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1 Introduction

Let k be a commutative ring. To any k-algebra A, there is a simplicial A-module LA/k
such that π∗LA/k defines a homology theory of algebras, called André–Quillen homology
[Qui70]. This gives a very sensitive invariant of the geometry of the algebra. For example:

(1) a morphism A→ B is smooth if and only if LB/A → ΩB/A is a weak equivalence and
ΩB/A is projective as an B-module [GS07, Remark 4.33].

(2) a morphism A→ B is étale if and only if LB/A ' 0 [GS07, Remark 4.33].

(3) a morphism A→ B of Noetherian rings is a locally complete intersection if and only if
πn(M⊗B LB/A) = 0 for all n ≥ 2 and all B-modulesM [Iye07, Theorem 8.4].

(4) a morphism A→ B of Noetherian rings is regular if and only if πn(M⊗B LB/A = 0

for all n ≥ 1 and all B-modulesM [Iye07, Theorem 9.5].

Moreover, the cotangent complex provides the setting for obstructions of commutative
k-algebra structures on k-modules. The Hochschild and cyclic homology of A admit a
filtrations by André–Quillen homology [Mor19, Proposition 2.28] and in characteristic zero,
this yields a spectral sequence

E2i,j = πi(L
∧j
A/k) =⇒ HHp+q(A).

In this talk, we will define the cotangent complex and André–Quillen homology, state
some of its properties, and describe how to perform some calculations.

Remark 1.1 (A note to the reader). Where things have already been done in the literature, I
have tried to provide careful citations. When things need more description, however, I have
tried to spell it out. Please let me know if there’s anything you’d like to see in more detail,
or if I have made any errors!
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2 Quillen homology of algebras

If we aim to develop a homology theory of algebras, we immediately run into a problem:
the category Algk is not an abelian category. Therefore, the usual notion of a resolution in
homological algebra doesn’t make sense. Instead, another approach is needed. We take the
perspective of Quillen homology, following [GS07, Section 4.4].

Definition 2.1. Let C be a category, and let A ∈ Ob(C). We say that A is an abelian group
object if C(−,A) : Cop → Set factors through abelian groups.

Equivalently, if C is nice enough, this states that there are morphisms m : A×A → A

and u : ∗→ A and i : A→ A that are associative, unital, and describe inverses.
Let (C)ab be the category of abelian group objects in C. Suppose that the forgetful functor

U : (C)ab → C has a left adjoint F : C → (C)ab (called abelianization) and that both C, (C)ab
are model categories making the adjunction F a U into a Quillen equivalence. Then we may
define:

Definition 2.2. The Quillen homology of X ∈ Ob(C) is LF(X), the total left derived functor
of abelianization F : C → (C)ab.

To compute the Quillen homology of an object X, we take a cofibrant replacement QX of
X: LF(X) ' F(QX).

Example 2.3. Consider the category sSet of simplicial sets. Then (sSet)ab ' sAb. If X is
a simplicial set, then its abelianization is Z[X], the free simplicial abelian group whose
n-simplicies are the free abelian group on the set Xn. Since all simplicial sets are cofibrant,
the Quillen homology of X is Z[X], with π∗(Z[X]) = H∗(X;Z).

So this is a reasonable framework for constructing homology theories in categories that
are not abelian. Let’s apply this to commutative algebras.

Let k be a commutative ring. Unfortunately, the only abelian group object in Algk is the
zero ring, because any abelian group object Amust admit a morphism from the terminal
object 0, and therefore 0 = 1 in A.

The fix is instead to artificially introduce a new terminal object to the category Algk. Fix
a k-algebra A, and consider the category Algk/A of k-algebras over A. Then we may ask
what are the abelian objects in this category. It turns out they are not all trivial. The next
example gives a nice class of abelian objects.

Example 2.4. If M is an A-module, define a new k-algebra AnM on the set A⊗M with
multiplication

(a0,m0) · (a1,m1) = (a0a1,a0m1 + a1m0).

To see that this is an abelian group object, note that there is a function φ

Algk/A(B,AnM) Derk(B,M)

f pr2 ◦ f

φ

(2.5)
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where pr2 : AnM ∼= A⊕M→M is the projection homomorphism. In fact, this function φ
is an bijection, and therefore Algk/A(B,AnM) is an abelian group (in fact, a k-module), so
AnM is an abelian group object in Algk/A.

In fact, every abelian group object in Algk/A is of this form.

Proposition 2.6. There is an equivalence of categories An (−) : ModA → (
Algk/A

)
ab.

We may use this to determine the abelianization functor on Algk/A, which is left ad-
joint to the forgetful functor U :

(
Algk/A

)
ab → Algk/A. By the previous proposition, the

forgetful functor is equivalent to An (−) : ModA → (
Algk/A

)
ab, so it suffices to find a left

adjoint to An (−).

Definition 2.7. Let B be a k-algebra and let I = ker(B ⊗k B → B) be the kernel of the
multiplication homomorphism. The module of Kähler differentials of B over k is the
B-moduleΩB/k := I/I2.

In fact,ΩB/k represents the functorM 7→ Derk(B,M).

ModB(ΩB/k,M) ∼= Derk(B,M). (2.8)

This gives us a candidate for the abelianization functor on AlgA/k.

Proposition 2.9. The abelianization functor on AlgA/k is given by B 7→ A⊗BΩB/k.

Proof. Let B be a k-algebra over A, and let M be an A-module. Via B → A, we may also
considerM as a B-module. Then combining the isomorphisms (2.5) and (2.8), we have

Algk/A(B,AnM) ∼= Derk(B,M) ∼= ModB(ΩB/k,M) ∼= ModA(A⊗BΩB/k,M).

To get the Quillen homology, we would take the total left derived functor. However,
since Algk/A and ModA are not model categories, we can’t take derived functors. Instead,
we will pass to simplicial k-algebras over A and simplicial A-modules. This is roughly
analogous to doing homological algebra not with modules and algebras, but with chain
complexes of modules and differential graded algebras.

Before moving on to simplicial k-algebras in the next section, here we record some
properties of the functorΩ(−)/k.

Proposition 2.10. Let k→ A→ B be homomorphisms of commutative rings. Then there is
an exact sequence

ΩA/k ⊗A B→ ΩB/k → ΩB/A → 0.

This sequence is called the Jacobi–Zariski sequence.

Proof. Let N be a B-module. By the homomorphism A → B, N may also be considered
an A-module, and by the composite k → A → B, it also becomes a k-module. There is a
left-exact sequence

0→ DerA(B;N) → Derk(B;N) → Derk(A;N)
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where the first homomorphism is given by considering an A-linear derivation as a k-linear
derivation via k → A, and the second homomorphism is restriction of domain. By the
universal property (2.8) of the Kähler differentials, the sequence above is isomorphic to

0→ HomA(ΩA/k,N) → HomB(ΩB/k,N) → HomB(ΩB/A,N).

Note that the first term is isomorphic to HomB(ΩA/k⊗A B,N) via the restriction/induction
adjunction. Naturality of this sequence in N yields the Jacobi–Zariski sequence.

Remark 2.11. The cotangent complex may be considered the left-derived functor of this
right-exact sequence.

Example 2.12. If φ : k→ A is surjective, thenΩk/A
∼= 0. To see this, note that a derivation

δ ∈ Derk(A,M) is equivalent to a k-linear homomorphism A→M that obeys the Leibniz
rule and such that δ ◦φ = 0. In case φ is surjective, then every k-linear derivation from A to
M is zero. Hence, theΩk/A represents the zero functor, and is zero itself.

Example 2.13 ([Iye07, Exercise 2.3]). Ωk[x1,...,xn]/k
∼=
n⊕
i=1

k[x1, . . . , xn]dxi

3 Simplicial k-algebras

Recall the Dold–Kan correspondence:

Theorem 3.1 (Dold–Kan). There is an equivalence of categories sModk ' Ch+
k between

connective chain complexes of k-modules and simplicial k-modules.

There is a standard model structure on Ch+
k , called the projective model structure, with

• weak equivalences given by quasi-isomorphisms of chain complexes,

• fibrations given by homomorphisms which are surjective in positive degree,

• cofibrations given by injective homomorphisms with projective cokernel.

This translates to a model structure on sModk, where f : X→ Y is

• a weak equivalence if f∗ : π∗X→ π∗Y is an isomorphism,

• a fibration if f is a fibration of the underlying simplicial sets,

• a cofibration if it has the left-lifting property against all acyclic fibrations.

Equivalently, we may say that f is a fibration if X → π0X×π0Y → Y is surjective, or if the
corresponding homomorphism of chain complexes is a fibration.

To determine a model structure on sAlgk, we will use the model structure on sModk
and transfer it over the free/forgetful adjunction

Symk : sModk sAlgk : U,

where U is the forgetful functor and Symk is the symmetric k-algebra functor applied
levelwise to simplicial modules.
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Theorem 3.2. There is a simplicial model category structure on sAlgk where a morphism
f : A→ B is

(a) a weak equivalence if π∗f : π∗A→ π∗B is an isomorphism,

(b) a fibration if A→ π0A×π0B B is surjective,

(c) a cofibration if it has the left-lifting property with respect to acyclic fibrations.

A characterization of the cofibrations is provided by the following.

Definition 3.3 ([Iye07, Definition 4.1]). Say that a k-algebra homomorphism f : A → B is
free if there is a sequence X = {Xn}n≥0 of sets such that Bn ∼= An[Xn] and sj(Xn) ⊆ Xn+1,
and f is isomorphic the inclusion An ↪→ An[Xn].

Informally, A→ B is free if B is polynomial over A, compatibly with the degeneracies.

Proposition 3.4. A morphism in sAlgk is a cofibration if and only if it is a retract of a free
morphism. A simplicial k-algebra A is cofibrant if and only if there are projective k-modules
Pj and isomorphisms

An ∼=
∐

φ : [n]�[j]

φ∗ Symk(Pj).

Definition 3.5. If f : A→ B is a homomorphism of simplicial k-algebras, then a simplicial
resolution of B as an A-algebra is a factorization of f as a cofibration followed by an acyclic
fibration A P B

∼

Such a simplicial resolution always exists by the axioms of model categories, or alter-
natively, explicit general constructions can be found in [Lod13, 3.5.1] or [Wei94, paragraph
preceding Definition 8.8.2]. Later we will see nicer constructions for specific examples.

Example 3.6 ([Iye07, Construction 4.13]1). Let’s compute the a simplicial resolution of k as
an k[y]-algebra, where y acts by zero on k.

Consider the simplicial bar complex Bwith n-simplicies

Bn = k[y]⊗k k[y]⊗n ⊗k k

face maps

di(a⊗ a1 ⊗ · · · ⊗ an ⊗ λ) =


aa1 ⊗ a2 ⊗ · · · ⊗ an ⊗ λ (i = 0)

a⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ λ (0 < i < n)

a⊗ a1 ⊗ · · · ⊗ an · λ (i = n),

and degeneracies

sj(a⊗ a1 ⊗ · · · ⊗ an ⊗ λ) =


a⊗ 1⊗ a1 ⊗ · · · ⊗ an ⊗ λ (j = 0)

a⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an ⊗ λ (0 < j < n)

a⊗ a1 ⊗ · · · ⊗ an ⊗ 1⊗ λ (j = n).

1I’m pretty certain that this is wrong in the cited reference. At the least, there are confusing typos in the
definitions of the faces and degeneracies there.
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Evidently, Bn is polynomial over R[y]; it is isomorphic to R[y][x1, . . . , xn] via

xi 7→ 1⊗ · · · ⊗ 1⊗ y⊗ 1⊗ · · · ⊗ 1

with y in the i-th spot. Therefore, the map R[y] ↪→ B is a cofibration. It is standard that
B→ R is an acyclic fibration, i.e. surjective quasi-isomorphism.

Proposition 3.7 ([Iye07, Construction 4.16]). There is a weak equivalence of simplicial R[y]-
modules B ' Kwhere K is the Koszul complex

0→ R[y]
y
−→ R[y] → 0

given by idR[y] in degree zero and −⊗ y in degree one.

4 The cotangent complex

Now that we have model structures on simplicial k-algebras and simplicial k-modules,
we can define the cotangent complex. The constructions in Section 2 extend levelwise to
functors of simplicial objects

Ω(−)/k ⊗(−) A : sAlgk/A sModA : An (−)

It is easy to see that the right adjoint An (−) preserves weak equivalences and fibrations,
and hence the adjunction is Quillen. Hence, the total left derived functor makes sense and
we may take Quillen homology.

Definition 4.1. The cotangent complex of any k-algebra A is

LA/k := ΩQ/k ⊗Q A

where Q is any cofibrant replacement for A in sAlgk.

Definition 4.2. The André–Quillen homology of A is the homotopy of the cotangent com-
plex:

Dn(A/k) := πnLA/k.

There is a natural map LA/k → ΩA/k coming from the Jacobi–Zariski sequence for
k→ Q→ A; see Proposition 2.10.

Example 4.3. If A is a cofibrant k-algebra, then we may take A as its own cofibrant replace-
ment and LA/k ' ΩA/k ⊗A A ∼= ΩA/k. In particular,

Lk[x1,...,xn]/k ' Ωk[x1,...,xn]/k
∼=
n⊕
i=1

k[x1, . . . , xn]dxn.

Example 4.4 ([Mor19, Example 2.26]). For any k-algebra A, there is an isomorphism
π0LA/k

∼= ΩA/k.
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Example 4.5 (Conormal sequence, [Mor19, Example 2.26] or [Iye07, Exercise 5.5]). If k→ A

is surjective with cokernel J, then π0LA/k = 0 and π1LA/k = J/J2.

Example 4.6. Let’s compute the cotangent complex of k as an k[y]-algebra, where y acts
by zero on k. Recall that in Example 3.6, we described a simplicial k-algebra B such that
k[y] B k

∼ is a factorization of k[y] → k as a cofibration followed by an acyclic fibration.
This simplicial k-algebra is isomorphic to a polynomial k-algebra

Bn ∼= k[y][x1, . . . , xn]

with face maps determined by

di(y) = y, di(xj) =


y (i = 0, j = 1)

xj−1 (i < j and (i, j) 6= (0, 1))

xj (i > j or i = j 6= n)
0 (i = j = n)

(4.7)

From Example 2.13, we find that

ΩBn/k[y]
∼=
n⊕
i=1

k[y][x1, . . . , xn]dxi.

To get the n-simplicies of the cotangent complex, we tensor this with k over Bn. Hence,

(Lk/k[y])n = ΩBn/k[y] ⊗Bn k ∼=

(
n⊕
i=1

Bndxi

)
⊗Bn k ∼=

n⊕
i=1

kdxi

The degeneracy maps from (4.7) determine the face maps on the cotangent complex. In
particular, we have k-linear face maps such that

di(dxj) =


0 (i = j = n or i = 0, j = 1)

dxj−1 (i < j and (i, j) 6= (0, 1))

dxj (i > j or i = j 6= n).
(4.8)

We may use this to compute the homotopy groups of the cotangent complex by converting
it into a chain complex using the Dold–Kan correspondence and then taking the homotopy.
This chain complex has the n-simplicies of Lk/k[y] in degree n and the differential ∂ of the
corresponding chain complex is given by the alternating sum of face maps,

∂n =

n∑
i=0

(−1)idi.

Altogether, the complex looks as follows:

0 kdx1 kdx1 ⊕ kdx2 kdx1 ⊕ kdx2 ⊕ kdx3 · · ·∂1 ∂2 ∂3
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From (4.8), we see that the first two differentials are zero, so we have π0Lk/k[y]
∼= 0

and π1Lk/k[y]
∼= k. The third differential ∂3 = d0 − d1 + d2 − d3 is surjective, sending

dx1 7→ −dx1, dx2 7→ 0, and dx3 7→ dx2, hence π2Lk/k[y]
∼= 0. The fourth differential ∂4 is

described by dx1 7→ 0,dx2 7→ dx2,dx3 7→ dx2,dx4 7→ 0, and its image thus fills the kernel
of ∂3 to given π3Lk/k[y]

∼= 0. In fact, this pattern continues and πiLk/k[y]
∼= 0when i 6= 1.

One can prove this using Quillen’s fundamental spectral sequence [Qui70, Theorem 6.3].
See also [Qui70, Corollary 6.14] or [Iye07, Proposition 5.11].

Remark 4.9. The above calculation of the cotangent complex can be modified to calculate
the cotangent complex of the quotient of any ring R by a regular sequence. See [Iye07,
Construction 4.16 and Exercise 4.17].

Finally, we summarize some properties of the cotangent complex.

Proposition 4.10.

(a) The augmentation map LA/k → ΩA/k induces an isomorphism on π0.

(b) If A is a cofibrant k-algebra, then LA/k → ΩA/k is a weak equivalence.

Proposition 4.11 (Künneth Theorem, [GS07, Lemma 4.30] or [Mor19, Proposition 2.27]). If
either A or B is a flat k-algebra, then there is an isomorphism

LA⊗kB/k
∼= (A⊗k LB/k)⊕ (LA/k ⊗k B).

Proposition 4.12 (Flat Base Change, [GS07, Theorem 4.31] or [Mor19, Proposition 2.27]). Let
K and A be k-algebras, and suppose that k → A is flat. Then K⊗k LA/k → LA⊗kK/k is a
weak equivalence.

Theorem 4.13 ([Mor19, Proposition 2.27] or [GS07, Proposition 4.32]). Given a sequence of
homomorphisms of commutative rings k→ A→ B, there is a cofiber sequence of simplicial
k-algebras

LA/k ⊗A B→ LB/k → LB/A.

This last theorem yields a long exact sequence in André–Quillen homology.
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