don’t necessarily commute!).

Then fpy = pof. To show that p% = po, note that (z+ b) is invertible for
1—¢ <zl <1+¢. Then

> 1 <(z—|—b)1 (w—l—b)]>
Po= (27i)? Jz=r1 JIW:rz (w—2z) - z—w dw dz

where 1 —¢ <1, <11 < 1+ ¢&. Somehow one of the terms goes away and

1 J J (w+b)™!
2
- WTP) dwdz = po.
PO 2m)Z ey wiery 2w P

This implies that py has constant rank, so we may define E; = impo and
E_ =kerpo.
Finally,

[E,z+b] =[Ey, (z+b)le, JB[E_, (z+b)[g ] = [Ey, 2 B [E_, 1.
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The final step is to define the inverse to p as follows.

Definition 6.29.
vn([E,u]) = [P 120 )1 @™ —nn) @ E@n™ € KO(X) @ KO(S?)

Proposition 6.30. v, = v, 1 where both are defined, and gives a v which is
1

equal tou™"'.
6.3 Oliver Wang: Even periodic theories

Definition 6.31. A generalized cohomology theory E* is an even periodic ring
theory if

(a) E*(X) is a graded commutative ring, and the induced morphisms are
morphisms of graded rings;

(b) E™(pt) =0 when m is odd;
(c) thereisu € Ez(pt) andu~' € E*Z(pt) such thatuu=" = 1.

The third condition says that we have a degree 2 unit in the cohomology the-
ory, and therefore E™ (pt) = Em+2(pt) as an abelian group. This isomorphism
is given by multiplication by u. In fact, if X is any space, then X — pt gives
E*(pt) — E*(X) sending u to a degree 2 unit. Therefore, E™(X) = EMH2(X).

Example 6.32. Unreduced K-theory of complex vector bundles is an even
periodic ring theory. K™(pt) = K™(S°) = 0 when m is odd. The element
H—1¢eK(S2) =K2(8%) = Kz(pt) is the element u in degree 2.

Example 6.33. Another example of an even periodic ring theory is called or-
dinary periodic cohomology. Let A be a commutative ring, and X a finite
CW-complex. Define

HP*(XA) = H* (X A) @4 Al u '],
as the tensor product of graded rings, where deg(u) = 2 and deg(u™') = —2.

HPM(X;A)= € HP(X; A
p+2q=n

Even periodic theories behave well when evaluated on CW-complexes with
even dimensional cells. We’ll be interested in CIP™ and CIP*° in particular. For
notation, set E® := Eo(pt).

Proposition 6.34. Let E* be an even periodic ring theory.
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(a) If m is odd, E™(CIP™) = 0 and E°(CP™) = EO[x]/ (x™*1).

(b) These isomorphisms can be taken such that the inclusion CP™ — cpnt!
induce a ring homomorphism

E° E°
[X}/<Xn+2> — [X]/<Xn+1 >

given by x — x.
(c) EO(CIP>) = E°[[x]] and E™(CIP*®) = 0 for m odd.
Proof. We will prove (b) = (c).
E(CP™) = [CP™, E,]
= [colim CIP™, E]
n

= lim[CPP™, E]

0
= lim E [X]/<Xn+1 >
= E°(Ix],

where E is the zeroth space of the spectrum E representing the even periodic
ring theory E*. The last step is where we use part (b). O

Proposition 6.35. Let X = CIP* x ... x CIP* be the n-fold product of CIP*,
and pi: X — CIP* be the projection onto the i-th term. Then

EO(X) = E%llx1, ..., xn]]
where x; = p;(x).
Now we move on to formal group laws.

Definition 6.36. Let A be a commutative ring. A (1-dimensional, commutative)
formal group law is a power series F € A[[x, yl] such that

(@) F(x,0) =F(0,x) =x,
(b) F(Xry) = F(UIX),
(c) F(F(x,y),2) = F(x, Fly, z)).

This is kind of a weird definition, but formal group laws show up in various
places. There is a formal group law associated to any elliptic curve. It also
shows up in the context.

Let p1,p2: CIP*® x CIP*® — CIP* be the two projections. Let p: CIP* X
CIP*>® — CIP*° be the classifying map of the bundle pjy ® p5y where y — CIP*®
is the universal bundle.
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Proposition 6.37. 1*(x) = F(x1,x2) € E°[[x1,x2]] is a formal group law.
Proof. The composite
CP™ x {pt} — CP® x CP>® £ CP*

is homotopic to the identity; the first map sends the bundle y — CIP* x {pt} to
P3(v) ®p3(v) and the second sends this to y.
This composite corresponds to the map on cohomology

EO[X]] «—— Elfx1,x2]] «— E°[[x]]
F(x,0) «—— F(x7,%2) +—1 %

but it is homotopic to the identity, so F(x,0) = x. This demonstrates the identity
condition on formal group laws.

Let : CIP*° x CIP*® — CIP*® x CIP*° be the map that swaps the two coordi-
nates. To check commutativity, consider the composite

CP> x CP™® 5 CP™ x CP® & CP™
which induces on cohomology

E°[[xq,x2]] «—— E°[lx1,%x2]] +—— E°[[x]]

F(x2,x1) «— Flx1,%2) +— x

The map p o tis homotopic to just u, so F(x1,x2) = F(x2,x1).
To check associativity, note that p(id x p) and p(p x id): CP* x CP* x
CIP*® — CIP*® have the same pullback bundle. O

Definition 6.38. Let L — X be a complex line bundle, and let f: X — CIP* be
the classifying map. Then the Chern class of L is c‘]:-(L) = f*(x) € EO(X).

If Ly, L, are line bundles with classifying maps f1, f2, then
e (L ®@La) = Fleg (L), cf(L2))
because the classifying map of L1 ® L, is
X 122y cpe x cp Y, cpee.

Example 6.39. What is the formal group law that comes from K-theory?
Lett = H— 1. Then K®(CIP™) = Z[t]/(t"~ 1), and K°(CIP*®) = Z[[t]]. Then
we have
KO(CP* x CP%) = Zl[ty, t2]],
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where t; = pj(t) = cX(p}y) and t, = p3(t) = X (piy).
Then

W+ =p" H) =piy)op )] =0+t)1+t2) =1+t +t2 +tt2.

Therefore, u*(t) = t; +t2 + tyts.
This is called the multiplicative formal group law.

Example 6.40. For periodic cohomology, HP®(pt) = A. Therefore,
HPO(CP™=; A) = A[[X]].

Recall that the Chern class ¢y : Vectg:(X) — H2(X;Z)sends L; ® L, tocy(Ly) +
C1 (Lz). Then
P (L ®Ly) = cfP (L) + P (L2)

This means that F(x1,x2) = X7 +x,. This is called the additive formal group
law.

Remark 6.41. We may define something called the height of a formal group
laws, which is a nonnegative integer associated to a formal group law. The two
formal group laws of the lowest heights are the multiplicative and additive
formal group laws. In the filtration for chromatic homotopy theory, we may
study the n-th filtered part by studying formal group laws of height n. So this
is why formal group laws are interesting.

6.4 Shruthi Sridhar: Serre-Swan

Definition 6.42. An R-module P is projective if for every surjection f: N - M
and g: P — M, there is a (not necessarily unique) h: P — N such that fh = g.

N

1
3}}/// lf
// g
P—M

This definition isn’t the most useful; a more useful condition is the following.

Proposition 6.43. An R-module P is free if and only if there is some P’ such that
P @ P’ is a free module.

Example 6.44. Any free module is projective. If R and S are rings, then R x 0
and 0 x S are projective modules over R X S, yet neither is free.

Question 6.45. Can we find projective R-modules P such that P @ R* = Rk?
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Theorem 6.46 (Swan). Let X be a compact Hausdorff space. The category of
R-vector bundles over X is equivalent to the category of finitely generated
projective modules over C(X).

This is often called the Serre-Swan theorem because Serre proved the corre-
sponding algebraic fact.

Notice that if p: E — X is a vector bundle, then the space I'(E) of sections of
E is a module over C(X); given « € C(X) and s € I'(E), then («s)(x) = «(x)s(x).

Example 6.47. If E is a trivial bundle of rank n, then I'(E) = C(X)™.
Given py: E1 — Xand p3: E; — X, we will show that
Hom(Eq, E2) = Homc (x)('(Eq), T(E2)).

To prove this, we need a few lemmas.
The following lemma doesn’t require that X is compact Hausdorff, only that
it is normal.

Lemma 6.48. Let X be a normal topological space. Given any section s of E on
U > x, thereis s’ € T'(E) such that s and s’ agree on some neighborhood of x.

Proof. Use the normalcy assumption to get a smooth bump function around x,
and multiply this by s. O

Corollary 6.49. For all x € X, and any bundle E — B of rank n, there are
$1,...,5n € I'(E) spanning I'(E; U) for some neighborhood U of y.

Lemma 6.50. Given bundle maps f,g: E1 — E,, if ['(f) =T(g), then f = g.

Proof. Given e € Ey with py(e) = x, there is some section s over U > x such
that s(x) = e. Then by Lemma 6.48, there is s’ € I'(E) such that s’'(x) = e.

O

Lemma 6.51. If F: T(Eq) — T'(E;) then there is a unique f: E1 — E; such that
I'f)=F.

Proof sketch. Let I be the ideal of C(X) of those functions that vanish at x. Then
T'(E)/IT(E) = p~ ' (x) via the map s — s(x).
Then the map F induces a map on quotients

I'E I'E
R e = e

Hence, this gives a map p]’1 (x) — p;‘ (x), from which we define f: E; — E».
Then we must check that this f is continuous, and F = I'(f). O
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Corollary 6.52. E; = E;, ifand only if '(E1) = T'(E;).
Proof. Injectivity is Lemma 6.48, and surjectivity is Lemma 6.51. O

To prove Theorem 6.46, it remains to show that the modules I'(E) are projec-
tive. To do so, we will show the following.

Lemma 6.53. If X is compact Hausdorff, then for any rank k bundle E — X,
there is another bundle £’ — X such thatE @ E' = ¢™. Then

FE)@TE)=CHx)"

Proof. Forallx € X, choose alocal basis sy, 1, ..., sk of Ely, foraneighborhood
Uy of x. By compactness, we may find finitely many s1,..., s, spanning the
fiber of E over x, for all x. Note that this is not a basis, because n > k and and
the rank of E is k. Then define

I(e™) =C(X)™ = T(E)
by e; — si. This induces X x R™ — E, and therefore E® E/ = ¢™. O

Theorem 6.54. For all finitely generated projective modules over C(X), there is
abundlep: E — X such that P = T'(E).

Proof. P is a finitely generated projective module, there is a finitely generated
free module F and a projection g: F — F such that g? = g and P = im(g).

In our case, F = C(X)™ = im(g) @ ker(g) gives g: I'(e™) — T'(e™). This
induces f: €™ — €™ with im(f) = E. Then im(f) is a subbundle if and only if
the dimension of the fiber of im(f) over any point x is locally constant. O

This lemma concludes the proof of Swan’s theorem.

Example 6.55 (Non-example). An example when the image of f: e™ — ™
is not a subbundle. If X = [0,1], and E = X X R, then f: E — E given by
(x,y) — (x,xy) is not locally constant, and hence not a bundle.

An application of Swan’s theorem is the following: we can find stably free
projective C(X)-modules P such that P & C(X)t = C(X)k. Let T be the tangent
bundle of S™, with ™" @& vy! = e™*!. Then I'(t") & C(X) = C(X)™*+! when
n#0,1,3,7. But '(t™") is not free itself, so this answers question 6.45.

6.5 Elise McMahon: Equivariant K-theory I
Let G be a compact topological group throughout today:.

Definition 6.56. A G-space X is a topological space with a group action, i.e.
G x X Xsuchthatg-(g’-x) =(gg’)-xand e-x = x.
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Definition 6.57. A G-bundle is a map of G-spaces p: E — X, where E and X
are G-spaces and p is a G-map: p(g - x) = g - p(x), such that

e p is a complex vector bundle on X

e forall g € G and all x € X, the group action g: Ex — Egx is a homomor-
phism of vector spaces.

Example 6.58. Let M be a G-module. Then M x X — X is a G-bundle. This is
an example of a trivial bundle.

Example 6.59. Let E — X be any vector bundle. Then EQ E® - - - ® E becomes
an G-bundle over X for the symmetric group Sy, where X has trivial action of
the symmetric group.

Definition 6.60. Kg(X) is the associated abelian group to the semi-group of
G-bundles on X.

Remark 6.61. 1. Elements of Kg (X) are formal differences of G-bundles Eq —
Eq, modulo the equivalence relation Eg — E; ~ Ej — E] if there is a G-
bundle Fsuch thatEgc G E; ®F=E ;B Ej B F.

2. Kg(X) forms a commutative ring under tensor product of bundles.

3. Kg(—) is a contravariant functor from compact G-spaces to commutative
rings.

Example 6.62. If G is trivial, then a G-bundle is an ordinary vector bundle, and
Kg (X) =K(X).

Lemma 6.63. If G acts on X freely, then the projection pr: X — X// G induces an
isomorphism Ko (X// G) — Kg (X).

Proof Sketch. If G acts on X freely, and E — X is a G-bundle, then E//G — X//G
is a vector bundle. O

Definition 6.64. R(G) is the free abelian group generated by isomorphism
classes of representations of G, modulo the relation [W] + [V] ~ [W & V].

Fact 6.65. K (pt) = R(G); any G-bundle over a point is a G-module.
The theorem we aim to prove is the following.

Theorem 6.66. K°(BG) is isomorphic to the representation ring of G.
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The idea of the proof is to use the following map. For any space Y, let
Ys =Y x Eg//G. Then we have a map

Kg(X) —— K(Xg)

[F] = [FGl.

To prove the theorem, we will prove something more general. For this, we
need to introduce pro-objects.

Definition 6.67. Let C be a category and let S be a directed set. Then Pro(C) is
the category whose objects are inverse systems {A «}«cs of objects of C.

A morphism of Pro(C) {Ax}ucs — {BplpeT is (6,fg) where 0: T — S and
fg: Ag, — Bp is a morphism of C, such that

e if 3 C B/in T, then for some « € S with & > 6,0/, then the following
commutes

fg
Agp — Bp

e

Ax

N,

AQB/ 4[3> BB/

o (0,fg) ~ (6',fg/) if for all B, there is some « € S such that o« > 6,6’
and the following commutes.

Ay —— AGB

I

Ae/[_))/ % BB

The motivation is that topological groups correspond to pro-groups under
the map A — A/Iy, where {I4} is the family of open subgroups of A. The
inverse functor is {A 4} — limy A .

Definition 6.68. Eg = limn EZ, where EZ = G - - - x G is the topological join
of n copies of G.

Definition 6.69. B} = E¢ /G is the union of n contractible open subsets.

Now, o : Eg — ptinduces a map

K5 (pt) 20 K5 (ER) S 2.
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Recall that K¢ (pt) = R(G) and K (E¢) = K*(Bg ), because G acts on EE freely.
This o, factorizes as follows.

~

R(G) /I

R(G) KG(EG)

where I is the kernel of the composite of the previous two maps.
It is not hard to show that «, is natural, so we have more generally, that

oL,
X x EE P, X induces &n, Where

Xn

T~ =

KG (X) /1§ - K5 (X)

K5 (X)

KE (X x ERL)

Definition 6.70. If R is a commutative ring and I an ideal of R, and M is an
R-module, then M can be given the I-adic topology defined by taking the basis
of a neighborhood of zero to be submodules of I"" - M.

Definition 6.71. The Hausdorff completion of M with respect to the I-adic
topology is M := lim,, (M./I"M). If the name of the module is too long to cover
with a hat, we write M” := M.

In particular, K¢ (X) is an R(G) = K (pt)-module. So we have the following
theorem.

Theorem 6.72. If K (X) is finitely generated as an R(G)-algebra, then ot : K (X) /18 -
K& (X) — K§ (X x ER) induces an isomorphism of pro-rings.

This means that for all n, there is some k and 3: K¢ (X x Eg*k) — K& (X)/IgKE (X)
and the following diagram commutes.

K (X) /TR K (X)) 225 Ke (X x ERTR)

| ]
— o
K (X) /1% K5 (X) —3 s K& (X x ER)

Corollary 6.73. KG (X)) = limy, KG (X x ER) as rings.
So in particular, if X is a point, then K (X)" = R(G)" and

Hm K (ER) = K& (Eg) = K*(BG).
n
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Corollary 6.74. If G is finite, R(G) = R(G)" and R(G) = K*(BG).
We will outline a proof of Theorem 6.72 in the case when G = T is the circle
group.

Lemma 6.75. Let T denote the circle group, and let G be a compact Lie group, so
K% (X) is a finitely generated R(G)-algebra. Let 0: G — T be a homomorphism
such that « acts on E1. Then the homomorphism

on: KG(X)/IT - KG (X) = KG (X X EE)
induced by the projection X x Eff — X is an isomorphism of pro-rings.

Proof sketch. Identify ERt = T % - - - + T with S2"~! inside C™ on which T acts as
a subgroup of the multiplicative group.
There is a short exact sequence

0 K5 (X x D™, X x $2 1) 5 K (X x D2™) — K5 (X x $21) - 0

where 1 is multiplication by

n
AalCY =) (-1)NIECY =(1—-p)"
i=1
where 1 — p is the Thom class and p is the standard 1-dimensional representation
of T.
Letting ( =1—p, K =K (X) and (nK = {x € K| {""x = 0}, we have another
exact sequence

0= K/ KI5 KE(Xx ST = ;K — 0

( generates the augmentation ideal I, so K¢ (X) is a finitely generated module
over R(G), and R(G) is a Noetherian ring, so there is some k such that (¥ =
(1 = (k2 = ... So in the following diagram, we can see that the last
vertical map is zero.

0 —— K/gHR.K I8 ke (X% $21) —— K —— 0

| o | L

0 —— K/C™- K —2"0 KE(X xSV ——— inK ——— 0
Hence, the composite gf is zero, and so we can define 3, as in the diagram. [
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6.6 Brandon Shapiro: Equivariant K-theory II

This section will discuss operations arising from equivariant K-theory. The
references here are Segal’s Equivaraint K-theory and Atiyah’s Power Operations
in K-theory.

Let G be a compact topological group.

Definition 6.76. A G-vector bundle on a G-space X is a vector bundle p: E — X
such that E is a G-space, p is a G-map, and G acts on E by maps restricting to
linear maps on each fiber.

Example 6.77. For any G-module M, there is a G-bundle M := X x M. This is
called a trivial G-bundle.

Example 6.78. Let Sy be the symmetric group on k letters. Assume that X has
trivial Sy -action. For any vector bundle E — X, E® K is an Sy-vector bundle.

Definition 6.79. A morphism of G-vector bundles f: E — E’ is a G-map that
restricts to G-linear maps of fibers fy: Ex — EL.

Lemma 6.80.
(a) The image of a morphism of G-vector bundles is a sub-bundle.

(b) A morphism of G-vector bundles is an isomorphism if it is an isomorphism
on each fiber.

Example 6.81. Given any two G-vector bundles E and F, there is a G-vector
bundle Hom(E, F) with fibers

Hom(E, F)x = Hom(Ey, Fy).
The G-action on this bundleis (g- ¢)(h) = (g- $)(g~'h).
If G is finite, then
1
6] QEZG g: Hom(E,F) — Hom(E, F)

defines a morphism of G-vector bundles. The image is Homg (E, F), the subbun-
dle whose fibers are G-invariant maps Ex — Fx.

In fact, since the maps in Homg (E, F) are G-equivariant, the action of G is
trivial on this bundle. Hence, Homg (E, F) — X is an ordinary vector bundle.

Definition 6.82. The isomorphism classes of G-vector bundles form a semi-
group under direct sum; Kg (X) is the group completion of this semigroup.

Example 6.83. K¢ (pt) = R(G). The pullback along X — pt gives a natural map
R(G) — Kg(X) via [M] — [MI.
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Any vector bundle on X can be given the trivial G-action, so this defines a
homomorphism K(X) — Kg (X).

Proposition 6.84. If G acts on X trivially, then p: R(G) @ K(X) — Kg(X) given

by
M] ®[E] —» M ® E]

is a ring isomorphism.
Proof sketch. Let{M,}ic] be the simple G-modules. Define v: Kg (X) — R(G) ® K(X)
by
[E] — ) M ® Homg (M, E)].
i€l
This is an inverse to . O

Lemma 6.85. E — E®* induces a natural function K(X) — Ks, (X).

Remark 6.86. This is not trivial! It is hard to see that this is well-defined.
Moreover, this is not additive, although it is multiplicative.

Given any « € Ry := Hom(R(Sy), Z), we may define &: K(X) — K(X) as the
composite

& k(x) 25 Ks, (X) — R(S)) @ K(X) 224 Z@K(X) = K(X).

For any vector bundle E — X, this is given by

[E] — ) o ([Mi]) [Homs, (M, E¥¥)].
iel

Example 6.87. Let M be the trivial representation of Sy, and define o* €
Hom(R(Sk), Z) by defining it on the basis of simple modules

X T N=M
o“(N) =
0 Nis any other simple Sy-module.
Then we have
G*([E)) = [Homs, (M, E®¥)] = [Sym*(E)].

Example 6.88. Now let M be the alternating representation of Sy. Then if
A € Hom(R(Sy), Z) is defined on the basis of simple modules by

" 1T N=M
AE(N) =
0 N is any other simple Sy-module,
we have

A< ([E) = [ A“(E)).
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Definition 6.89. For any Sy.-module M, define Ty, (V) := Homg, (M, Ve for
any vector space V. This defines a functor Ty, (—) on vector spaces.

let T,, be a diagonal matrix T, = diag(ty,...,tn), considered as a linear
transformation C™ — C™.

Proposition 6.90. tr(TTa1 (Tr)) is a symmetric functioninty, ..., tm.

This gives a map A, 1 Hom(R(Sk),Z) — Symlty, ..., tn] by

- Y (M) (T, (Tn).
We may extend this to a function
A: Y Hom(R(Sy),Z) — Sym
k=1

by A(AK) = ek.
Theorem 6.91. A is a ring isomorphism.

We may use this to define the Adams operations by evaluating the Newton
polynomials on A',..., A

PR = Qr(A!,..., AN

By definition, A(P¥) is the k-th power sum.

6.7 David Mehrle: KR-theory

Any real number is a fixed point of complex conjugation on C. This seemingly
innocuous statement has many interesting generalizations to vector bundles
and K-theory.

Let X be a topological space. Let E — X be a C-vector bundle on X. Since
each fiber of E is a C-vector space, we may define a conjugation on E fiberwise;
the fixed points of this conjugation define a new R-vector bundle Eg — X.

Conversely, given any R-vector bundle F — X, we may define a C-vector
bundle F @R C — X, where C represents the trivial R-vector bundle C x X of
rank 2.

This suggests that we should study not only vector bundles, but vector
bundles with involution over Z/2-spaces. Such an object would generalize
both real vector bundles and complex vector bundles.

Notice that any Z/2-space X is just a topological space X with an action of
Z./2 given by sending the generator to some homeomorphism t: X — X such
that T2 = idx. In the following, T will always denote the action of the generator
of Z/2 on a Z/ 2-space; if there are multiple Z /2-spaces in question, all actions
will be written as a homeomorphism T unless it is unclear from context.
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Example 6.92. An important example of Z/2-spaces are spheres. There are
many different actions of Z/2 on these spaces. Let RP-9 be RP 19 with Z/2-
action

(X1, Xp, Y1+, Yq) = (X1,- -0 Xp, —Y1,. 0., —Yq)-

Let SP-9 be the quotient of the unit disc in this space by the unit sphere in this
space:
SP/9 .= D(RP9)/S(RP9),
with inherited Z /2-action. Note that SP-9 is topologically the (p + q)-sphere
with a specified action of Z /2.
In particular, S1.9 is the circle with trivial Z /2-action, and S° ! is the circle
with Z /2-action by reflection.

Definition 6.93. A vector bundle with involution over (X, 1) is a Z/2-space E
and a map p: E — X such that

(a) p: E = Xis a complex vector bundle;

(b) the projection p: E — X commutes with the Z/2-action:

T

E
P lp
X

¢ rm

T

X

)

(c) the map Ex — Er(y) is anti-linear: for any v € Ex and z € C, we have
T(2V) = ZT(V).
CxEy — > Ey
lT JT

C x ET(X) —_— ET(X)

Definition 6.94. A morphism of vector bundles with involution ¢: E — Fis
a morphism ¢ of complex vector bundles that commutes with the involutions:
&(t(V)) = t(p(V)) for any vV € E.

Remark 6.95.

(a) Although this looks almost like it, this is not a Z/2-vector bundle. For a
Z./2-vector bundle, the map Ex — E;(x) is assumed to be C-linear, not
antilinear.

(b) This is not standard terminology. Atiyah calls these “real spaces” and
"real vector bundles” but this is a confusing term and we will avoid it. His
terminology is created by analogy with algebraic geometry; if X is the set
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of complex points of a real algebraic variety, it has an involution given by
complex conjugation whose fixed points are the real points of the variety
X.

Example 6.96. Complex projective space CIP™ has an action of Z/2 given by
conjugation
(20,21, -+-,2n)l & [Z0,Z1,.-+,Zn],

which is well-defined because conjugation is anti-linear. The tautological line
bundle H
H:={(0|teCPvVel}

is a bundle with involution, with involution given by conjugating both the
vector and the line.

In fact, the universal bundle y,, — Gry (C*) is again a bundle with involu-
tion, with the same conjugation action.

Just as we had KO-theory for R-vector bundles and KU-theory for C-vector
bundles, there is a K-theory for vector bundles with involution over Z /2-spaces.
Recall that for a compact connected space X, KUO(X) is defined as Xy,Z x BU].
We want to define something similar for vector bundles with involution.

From the previous example, Gr,, (C*) has an action of C* by conjugation.

Definition 6.97. If Xand Y are Z /2-spaces, and f, g: X — Y are Z/2-equivariant,
a Z./2-homotopy between f and g is a Z/2-equivariant map H: X x [ = Y
(where I has trivial Z/2-action) such that H|x (0} = f and H|x (11 = g.

The set of Z /2-homotopy classes of Z /2-maps is written [X, Y]z /2.

Proposition 6.98 (Classification of Bundles with Involution). Let X be a Z/2-
space. There is a bijection between rank n vector bundles with involution on X
and [X, Grn (C*)]z,>.

Recall that BU(n) o~ Grn (C*). The Z/2-action on Gry, (C*) gives an action
on BU(n) by conjugation such that the inclusion BU(n) — BU(n +1) is Z/2-
equivariant. This in turn gives a Z /2 action on the colimit

BU = colim BU(n).
n

We use this action to define the K-theory of bundles with involution, called
KR-theory.

Definition 6.99. For a compact, connected Z /2-space X,
KR (X) := [X;,Z x BUlz,».

(The indices will be explained momentarily).
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If you prefer, there is also a more concrete definition of KR (X).

Proposition 6.100. KR (X) = [X_, Z x BUly, is isomorphic to the free abelian
group generated by isomorphism classes of vector bundles with involution over
X, subject to the relation [E] + [F] = [E @ F].

KR-theory interpolates between the K-theory of R-vector bundles KO(X)
and the K-theory of C-vector bundles KU(X).

Notice that any vector bundle with involution is already a complex vector
bundle, so by forgetting the involution we obtain a homomorphism

KROO(X) — KU®(X)

sending the class of the bundle with involution E to the class of the underlying
C-vector bundle E. Another description of this is via classifying maps: a homo-
topy class [f] € [X4,Z x BU]y,, defines a class [f] € [X;,Z x BU] simply by
forgetting the Z /2-equivariance.

There’s another way to relate KR and KU too: if X is any space, let E —
X x {#1} be a vector bundle with involution over X x {£1} = X U X with the
swap action. Notice that in this scenario, E is uniquely determined by its
restriction to X x {4+1}. Therefore, we have the isomorphism:

Proposition 6.101. KROC(X x {£1}) = KU°(X).

On the other hand, given a bundle with involution E — X, we may take the
Z/2-fixed points X%/2 of X and then restrict the bundle to these. This gives a
homomorphism

KROC(X) — KROO(x%/2).

This next lemma shows that KR%©(X%/2) = KOO°(X%/2), so restriction to the
fixed points defines a homomorphism KRO0(X) — KOO (X%/2).

Proposition 6.102. If X is has trivial Z /2-action, then KR(X) = KO(X).

Proof sketch 1. We prove a stronger result: there is an equivalence of categories
between the category of IR-vector bundles on X and vector bundles with invo-
lution over X. The pseudo-inverse functors in this equivalence are defined on
objects as follows.

For an R-vector bundle E — X,

E— EQRRC,

where C is the trivial 2-dimensional IR-vector bundle C x X.
For a vector bundle with involution F — X,

F s F2/2

where FZ/2 is the set of Z /2-fixed points of F. O
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Proof sketch 2. Any fixed point of Grn (C*) under conjugation is an element
of Gry (R*°). Therefore, restricting f: X+ — Gryn (C*°) to the fixed points of X
gives a new map f: X%/ 2 Grn (R*°), which defines an element of KO°(X) :=
X4+,Z x BO]. O

Example 6.103. If X = ptisjust a point with trivial Z /2-action, then KR% (pt) =
KO®(pt) = Z by the previous proposition.

So why is this called KRO(X)? What is KRP-9(X)? Recall that K-theory of
C-vector bundles and R-vector bundles are defined from the spectra

KUu=2Z xBU,U,ZxBU,,...
KO =Z x BO,"/0,%"/u,Sp, Z x BSp, Y/sp, °/u,0,Z x BO, ....
as the associated cohomology theories:
KU™(X) := [X4, KUy],
KO™(X) := [X4, KOnl.

This begs the question: does KR%® come from a spectrum as well?

Unlike KU or KO, KR is a Z/2-equivariant spectrum, which is a differ-
ent type of object entirely. Recall that a spectrum is a sequence of spaces
Eo, E1, E2, ... together with maps S'AEn — Enyq. To define a Z./2-spectrum,
however, note that there are two actions of Z/2 on the 1-sphere, which we
denoted by S'0 and S®'. We must consider suspensions with respect to both.

Definition 6.104. A Z/2-spectrum E is a collection of Z /2-spaces E,, 4 for all
P, q € N, together with Z /2-equivariant maps

10
S AEp,q = Epiig

0,1
S ABp,q = Eqp+1

Remark 6.105. Smashing with SP-9 has a right adjoint QP-4 defined by QP/9(X) =
Map, (SP/9, X). This is analogous to the loop-space functor.

Definition 6.106. The Z/2-spectrum KR is the spectrum with spaces

KRe. - — u P+ qodd
P Z xBU p+qeven,

each equipped with the Z /2-action given by conjugation. The maps

1,0

ST AKRp,q — KRp4 1.
0,1

SO AKRp,q — KRqpt1

are given alternatively by the Bott map and the identity.
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With these spectra, we may similarly compare KR, KU, and KO. For any
Z./2-spectrum E, there are two ways to obtain an ordinary spectrum: we may
either forget all of the nontrivial Z/2-actions, or take (homotopy) fixed points.

For the first, there is a forgetful functor U from Z/2-spectra to ordinary
spectra defined on objects as follows. Given a Z/2-spectrum E, the spectrum
U(E) has spaces

U(E) = Eo,0,E1,0,E20,E30,---

The image of KR under this functor is KU.

The other way to produce an ordinary spectrum out of a Z/2-spectrum is to
take (homotopy) fixed points. There is a way to make the following statement
rigorous, but this is all we’ll say for now.

Theorem 6.107. KO is the fixed point spectrum of KR.
Definition 6.108. For a compact connected Z /2-space X, KRP-9(X) := [X, KRy, qlz/2.

Much as with ordinary K-theory, we have
KRP9(X) = [X4, KRp qlz/2 = X4, QP9KR0 02,2 = [SP"I AX4, KR o] = KROO(SPIAX,).

From this definition of the Z/2-spectrum KR, it’s not too hard to read off the
periodicity theorem.

Theorem 6.109 (Atiyah). KRP-9(X) = KRP*1.4+1(X)

Remark 6.110 (References). For a good introduction to KR-theory, see Atiyah On
K-theory and Reality. A reference for the classification of bundles with involution
and their relation to Grassmannians is Edelson Real Vector Bundles and Spaces
with Free Involutions. For equivariant spectra, see Schwede Lectures on Equivariant
Stable Homotopy Theory.
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