Friday Fun: Exploring the Ideal Membership Problem

Given an ideal $I = \langle f_1, f_2, ..., f_s \rangle \subseteq k[x_1, x_2, ..., x_n]$ and a polynomial $f \in k[x_1, x_2, ..., x_n]$, we would like to decide whether $f \in I$. The idea is simple; $f \in I$ if and only if it can be written as $f = \sum_{i=1}^{s} h_i f_i$ for some $h_i \in k[x_1, x_2, ..., x_n]$. Of course, when there is only one variable, then $k[x_1]$ is a PID, and the ideal membership problem is easy; $I = \langle f_1, f_2, ..., f_s \rangle = \langle \text{GCD}(f_1, f_2, ..., f_s) \rangle$, and $f \in I$ iff $\text{GCD}(f_1, f_2, ..., f_s) \mid$ f. Today we examine what happens in the multivariate case. Feel free to make use of the chalkboards while working through these exercises.

Exercise 1

a) Using lex order, divide the polynomial $f(x, y, z) = x^3 - x^2y - x^2z + x$ by (f_1, f_2) , where $f_1(x, y, z) = x^2y - z$ and $f_2(x, y, z) = xy - 1$. Record your quotients and remainder below.

 $f(x, y, z) = _ \cdot (x^2y - z) + _ \cdot (xy - 1) + _$

b) Now switch the order; that is, divide the polynomial $f(x, y, z) = x^3 - x^2y - x^2z + x$ by (f_2, f_1) . Record the result below.

 $f(x, y, z) = ___ \cdot (x^2y - z) + ___ \cdot (xy - 1) + ___$

Exercise 2 Let r_1 be the remainder you obtained in part a) above and r_2 the remainder from part b). Define r to be the difference of the two: $r = r_1 - r_2$. Is $r \in \langle f_1, f_2 \rangle$? If yes, then find $h_1, h_2 \in k[x, y, z]$ such that $r = h_1 f_1 + h_2 f_2$. If no, then explain why $r \notin \langle f_1, f_2 \rangle$.

Exercise 3 – True or False

If f divided by $F = (f_1, f_2, ..., f_s)$ produces a remainder r_1 and f divided by $G = (f_{i_1}, f_{i_2}, ..., f_{i_s})$ produces a remainder r_2 , where $(i_1, i_2, ..., i_s)$ is a permutation of (1, 2, ..., s), then $r_1 - r_2 \in \langle f_1, f_2, ..., f_s \rangle$. Prove your claim.

Exercise 4 (Exercises 4-7 refer to the example introduced in Exercise 1, so $f_1 = x^2y - z$, $f_2 = xy - 1$.) a) Compute the remainder of r = x - z on division by (f_1, f_2) . Why could you have predicted your answer before doing the division?

b) What does your answer from part a) tell you about the Ideal Membership Problem?

Exercise 5 Show that $g(x, y, z) = yz - 1 \in \langle f_1, f_2 \rangle$. (Observe: $yz - 1 = (xy + 1)(xy - 1) - y(x^2y - z)$.) What is the remainder of g on division by (f_1, f_2) ?

Exercise 6 Prove that $\langle x - z, yz - 1 \rangle = \langle f_1, f_2 \rangle$.

Exercise 7 Can any element $h_1 \cdot (x - z) + h_2 \cdot (yz - 1) \in \langle x - z, yz - 1 \rangle$ have a nonzero remainder when it is divided by $\langle x - z, yz - 1 \rangle$? Prove your claim.

One Final Question: What is the point of these exercises?

Quick Recap of the Multivariate Division Algorithm:

Theorem (The Division Algorithm in $k[x_1, x_2, ..., x_n]$) Fix a monomial order > on $\mathbb{Z}_{\geq 0}^n$ and let $F = (g_1, g_2, ..., g_s)$ be an ordered *s*-tuple of polynomials in $k[x_1, x_2, ..., x_n]$. Then for any $f \in k[x_1, x_2, ..., x_n]$ there exist $a_1, a_2, ..., a_s, r \in k[x_1, x_2, ..., x_n]$ such that

1. $f = a_1g_1 + a_2g_2 + \dots + a_sg_s + r$ and r is reduced with respect to G.

2. max{LT(a_1)LT(g_1), ..., LT(a_s)LT(g_s), LT(r)} = LT(f)

(Condition 2 stated above is stronger than and implies the textbook's second condition "if $a_i g_i \neq 0$, then multideg(f) \geq multideg($a_i g_i$)".)

INITIAL VALUES: $a_1 := 0, a_2 := 0, ..., a_s := 0, r := 0, h := f$ **ALGORITHM:** While $h \neq 0$ do -if $\exists i$ such that $LT(g_i)|LT(h)$ then choose the least such i and LT(h)

$$a_i := a_i + \frac{1}{LT(g_i)}$$
$$h := h - \frac{LT(h)}{LT(g_i)}g_i$$
-else $r := r + LT(h)$
$$h := h - LT(h)$$

Example Divide $x^2y^2z + 2x^2z + x^2 - xy^2$ by the set $F = (xy^2 + 2, x^2z - 2)$. Use the lex order.

Solution:

$$a_{1}:$$

$$a_{2}:$$

$$xy^{2}+2 | \overline{x^{2}y^{2}z + 2x^{2}z + x^{2} - xy^{2}}$$

$$x^{2}z-2$$