## Limits, Colimits, and Preservation

## 2.3: Limits and Colimits

Definition 1 ([RV18, Definition 2.3.4]). Give a cospan $C \xrightarrow{g} A \stackrel{f}{\leftarrow} B$ in any 2-category, an absolute left lifting of $g$ through $f$ is given by a 1 cell $\ell: C \rightarrow B$ and a 2 -cell $\lambda: g \Longrightarrow f \ell$, as below

such that any two cell

factors uniquely through $\lambda$ as


Definition 2 ([RV18, Definition 2.3.4]). Give a cospan $C \xrightarrow{g} A \stackrel{f}{\leftarrow} B$ in any 2-category, an absolute right lifting of $g$ through $f$ is defined dually: it is given by a 1-cell $r: C \rightarrow B$ and a 2-ell $\rho: \mathrm{fr} \Longrightarrow \mathrm{g}$

such that any two cell

factors uniquely through $\lambda$ as


Definition 3 ([RV18, Definition 2.3.7]). A colimit of a family of diagrams $\mathrm{d}: \mathrm{D} \rightarrow A^{\mathrm{J}}$ indexed by a simplicial set $J$ in an $\infty$-category $A$ is given by an absolute left lifting diagram

comprised of a colimit functor colim: $D \rightarrow A$ and a colimit cocone $\eta: d \Longrightarrow \Delta \circ$ colim.
Definition 4 ([RV18, Definition 2.3.7]). A limit of a family of diagrams $d: D \rightarrow A^{J}$ indexed by $J$ in an $\infty$-category $A$ is given by an absolute right lifting diagram

comprised of a limit functor $\lim : D \rightarrow A$ and a limit cone $\varepsilon: \Delta \circ \lim \Longrightarrow D$.

## 2.4: Preservation of Limits

Theorem 5 ([RV18, Theorem 2.4.2]). Right adjoints preserve limits and left adjoints preserve colimits.
Corollary 6 ([RV18, Corollary 2.4.4]). Equivalences preserve limits and colimits.

## Discussion

During the meeting, we discussed exercises 2.3.i, 2.3.ii, 2.4.i, and 2.4.iv. These exercises solved by diagram chases, essentially, hints are below:
2.3.i Draw what you want to prove and what you know, and then compare the two. They're basically the same!
2.3.ii For uniqueness, paste $\varepsilon$ on to the right-hand-side of the square for a 2 -cell $\chi$ as in [RV18, Definition 2.3.4] to show that any 2-cell $\zeta$ (again as in [RV18, Definition 2.3.4]) must have the correct form. This also serves as a definition of $\zeta$.

For the converse, draw out the triangle identities that you want to show as pasting diagrams in the homotopical 2-category of the $\infty$-cosmos. One of the two triangle identities comes from the existence part of the universal property of the absolute left lifting $(f, \eta)$, while the other comes from the uniqueness part (use $\chi=\eta$ ).
2.4.i Use uniqueness of left adjoints and the fact that the square below

commutes because cotensoring with simplicial sets in an $\infty-\operatorname{cosmos} \mathcal{K}$ is natural in each variable separately.
2.4.iv Use the dual version of [RV18, Lemma 2.4.1] involving left lifting diagrams, and [RV18, Exercise 2.4.ii]. The absolute left lift $\sigma$ (the upper one in the diagram) will be a horizontal composite of the unit for one of the adjunctions with one of the left adjoints.

## References

[RV18] Emily Riehl and Dominic Verity. Elements of $\infty$-category theory. Available online at http://www . math.jhu.edu/~eriehl/elements.pdf, September 2018.

