Limits, Colimits, and Preservation

2.3: Limits and Colimits

Definition 1 ([RV18, Definition 2.3.4]). Give a cospan C $\xrightarrow{g} A \xleftarrow{f} B$ in any 2-category, an **absolute left lifting** of g through f is given by a 1 cell ℓ : C \rightarrow B and a 2-cell λ : g \implies f ℓ , as below

$$C \xrightarrow{\ell \xrightarrow{f}} B \downarrow_{f} \\ f \xrightarrow{f} A$$

such that any two cell

$$\begin{array}{ccc} X & \stackrel{b}{\longrightarrow} & B \\ \downarrow^{c} & \chi & \downarrow^{f} \\ C & \stackrel{g}{\longrightarrow} & A \end{array}$$

factors uniquely through $\boldsymbol{\lambda}$ as

$$\begin{array}{c} X \xrightarrow{b} B \\ \downarrow^{c} & \ell \\ c \xrightarrow{\ell} & \uparrow^{h} \\ C \xrightarrow{g} & A \end{array}$$

Definition 2 ([RV18, Definition 2.3.4]). Give a cospan C \xrightarrow{g} A \xleftarrow{f} B in any 2-category, an **absolute right lifting** of g through f is defined dually: it is given by a 1-cell r: C \rightarrow B and a 2-ell ρ : fr \implies g

$$C \xrightarrow{r \xrightarrow{} \downarrow \rho} A \xrightarrow{f} A$$

such that any two cell

$$\begin{array}{ccc} X & \stackrel{b}{\longrightarrow} & B \\ \downarrow c & \chi & & \downarrow f \\ C & \stackrel{g}{\longrightarrow} & A \end{array}$$

factors uniquely through $\boldsymbol{\lambda}$ as

$$\begin{array}{c} X \xrightarrow{b} B \\ \downarrow_{c} \stackrel{\exists! \zeta \Downarrow \nearrow}{r} \downarrow_{f} \\ C \xrightarrow{\forall \lambda} \\ g \xrightarrow{} A \end{array}$$

Definition 3 ([RV18, Definition 2.3.7]). A **colimit** of a family of diagrams d: $D \rightarrow A^J$ indexed by a simplicial set J in an ∞ -category A is given by an absolute left lifting diagram

comprised of a **colimit functor** colim: $D \rightarrow A$ and a **colimit cocone** η : $d \implies \Delta \circ$ colim.

Definition 4 ([RV18, Definition 2.3.7]). A **limit** of a family of diagrams d: $D \rightarrow A^J$ indexed by J in an ∞ -category A is given by an absolute right lifting diagram

comprised of a **limit functor** lim: $D \rightarrow A$ and a **limit cone** ε : $\Delta \circ \lim \Longrightarrow D$.

2.4: Preservation of Limits

Theorem 5 ([RV18, Theorem 2.4.2]). Right adjoints preserve limits and left adjoints preserve colimits.

Corollary 6 ([RV18, Corollary 2.4.4]). Equivalences preserve limits and colimits.

Discussion

During the meeting, we discussed exercises 2.3.i, 2.3.ii, 2.4.i, and 2.4.iv. These exercises solved by diagram chases, essentially, hints are below:

- 2.3.i Draw what you want to prove and what you know, and then compare the two. They're basically the same!
- 2.3.ii For uniqueness, paste ε on to the right-hand-side of the square for a 2-cell χ as in [RV18, Definition 2.3.4] to show that any 2-cell ζ (again as in [RV18, Definition 2.3.4]) must have the correct form. This also serves as a definition of ζ .

For the converse, draw out the triangle identities that you want to show as pasting diagrams in the homotopical 2-category of the ∞ -cosmos. One of the two triangle identities comes from the existence part of the universal property of the absolute left lifting (f, η) , while the other comes from the uniqueness part (use $\chi = \eta$).

2.4.i Use uniqueness of left adjoints and the fact that the square below

commutes because cotensoring with simplicial sets in an ∞ -cosmos \mathcal{K} is natural in each variable separately.

2.4.iv Use the dual version of [RV18, Lemma 2.4.1] involving left lifting diagrams, and [RV18, Exercise 2.4.ii]. The absolute left lift σ (the upper one in the diagram) will be a horizontal composite of the unit for one of the adjunctions with one of the left adjoints.

References

[RV18] Emily Riehl and Dominic Verity. Elements of ∞-category theory. Available online at http://www. math.jhu.edu/~eriehl/elements.pdf, September 2018.