Section 3.6: Sliced homotopy 2-categories and fibered equivalences

November 29, 2018

This section is a technical necessity, but is not essential to the thread of the story so far.
Previously, in [RV18, Proposition 3.2.10], we saw that the arrow ∞-category A^{2} satisfies a universal property that characterizes it up to equivalence - but only over $A \times A$.

The ambiguity comes in the difference between the slice homotopy 2-category $(\mathfrak{h} \mathcal{K}) /$ в and the homotopy 2-category of the slice ∞-cosmos $\mathfrak{h}\left(\mathcal{K}_{/ B}\right)$. In particular, these two ∞-cosmoi have different 2-cells (c.f. [RV18, Exercise 1.4.iv, Proposition 3.6.3]).

Definition 1 (idea). Recall [RV18, Proposition 1.2.19] that the slice ∞ - $\operatorname{cosmos} \mathcal{K}_{/ \mathrm{B}}$ is an ∞-cosmos that exists for any $B \in \mathcal{K}$ such that

- objects are isofibrations $p: E \rightarrow B$ with codomain B,
- functor spaces are defined by pullback:

- the terminal object is id: $B \rightarrow B$,
- isofibrations, equivalences, pullbacks, and limits of towers are created by the forgetful functor $\mathcal{K}_{/ \mathrm{B}} \rightarrow$ K,
- etc.

However, we can relate $\mathfrak{h}\left(\mathcal{K}_{/ B}\right)$ and $(\mathfrak{h} \mathcal{K})_{/ B}$: there is a canonical 2-functor

$$
\mathfrak{h}(\mathcal{K} / \text { B }) \rightarrow(\mathfrak{h} \mathcal{K})_{/ \mathrm{B}}
$$

and this functor has the property that it is smothering [RV18, Proposition 3.6.3].
Definition 2 ([RV18, Definition 3.6.1]). A 2-functor F: A \rightarrow B is smothering if it is surjective on objects, full on 1-cells, full on 2-cells, and conservative on 2-cells, i.e. reflects invertible 2-cells.

That the canonical functor

$$
\mathfrak{h}\left(\mathcal{K}_{/ \mathrm{B}}\right) \rightarrow(\mathfrak{h} \mathcal{K})_{/ \mathrm{B}}
$$

is smothering means that it has many nice properties:

- it reflects equivalences by [RV18, Lemma 3.6.4],
- if $f: E \rightarrow F$ is a map between isofibrations over B, and f has an inverse g that is not over B, then this data is isomorphic to a genuine fibered equivalence between E and F over B by [RV18, Lemma 3.6.5].
- adjunctions in $(\mathfrak{h} \mathcal{K})_{/ \text {в }}$ may be lifted to adjunctions in $\mathfrak{h}(\mathcal{K} /$ в $)$ by [RV18, Lemma 3.6.8].

References

[RV18] Emily Riehl and Dominic Verity. Elements of ∞-category theory. Available online at http://www . math.jhu.edu/~eriehl/elements.pdf, September 2018.

