Lesson 5 – From Varieties to Ideals

I. Quick Review of Ideals (As always *k* is a field.)

Definition 1 A subset $I \subseteq k[x_1, x_2, ..., x_n]$, is an **ideal** if it satisfies:

- i) $0 \in I$
- ii) If $f, g \in I$, then $f + g \in I$.
- iii) If $f \in I$ and $h \in k[x_1, x_2, ..., x_n]$, then $hf \in I$

Definition 2 Let $f_1, f_2, ..., f_s \in k[x_1, x_2, ..., x_n]$. Then we set

$$\langle f_1, f_2, \dots, f_s \rangle = \left\{ \sum_{i=1}^s h_i f_i \colon h_1, h_2, \dots, h_s \in k[x_1, x_2, \dots, x_n] \right\}.$$

It is easy to see that $\langle f_1, f_2, ..., f_s \rangle$ is an ideal of $k[x_1, x_2, ..., x_n]^1$; it is called the **ideal generated by** $f_1, f_2, ..., f_s$.

Question: Your textbook is titled "**Ideals**, Varieties, and Algorithms". Why are ideals so important to Algebraic Geometry?

Proposition 3 Let $I \subseteq k[x_1, x_2, ..., x_n]$ be an ideal, and let $f_1, f_2, ..., f_s \in k[x_1, x_2, ..., x_n]$. Prove that the following statements are equivalent:

i) $f_1, f_2, \dots, f_s \in I$. ii) $\langle f_1, f_2, \dots, f_s \rangle \subseteq I$.

¹ This short proof is in the textbook.

Proposition 3 is helpful in proving that one ideal is contained in another...

Exercise 1 Prove that $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle$ in $\mathbb{Q}[x, y]$

Definition Let *k* be a field, and let $f_1, f_2, ..., f_d \in k[x_1, x_2, ..., x_n]$. Then the **affine variety**, denoted by $V(f_1, f_2, ..., f_d)$, is defined by:

$$\mathbf{V}(f_1, f_2, \dots, f_d) = \{(a_1, a_2, \dots, a_n) \in k^n : f_i(a_1, a_2, \dots, a_n) = 0 \text{ for all } 1 \le i \le n\}.$$

Let's make sure we have a good understanding of the definition...

Exercise 2 - For each of the statements below, assume k is a field and $f_1, f_2, \dots, f_d \in k[x_1, x_2, \dots, x_n]$

True False a) For any point $P = (a_1, a_2, ..., a_n) \in \mathbf{V}(f_1, f_2, ..., f_d)$ we have $f_i(P) = 0$.

True False b) For any point $P = (a_1, a_2, ..., a_n) \in \mathbf{V}(f_1, f_2, ..., f_d)$, and any polynomial $g \in k[x_1, x_2, ..., x_n], gf_i(P) = 0$

True False c) For any point $P = (a_1, a_2, ..., a_n) \in \mathbf{V}(f_1, f_2, ..., f_d), (f_i + f_j)(P) = 0$ for all $1 \le i, j \le d$.

True False d) For any point $P = (a_1, a_2, ..., a_n) \in \mathbf{V}(f_1, f_2, ..., f_d)$ and $g_1, g_2, ..., g_d \in k[x_1, x_2, ..., x_n]$, if $f = g_1 f_1 + g_2 f_2, ..., g_d f_d$, then f(P) = 0.

True False e) For any point $P = (a_1, a_2, ..., a_n) \in \mathbf{V}(f_1, f_2, ..., f_d), f(P) = 0$ for all $f \in \langle f_1, f_2, ..., f_d \rangle$

Hopefully the previous exercise has motivated the following definition of the vanishing *ideal* of V. (That is, hopefully, you are convinced that the set I(V) *is indeed an ideal*. Check this, if you like.)

Definition Let $V \subseteq k^n$ be an affine variety. Then define the **ideal of** V: $\mathbf{I}(V) = \{ f \in k[x_1, x_2, ..., x_n] : f(a_1, a_2, ..., a_n) = 0 \text{ for all } (a_1, a_2, ..., a_n) \in V \}$ **Exercise 3** – (Below we examine I(V) for various affine varieties $V \subseteq k^n$; k is an infinite field.)

1) What is the vanishing ideal of the empty set? That is, what is $I(\phi)$?

2) What is $I(k^n)$?

3) What is $I(V(x_1))$?

As the above examples might indicate, the function \mathbf{I} : {varieties in k^n } \rightarrow {ideals in $k[x_1, x_2, ..., x_n]$ } is inclusion-reversing. (Note that item ii) below ensures that \mathbf{I} is indeed a function, and it's injective.)

Proposition 2 Let *V* and *W* be affine varieties in k^n . Then

i) $V \subseteq W$ iff $\mathbf{I}(V) \supseteq \mathbf{I}(W)$. ii) V = W iff $\mathbf{I}(V) = \mathbf{I}(W)$. (**True or False:** $V \subsetneq W$ iff $\mathbf{I}(V) \supseteq \mathbf{I}(W)$) **Upshot:** Given the function I: {varieties in k^n } \rightarrow {ideals in $k[x_1, x_2, ..., x_n]$ } defined by: $I(V) = \{f \in k[x_1, x_2, ..., x_n]: f(a_1, a_2, ..., a_n) = 0 \text{ for all } (a_1, a_2, ..., a_n) \in V\}$ $I(V) = I(W) \Rightarrow V = W$, so I is an injection.

A Natural Question to Ask:

Is the function **I** surjective? That is, given an ideal *I* in $k[x_1, x_2, ..., x_n]$, is *I* the vanishing ideal for some affine variety *V*?

Later we will see that every ideal of $k[x_1, x_2, ..., x_n]$ is finitely generated; this means there exist polynomials (i.e., generators) $f_1, f_2, ..., f_d \in k[x_1, x_2, ..., x_n]$ such that $I = \langle f_1, f_2, ..., f_d \rangle$.

It might be natural then to guess that $V(f_1, f_2, ..., f_d)$ is the variety we seek. So we ask:

Given $f_1, f_2, ..., f_d \in k[x_1, x_2, ..., x_n]$, is $I(V(f_1, f_2, ..., f_d)) = \langle f_1, f_2, ..., f_d \rangle$? We will examine this question more carefully later; for now let's look at an example to convince you that there is much to think about...

Exercise 4 Consider the ideals $I_1 = \langle x^2, xy \rangle$ and $I_2 = \langle x, xy \rangle$ in k[x, y]. a) Describe the sets $\mathbf{V}(x^2, xy)$ and $\mathbf{V}(x, xy)$.

b) What are $I(V(x^2, xy))$ and I(V(x, xy))? Does the function I appear to be surjective?

c) Can you find other functions $f_1, f_2 \in k[x, y]$ such that $V(f_1, f_2) = V(x^2, xy)$ and hence $I(V(f_1, f_2)) = I(V(x^2, xy))$? Can you say anything about when an ideal $\langle f_1, f_2 \rangle \subseteq k[x, y]$ is in the image of I?