Lesson 14 - Properties of Groebner Bases

I. Groebner Bases Yield Unique Remainders

Theorem Let $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ be a Groebner basis for an ideal $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and let $f \in$ $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then there is a unique r with the following properties
(i) No term of r is divisible by any of $\operatorname{LT}\left(g_{1}\right), \operatorname{LT}\left(g_{2}\right), \ldots, \operatorname{LT}\left(g_{t}\right)$.
(ii) There is $g \in I$ such that $f=g+r$.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when using the division algorithm.

Proof: The existence of r follows from the division algorithm, which yields $f=a_{1} g_{1}+a_{2} g_{2}+\cdots+$ $a_{t} g_{t}+r=g+r$, where $a_{i} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and r satisfies condition (i). It suffices, then, to prove the uniqueness of r.

Exercise 1 Prove the uniqueness of r.

Exercise 2 We know from the above theorem that dividing a polynomial $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ by a Groebner basis $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ produces a unique remainder (regardless of the order of the set). Are the quotients unique too? Let's examine this question...
The set $G=\{x+z, y-z\}$ is a Groebner basis for $I=\langle x+z, y-z\rangle$ using the lex order w/ $x>y>z$.
a) Divide $x y$ by the 2-tuple $(x+z, y-z)$.

Solution.

\[

\]

So $x y=y(x+z)-z(y-z)-z^{2}$. The remainder is $r=-z^{2}$.
b) Now divide $x y$ by $(y-z, x+z)$. What do you discover?

Solution.

\[

\]

So $x y=z(x+z)+x(y-z)-z^{2}$. The remainder is $r=-z^{2}$ is the same as expected, but the quotients are different.

Notation. We will write \bar{f}^{F} to denote the remainder of f upon division by an ordered t-tuple of polynomials $F=\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$. If $G=\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$ is a Groebner basis, then we can regard the t-tuple as a set (without any particular order), and we call \bar{f}^{G} the normal form of f.

As a corollary to Theorem 1, we now know that the division algorithm decides the ideal membership problem as long as we divide the polynomial in question by a Groebner basis.

Corollary (Ideal Membership) Let $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ be a Groebner basis for an ideal $I \subseteq$ $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and let $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then $f \in I$ if and only if $\bar{f}^{G}=0$.

BUT HOW DO WE KNOW IF WE HAVE A GROEBNER BASIS???

II. S-Polynomials and Buchberger's Criterion

Let's assume we have a potential Groebner basis

$$
G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}
$$

for an ideal $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, with $g_{1}, g_{2}, \ldots, g_{t} \in I$. It follows from the definition that

$$
\left\langle\operatorname{LT}\left(g_{1}\right), \operatorname{LT}\left(g_{2}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right\rangle \subseteq\langle\operatorname{LT}(I)\rangle
$$

However, it could be that $\left\langle\operatorname{LT}\left(g_{1}\right), \operatorname{LT}\left(g_{2}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right\rangle \nsupseteq\langle\operatorname{LT}(I)\rangle$. Let's remind ourselves of how this can happen with an example...

Exercise 3 Consider the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \subseteq k[x, y]$, where $g_{1}(x, y)=x^{3}-2 x$ and $g_{2}(x, y)=x^{4}-$ $3 x$. Show that $\left\langle\operatorname{LT}\left(g_{1}\right), \operatorname{LT}\left(g_{2}\right)\right\rangle \nsupseteq\langle\operatorname{LT}(I)\rangle$.

Question: What is the basic source of the obstruction to Groebner bases?

Hence we define the " S-polynomial".
Definition Let $f, g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be nonzero polynomials.
(i) If multideg $(f)=\alpha$ and multideg $(g)=\beta$, then let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$, where $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$ for each $1 \leq i \leq n$. We call the least common multiple of $\operatorname{LM}(f)$ and $\operatorname{LM}(g)$, written $x^{\gamma}=$ $\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$.
(ii) The S-polynomial of f and g is the combination

$$
S(f, g)=\frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f-\frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g
$$

(Note that we are inverting the leading coefficients here as well.)
Exercise 4 Compute the S-polynomial of $f(x, y)=x^{3} y^{2}-x^{2} y^{3}$ and $g(x, y)=3 x^{4} y+y^{2}$ under the grlex order.

Notice that the S-polynomial is basically designed to cancel the leading terms of f and g, so what we get is another element of the ideal $I=\langle f, g\rangle$ with a different leading term. Therefore, if we have a Groebner basis G, G must also generate all of the S-polynomials. This is, in fact, one way of checking that we have a Groebner basis, via the following theorem.

Theorem (Buchberger's Criterion) Let $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an ideal. Then $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ is a Groebner basis for I if and only if for all $i \neq j$, the remainder upon division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

This theorem gives a fairly simple test for whether or not we have a Groebner basis.

Exercise 5 Consider the ideal $I=\left\langle x-z^{2}, y-z^{3}\right\rangle \subseteq k[x, y, z]$.
a) Is $G=\left\{x-z^{2}, y-z^{3}\right\}$ a Groebner bases for I under the lex order with $x>y>z$?
b) Is $G=\left\{x-z^{2}, y-z^{3}\right\}$ a Groebner bases for I under the lex order with $z>y>x$?

Remark You can check that $G=\left\{x-z^{2}, y-z^{3}\right\}$ is not a Groebner bases for I under the grlex order (with any ordering of the variables). Hence, a set of generators for a given ideal may form a Groebner basis under one monomial order, but not under another.

III. A Sketch of the Proof of Buchberger's Criterion

If $f=\sum_{i=1}^{s} h_{i} f_{i} \in I$ is such that $\operatorname{LT}(f) \notin\left\langle\operatorname{LT}\left(f_{1}\right), \operatorname{LT}\left(f_{2}\right), \ldots, \operatorname{LT}\left(f_{t}\right)\right\rangle$ then several of the leading terms of the summands with a common leading power must cancel, leaving lower power terms that aren't generated by the $\left\{\operatorname{LT}\left(f_{i}\right)\right\}$. This happens, of course, because the leading coefficients cancel. So it is useful to consider scalar combinations of the f_{i}.

Lemma If $f=\sum_{i=1}^{S} c_{i} f_{i} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where $c_{i} \in k$ and multideg $\left(f_{i}\right)=\delta$ for all $1 \leq i \leq s$, and multideg $(f)<\delta$, then $f=\sum_{i=1}^{S} c_{i} f_{i}$ is a k-linear combination of the S polynomials $S\left(f_{i}, f_{j}\right)$; that is,

$$
f=\sum_{i=1}^{s} c_{i} f_{i}=\sum_{j, k} c_{j k} S\left(f_{i}, f_{j}\right), \quad \text { for some } c_{j k} \in k
$$

Exercise 6 Compute $S\left(f_{i}, f_{j}\right)$, where $1 \leq i, j \leq s, i \neq j$, and the polynomials f_{i}, f_{j} satisfy the hypotheses of the above lemma (so they have the same multidegree).

Exercise 7 Write $\sum_{i=1}^{S} c_{i} f_{i}$ as a k-linear combination of the S polynomials $S\left(f_{i}, f_{j}\right)$, where $1 \leq i, j \leq s$. (We're assuming all of the hypotheses of the lemma.)

Theorem (Buchberger's Criterion) Let $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an ideal. Then $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ is a Groebner basis for I if and only if $\overline{S\left(g_{l}, g_{J}\right)}{ }^{G}=0$ for all $i \neq j$.

Sketch of Proof.

