Friday Fun: Exploring the Ideal Membership Problem

Given an ideal $I=\left\langle f_{1}, f_{2}, \ldots, f_{s}\right\rangle \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and a polynomial $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we would like to decide whether $f \in I$. The idea is simple; $f \in I$ if and only if it can be written as $f=\sum_{i=1}^{S} h_{i} f_{i}$ for some $h_{i} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Of course, when there is only one variable, then $k\left[x_{1}\right]$ is a PID, and the ideal membership problem is easy; $I=\left\langle f_{1}, f_{2}, \ldots, f_{s}\right\rangle=\left\langle\operatorname{GCD}\left(f_{1}, f_{2}, \ldots, f_{s}\right)\right\rangle$, and $f \in I \operatorname{iff} \operatorname{GCD}\left(f_{1}, f_{2}, \ldots, f_{s}\right) \mid$ f. Today we examine what happens in the multivariate case. Feel free to make use of the chalkboards while working through these exercises.

Exercise 1

a) Using lex order, divide the polynomial $f(x, y, z)=x^{3}-x^{2} y-x^{2} z+x$ by $\left(f_{1}, f_{2}\right)$, where $f_{1}(x, y, z)=x^{2} y-z$ and $f_{2}(x, y, z)=x y-1$. Record your quotients and remainder below.

$$
f(x, y, z)=\ldots \cdot\left(x^{2} y-z\right)+\ldots \quad(x y-1)+\ldots
$$

b) Now switch the order; that is, divide the polynomial $f(x, y, z)=x^{3}-x^{2} y-x^{2} z+x$ by $\left(f_{2}, f_{1}\right)$. Record the result below.

$$
f(x, y, z)=\ldots \quad \cdot\left(x^{2} y-z\right)+\ldots \quad(x y-1)+\ldots
$$

Exercise 2 Let r_{1} be the remainder you obtained in part a) above and r_{2} the remainder from part b). Define r to be the difference of the two: $r=r_{1}-r_{2}$. Is $r \in\left\langle f_{1}, f_{2}\right\rangle$? If yes, then find $h_{1}, h_{2} \in k[x, y, z]$ such that $r=h_{1} f_{1}+h_{2} f_{2}$. If no, then explain why $r \notin\left\langle f_{1}, f_{2}\right\rangle$.

Exercise 3 - True or False

If f divided by $F=\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ produces a remainder r_{1} and f divided by $G=\left(f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{s}}\right)$ produces a remainder r_{2}, where $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ is a permutation of $(1,2, \ldots, s)$, then $r_{1}-r_{2} \in\left\langle f_{1}, f_{2}, \ldots, f_{s}\right\rangle$. Prove your claim.

Exercise 4 (Exercises 4-7 refer to the example introduced in Exercise 1, so $f_{1}=x^{2} y-z, f_{2}=x y-1$.)
a) Compute the remainder of $r=x-z$ on division by $\left(f_{1}, f_{2}\right)$. Why could you have predicted your answer before doing the division?
b) What does your answer from part a) tell you about the Ideal Membership Problem?

Exercise 5 Show that $g(x, y, z)=y z-1 \in\left\langle f_{1}, f_{2}\right\rangle$. (Observe: $y z-1=(x y+1)(x y-1)-$ $y\left(x^{2} y-z\right)$.) What is the remainder of g on division by $\left(f_{1}, f_{2}\right)$?

Exercise 6 Prove that $\langle x-z, y z-1\rangle=\left\langle f_{1}, f_{2}\right\rangle$.
Exercise 7 Can any element $h_{1} \cdot(x-z)+h_{2} \cdot(y z-1) \in\langle x-z, y z-1\rangle$ have a nonzero remainder when it is divided by $\langle x-z, y z-1\rangle$? Prove your claim.

One Final Question: What is the point of these exercises?

Quick Recap of the Multivariate Division Algorithm:

Theorem (The Division Algorithm in $\boldsymbol{k}\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right]$) Fix a monomial order $>$ on $\mathbb{Z}_{\geq 0}^{n}$ and let $F=$ $\left(g_{1}, g_{2}, \cdots, g_{s}\right)$ be an ordered s-tuple of polynomials in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then for any $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ there exist $a_{1}, a_{2}, \ldots, a_{s}, r \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that

1. $f=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{s} g_{s}+r$ and r is reduced with respect to G.
2. $\max \left\{\operatorname{LT}\left(a_{1}\right) \operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(a_{s}\right) \operatorname{LT}\left(g_{s}\right), \operatorname{LT}(r)\right\}=\operatorname{LT}(f)$
(Condition 2 stated above is stronger than and implies the textbook's second condition "if $a_{i} g_{i} \neq 0$, then multideg $(f) \geq$ multideg $\left(a_{i} g_{i}\right)$ ".)

INITIAL VALUES: $a_{1}:=0, a_{2}:=0, \ldots, a_{s}:=0, r:=0, h:=f$
ALGORITHM: While $h \neq 0$ do
-if $\exists i$ such that $\operatorname{LT}\left(g_{i}\right) \mid \operatorname{LT}(h)$ then choose the least such i and

$$
\begin{aligned}
& a_{i}:=a_{i}+\frac{\operatorname{LT}(h)}{\operatorname{LT}\left(g_{i}\right)} \\
& h:=h-\frac{\operatorname{LT}(h)}{\operatorname{LT}\left(g_{i}\right)} g_{i}
\end{aligned}
$$

-else

$$
\begin{aligned}
& r:=r+\operatorname{LT}(h) \\
& h:=h-\operatorname{LT}(h)
\end{aligned}
$$

Example Divide $x^{2} y^{2} z+2 x^{2} z+x^{2}-x y^{2}$ by the set $F=\left(x y^{2}+2, x^{2} z-2\right)$. Use the lex order.
Solution:

$$
\begin{aligned}
& a_{1}: \\
& a_{2} \\
& \\
& x y^{2}+2 \quad \mid \overline{x^{2} y^{2} z+2 x^{2} z+x^{2}-x y^{2}} \\
& x^{2} z-2
\end{aligned}
$$

